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Abstract
Tool condition monitoring (TCM) has become essential to achieve high-quality machining as well as cost-effective
production. Identification of the cutting tool state during machining before it reaches its failure stage is critical. This paper
presents a novel big data approach for tool wear classification based on signal imaging and deep learning. By combining
these two techniques, the approach is able to work with the raw data directly, avoiding the use of statistical pre-processing or
filter methods. This aspect is fundamental when dealing with large amounts of data that hold complex evolving features. The
imaging process serves as an encoding procedure of the sensor data, meaning that the original time series can be re-created
from the image without loss of information. By using an off-the-shelf deep learning implementation, the manual selection
of features is avoided, thus making this novel approach more general and suitable when dealing with large datasets. The
experimental results have revealed that deep learning is able to identify intrinsic features of sensory raw data, achieving in
some cases a classification accuracy above 90%.

Keywords Smart manufacturing · Tool wear classification · Time series imaging · Convolutional neural network ·
Deep learning

1 Introduction

The manufacturing industry has gone through several
paradigm changes along the years. Industrie 4.0, also
referred as smart industry, is a new paradigm that pro-
poses the integration of information and communication
technologies (ICT) into a decentralised production. With
manufacturing machines fully networked to share data and
controlled by advanced computational intelligence tech-
niques, this paradigm is looking to improve productivity,
quality, sustainability and reduce costs [1, 2].
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The estimation of the remaining useful life (RUL)
of industrial components is an important task in smart
manufacturing. Early detection of cutting tool degradation
facilitates the reduction of failures, and hence decreases
manufacturing costs and improves productivity. It can also
help maintain the quality of the workpiece, as it has been
demonstrated that there is a correlation between the surface
roughness of the workpiece and the cutting tool wear [3].
Real-time tool wear measurement is difficult to put in
practice as the tool is continuously in contact with the
workpiece during machining. For this reason, a plethora of
indirect approaches for tool wear estimation (also referred
as Prognosis) have been proposed utilising sensor signals
such as cutting forces, vibrations, acoustic emissions and
power consumption [4].

Prognostic approaches can be divided into two cate-
gories: model-based and data-driven. The first ones rely
on the a priori knowledge of the underlying physical laws
and probability distributions that describe the dynamic
behaviour of a system [5–8]. Although these have proven
to be successful, an in-depth understanding and exper-
tise of the physical processes that lead to tool failure is
required.

On the other hand, data-driven approaches model the data
by means of a learning process, avoiding any assumptions
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on its underlying distribution. Most data-driven methods
that have been used for tool wear prediction are based
on machine learning, particularly artificial neural networks
(ANN), support vector machines (SVM) and decision trees
(DT) [9]. However, these techniques are limited in their
ability to process raw (i.e. unstructured or unformatted)
data, which has a negative effect on their generalisation
capabilities [10].

The large amount of data in smart manufacturing imposes
challenges such as the proliferation of multivariate data,
high dimensionality of feature space and multicollinearity
among data measurements [2, 11]. This paper presents
in detail the methodology of a novel approach for tool
wear classification recently used in [12] as a component
of an on-line monitoring framework. Its automatic feature
learning and high-volume processing capabilities make
deep learning a viable advanced analytics method for
tool wear classification despite the large volumes of data
required. The proposed classification methodology is based
on two components: an imaging step and a deep learning
step. The imaging technique employed encodes sensor
signals in such a way that its complex features as well
as the exhibited temporal correlations are captured by the
deep learning, avoiding manual selection. An analysis of the
challenges and strategies used to build a big data classifying
approach is performed through a set of experiments using
the PHM 2010 challenge dataset [13], where the technical
procedures of how the data was generated and collected are
not entirely known. This provides a way to perform an un-
biased blind test and proof of the generalisation capabilities
of the methodology.

The rest of the manuscript is organised as follows:
Section 2 presents details of how machine learning has been
applied to tool wear prediction. Section 3 introduces the
proposed approach giving details of the signals imaging
and the deep learning methodology. The experimental setup
and the results and discussion are presented in Section 4.
Finally, conclusions and future work are presented in
Section 5.

2 Related work

Tool wear has been widely studied as it is a very
common phenomenon in manufacturing processes such as
milling, drilling and turning. It is well known that different
machining parameters such as spindle speed, feed rate and
cutting tool characteristics as well as the workpiece material
have an effect on tool wear progression [14]. Although
this progression can be mathematically estimated [15,
16], these models rarely capture the stochastic properties
of real machining processes and tool-to-tool performance
variation [17]. Over the last two decades, it has been

demonstrated that data-driven models can achieve higher
accuracy, although these have also shown some drawbacks
[10].

Some of the most common data-driven methods are
based on traditional machine learning algorithms. SVMs,
for example, have been successfully applied for tool
condition monitoring in [18]. The authors use automatic
relevance determination (ARD) on acoustic emission
data to select nine features as inputs for classification.
ANNs have also been extensively applied for tool wear
prediction. These commonly use a combination of cutting
parameters such as cutting speed, feed rate and axial cutting
length as well as statistical features of forces, vibrations
and acoustic emission [19–22]. In applications such as
drilling and milling, it has been shown how ANNs can
outperform regression models. In [9], a tool wear prediction
method based on random forests is proposed. Although
this approach has outperformed ANN- and SVM-based
methods, it relies on the manual selection of features to build
the internal classification structures.

Manual feature selection is a significant problem when
dealing with large amounts of shop floor–generated sensory
data. Its distribution as well as the number of features
available may change with time. Cloud-based architectures
recently proposed for collecting and managing sensory data
[2, 23] present new challenges to current TCM solutions. To
develop a more general approach, forthcoming approaches
should be able to cope not only with high volumes of
heterogeneous data but also with the constant evolution of
high-dimensional features. Most classical machine learning
techniques have been designed to work with data features
that do not change with time (static data). As a result, several
of these techniques either have been extended to handle the
temporal changes or rely on a prior selection of features
using other algorithms [24].

Deep learning has offered better solutions when dealing
with high-dimensional evolving features. These techniques
have made major advances in fields such as image
recognition [25, 26], speech recognition [27] and natural
language processing [28, 29], to name a few. Its capability to
process highly complex featured data has led to an emerging
study of deep learning applications for smart manufacturing.
For instance, recurrent neural networks (RNN) have been
successful for the long-term prognosis of rolling bearing
health status [30]. In [31], a local feature-based gated
recurrent unit network is applied to tool wear prediction,
gearbox fault diagnosis and bearing fault detection. The bi-
directional recurrent structure proposed by the authors can
access the sequential data in two directions–forward and
backward–so that the model can fully explore the ‘past and
future’ of each state.

Another successful deep learning architecture is the
convolutional neural network (CNN) [32], which is the
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one addressed in this work. CNNs have become the
de facto standard for deep learning tasks as they have
achieved state-of-the-art performance in image recognition
tasks. The architecture of a CNN is based on the
architecture of the ANN, but further extended with a
combination of convolutional and sub-sampling layers
that allow the discovery of relevant features. This is
explained in more detail in Section 3.2. CNNs are developed
primarily for 2D signals such as images and video
frames. Some successful applications are the detection of
vehicles in complex satellite images [33], the classification
of galaxy morphology [34], brain tumour segmentation
from MRI images [35], among others. Their success
in the classification of two-dimensional data has led to
further development of CNNs for time series classification
(one-dimensional data). Some applications include the
classification of electrocardiogram beats for detecting heart
failure [36] and the use of accelerometer readings for human
activity recognition [37].

CNNs have also been applied in manufacturing prob-
lems. For example, this technique has been used for the
detection of faulty bearings [38–40] by feeding raw vibra-
tion data directly to the CNN, achieving good accuracy and
reducing the computational complexity of the extraction of
fixed features. In [41], real-time structural health monitor-
ing is performed using 1D CNNs. The authors use vibration
signals from damaged and undamaged joints of a girder to
train several CNNs, one for each joint. Their objective is
to detect the structural damage (if any), and identify the
location of the damaged joint(s) in the girder. The authors
report an outstanding performance and computational effi-
ciency of the approach when dealing with large-scale
experiments.

Some previous work on tool wear prediction using a
CNN combined with bi-directional long short-term memory
(LSTM) has been done [42]. The proposed approach
is able to extract local features of the data, achieving
good accuracy when compared with other deep learning
techniques such as RNNs. However, the method performs
a substantial size reduction of the original data, losing
information at the flute level. This will be further discussed
in Section 5.

Manual feature selection is still a limitation for tool wear
prediction approaches to achieve generalisation. To address
this, this paper extends preliminary experiments of a novel
deep learning–based method that will allow the automatic
discovery of intricate structures in sensor signals that relate
to the tool condition, and from this provide a classification
of the tool state. The approach is blind to the type of signals
given or their underlying distribution, so no assumptions nor
manual feature selections are needed. At the same time, the
model is blind to the type of wear being classified. Although
in this work flank wear has been used as a measure of the

tool condition, the proposed methodology could be used for
other types of tool wear as well.

3Methodology

This section presents the two main steps of the methodol-
ogy: the imaging of sensor signals using Gramian Angular
Summation Fields [43] and the classification using CNNs.
The idea behind this approach is to visually recognise, clas-
sify and learn structures and patterns intrinsic to sensory
data without loss of information.

3.1 Time series imaging

There has been a recent interest on reformulating features
of time series to improve their identification, and hence
classification. Eckmann et al. introduced the method of
recurrence plots to visualise the repetitive patterns of
dynamical systems [44]. Silva et al. used this method
and proposed the use of a compression distance approach
to compare recurrence plots of time series as a way to
measure similarity [45]. Methods based on time series
to network mapping using the topology of the network
as a way to characterise the time series have also been
proposed [46, 47]. Most of these methods do not provide
a way to reconstruct the original data, making unclear how
the topological properties relate to the time series. Wang
et al. propose three techniques, two based on Gramian
Angular Fields (GAF) and one on Markov Transition
Fields (MTF) to image time series [43]. They argue that
compared with previous techniques, the original time series
can be re-constructed, allowing the user to understand how
the features introduced in the encoding process improve
classification. They reported GAF encoding methods were
able to achieve competitive results in a series of baseline
problems that include different domains such as medicine,
entomology, engineering and astronomy. Furthermore, this
method has been found to perform well compared with other
time series encoding techniques in applications such as the
classification of future trends of financial data [48].

As a pre-processing step, our approach uses the GAF
imaging technique proposed by [43], particularly the one
based on the summation of angular fields, Gramian Angular
Summation Fields (GASF). This encoding method consists
of two steps. First, the time series is represented in a
polar coordinate system instead of the typical Cartesian
coordinates. Thus, given a time series X = x1, x2, ..., xn of
n real-valued observations, X is rescaled so that all values
fall in the interval [−1, 1] by:

x̃i
−1 = xi − max(X) + (xi − min(X))

max(X) − min(X)
(1)
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The time series X̃ can then be represented in polar
coordinates by encoding the value as the angular cosine and
the time stamp as the radius applying Eqs. 2 and 3:

φ = arcos(x̃i), −1 ≤ x̃i ≤ 1, x̃i ∈ X̃ (2)

r = ti

N
, ti ∈ N (3)

In Eq. 3, ti is the time stamp and N is a constant
factor to regularise the span of the polar coordinate system.
Figure 1 shows an example of forces on z-dimension and its
representation in polar coordinates.

As time increases, corresponding values on the polar
coordinate system warp among different angular points
on the spanning circles. This representation preserves the
temporal relations and can easily be exploited to identify

Fig. 1 Forces on y-axis acquired from a dynamometer are encoded
as polar coordinates by applying Eqs. 2 and 3. As time increases, the
corresponding values of the signal in polar coordinates wrap among
different angular points on the spanning circles, keeping the temporal
relations

the temporal correlation within different time intervals. This
temporal correlation is represented as:

G =

⎡
⎢⎢⎢⎣

cos(φ1 + φ1) . . . cos(φ1 + φn)

cos(φ2 + φ1) . . . cos(φ2 + φn)
...

. . .
...

cos(φn + φ1) . . . cos(φn + φn)

⎤
⎥⎥⎥⎦ (4)

cos(φi + φj ) = X̃′ · X̃ −
√

I − X̃2
′
·
√

I − X̃2 (5)

where I is a unit full row vector ([1,1,...,1]). Figure 2 shows
the resulting image of applying the encoding method to the
time series presented in Fig. 1.

The GASF image provides a way to preserve temporal
dependency. Time increases as the position in the image
moves from top–left to bottom–right. G(i,j ||i−j |=k) repre-
sents the relative correlation by superposition of directions
with respect to time interval k. The main diagonal Gi,i is
the special case when k = 0, which contains the original
value/angular information. The dimension of the resulting
GASF image is n × n when the time series is of length
n. To reduce the size of the image, piecewise aggregation
approximation (PAA) is applied to smooth the time series
while keeping trends [49]. As explained in the Experiments
section, the amount of time series data that is acquired from
the sensors is large (more than 200,000 measurements), so
PAA is fundamental to keep the images at a reasonable size
without losing time coherence.

To label the images, three regions have been identified
as defined in [50]. According to the literature, the tool
life in milling operations is typically divided into three
stages/classes: a break-in region, which occurs with a rapid
wear rate; the steady-state wear region with uniform wear
rate; and a failure region, which again occurs with a rapid
wear rate [51]. Figure 3 presents a tool degradation curve
example with the classes that were used to label the images.

Fig. 2 Example of the encoding of forces in the y-axis as an image
using GASF. The colour represents the intensity of the relative
correlation between two points in the time series, which is a value
between −1 and 1. There is no PAA smothing applied to the resulting
image, so the resolution (300 × 300 pixels) is the same as in the
original signal
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Fig. 3 Tool flank wear as a
function of cutting time (cut
events of cutter c6 used in the
experiments). For each region, a
sample image of forces in y-axis
is provided

3.2 Deep learning for time series classification

To identify the current state of wear of a tool by using sensor
signals, the approach applied needs to be capable of picking
up the temporal dependencies present in the signals. Sensor
signals are expected to show changes in their temporal
structures as the tool wears out. A classification tool should
be capable of identifying those changes and map them to a
predefined wear class.

Time series classification methods are generally divided
into two categories: sequence-based methods and feature-
based methods. Among both of these categories, k-nearest
neighbour (k-NN), which is a sequence-based method,
has proven to be very difficult to beat. This is specially
true when paired with dynamic time warping (DTW). The
drawback of this approach is its lengthy computation time.
As the training set grows, the computation time, and hence
the prediction time, increases linearly.

An approach that can provide constant prediction time
as well as a way to extract relevant features automatically
is deep learning. CNNs in particular have been successful
in handling large volumes of data. Although they have
been primarily used for visual tasks, voice recognition
and language processing, new developments have looked
towards time series classification.

CNNs have been inspired by the way the visual cortex
in the human brain works. Neurons of the visual cortex
have a local receptive field which reacts to visual stimuli
located in a limited region of the visual field [52]. These
receptive fields may overlap, tiling together the whole
visual field. Some neurons have larger receptive fields
which react to more complex patterns that are further
combinations of lower level patterns. The discovery of
these basic functionalities of the human brain inspired the
idea of developing an artificial neural network architecture
whereby higher level neurons are based on the outputs

of neighbouring lower level neurons, to detect complex
patterns. In 1998, LeCun et al. [32] proposed the LeNet-5
architecture, which contains the main building blocks of a
CNN: the convolution layer and the pooling layer.

A convolution layer is formed by a series of neurons that
are connected to neurons of a previous layer based on the
their receptive field. For example, in the first convolution
layer, each neuron is not connected to each individual
pixel of the input image, but to only those pixels within a
receptive field. Then each neuron in the second convolution
layer is connected to neurons within a small rectangle in
the first layer. The first convolution layer is responsible for
detecting the lower level features, and further convolutions
assemble these features into higher level ones. The set of
weights (i.e. filter) of a neuron in each convolution layer
will depend on the type of feature it is “looking” for. For
example, a particular filter would be able to detect vertical
lines while another one could detect horizontal ones. During
the convolution, the filter is compared with different areas
of the image, obtaining a feature map, that highlights the
areas in an image that are most similar to the filter (see
Fig. 4a). As images posses a variety of different features,
each convolution neuron would have more than one set of
weights or filters. The training process will enable the CNN
to find the most useful filters for the particular classification
task. In the case of the force classification that is addressed
here, the training process will find those filters that allow
it to recognise in a first instance features at a flute level
regardless of where in the image they are located. Then,
higher level convolutions allow the determination of the
state of the tool considering all flutes.

The pooling layer is another important building block
of the CNN. This layer downscales the output of
the convolution, thus reducing dimensionality, the local
sensitivity of the network and computational complexity
(see Fig. 4b) [32]. A typical CNN architecture stacks
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Fig. 4 Low-level features of
forces are picked up by the first
layer, which are then assembled
into higher level features in the
following layers

several convolutions (that may include a rectified linear
unit (ReLU) step to speed up the training) and pooling
layers which reduce the size of the image as it gets deeper.
Finally, at the top of the stack, a multilayer neural network
is connected to the last convolution/pooling to perform the
classification.

In this paper, the CIFAR-10 architecture from Tensorflow
has been used [53]. This is an off-the-shelf CNN
architecture that has proven to achieve high accuracy on
the classification of 3-channel images (see Fig. 5). This
architecture has two convolution layers stacked with their
corresponding ReLU and pooling layers. Each convolution
applies 64 filters. As will be presented in the next
section, the implemented CNN will take 3-channel images
generated from the force sensors and use these for training.
The deep learning structure will be able to pick up
the relevant features that relate to tool wear condition.
Figure 6 shows a schematic of how the approach has been
implemented.

4 Experiments and results

Tool wear classification was performed using a dataset
that was originally made available by the PHM2010 Data
Challenge [13]. The dataset contains sensory data of six
3-flute cutters (labelled c1, ..., c6) used in a high-speed
CNC machine (Röders Tech RFM760) under dry milling
conditions until a significant wear stage. The experiment
with each cutter was carried out as follows. The workpiece
surface was machined line-by-line along the x-axis with
a 6-mm three-flute cutter. After finishing one pass along
the x-axis (axial depth of 0.2 mm and radial depth of
0.125 mm), the tool was retracted to start a new pass.
This was done until the complete surface was removed.
Then, the tool was removed from the tool holder and taken
to a LEICA MZ12 microscope, where the corresponding
flank wear (Vb) for each individual flute was measured. In
order to capture cutting forces throughout the experiment,
a Kistler quartz 3-component platform dynamometer was

Fig. 5 CNN architecture based on the Tensorflow implementation for the CIFAR-10 dataset (adapted from [53])
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Fig. 6 Framework proposed combining time series imaging and deep learning for tool wear classification. Forces in the three dimensions are
individually encoded using GASF and put together as 3-channel images. From those images, 70% is used for training a CNN model and then 30%
used for testing

mounted between the workpiece and the machining table. A
schematic of this setup is shown in Fig. 7. To measure the
vibrations, three Kistler piezo accelerometers were mounted
on the workpiece. Finally, an acoustic emission sensor was
mounted on the workpiece to monitor the high-frequency
stress wave generated by the cutting process. For each
cutter, the seven signal channels (forces in the x-, y- and
z-axes, vibrations in the x-, y- and z-axes and acoustic
emission) were recorded while removing 315 layers of the
stainless steel workpiece (see Table 1). Table 2 shows the
details of the process conditions during the cutting tests.
The total size of the dataset for each cutter is about 3.2 GB,
making in total nearly 20 GB for all cutters. In this work,
only three of the six cutters (c1, c4 and c6) were used
as these were labelled with their corresponding tool wear
measurements. More details on the machining setup can be
found in [54].

Initial experiments were carried out with a data subset
comprising a single cutting tool for the training and test
sets, with a total data set size of 1 GB. In this case,
the cutter labelled c6, from which 315 cuts and tool
wear measurements are available, was used. Force signals
were selected as the only input for the CNN to avoid a
computationally expensive training process for this proof of
concept.

To prepare the dataset for training and testing of the
CNN, each cutting force Fx , Fy and Fz corresponding to
a removed layer was encoded as three separate images.
Since the time series that corresponds to one layer can
be as long as 219,000 measurements, a representative
portion of the complete time series was taken. This was
done by selecting a subsequence of 2,000 measurements
that correspond to the middle of the layer, thus capturing
different material hardness. Applying the GASF method

Fig. 7 Schematic of the
experimental setup used in [54]
to collect forces, vibrations and
frequency stress waves of the
cutting process
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Table 1 Signal channels and measurement data of the complete dataset

Signal channel Measurement data

Channel 1 Fx - cutting force in the X-dimension

Channel 2 Fy - cutting force in the Y-dimension

Channel 3 Fz - cutting force in the Z-dimension

Channel 4 Vx - vibration in the X-dimension

Channel 5 Vy - vibration in the Y-dimension

Channel 6 Vz - vibration in the Z-dimension

Channel 7 AE - acoustic emission

This study uses only those channels related to forces (top part of the
table)

explained in Section 3, an image for each force (Fx , Fy and
Fz) was obtained. These were then reduced from a size of
2k × 2k pixels into images of 512 × 512 pixels using PAA
and then combined into a 3-channel image. The associated
wear class to this image is then determined by the flank
wear value that was measured when the layer was removed.
Although this experimental setup is particular to flank wear,
the images could be labelled using other types of wear such
as crater wear. Regardless of the type of wear measure used,
the training process should be able to capture the features
on the input that relate to the particular wear measure used.

As an example, Fig. 8 shows forces on the x-axis at
different stages of the milling experiment. From what can
be observed in this figure, the forces tend to be more
uniform (i.e. shapes tend to get more circular) as the tool
starts to wear out. The size reduction does not affect the
time coherence of the data, allowing each individual flute
temporal information to still be kept after PAA.

In total, the pre-processing step produced 315 3-channel
images, one for each cutting event. This set of images was
divided 70% for training and 30% for testing. The CNN
was trained using the softmax regression method, which
applies a softmax nonlinearity to the output of the network
and calculates the cross-entropy between the normalised
predictions and the actual labels. The parameters used for
the training process are shown in Table 3.

Table 2 Operating conditions during dry milling

Parameter Value

Spindle speed 10,400 RPM

Feed rate 1555 mm/min

Y depth of cut 0.125 mm

Z depth of cut 0.2 mm

Sampling rate 50 kHz/channel

Material Stainless steel

Cutting tool 6 mm ball nose tungsten carbide cutter

Once the model was trained, it was tested on the
remaining 95 images. Table 4 presents a confusion matrix
with the results obtained. Based on the test set, the estimated
accuracy of our model is 90%. Break-in wear was correctly
classified for 82% of the cases, steady wear 94% of the
cases and failure wear correctly classified 75% of the cases.
The number of incorrect predictions suggest that the number
of cases for break-in and failure regions may need to be
increased.

As it can be observed in Fig. 8, the number of cuts
that fall in the break-in region is 50, while the number
of cuts in the steady-state are 200. This means that two-
thirds of the data available would be categorised as steady-
state. If the training set is generated by randomly sampling
from the complete dataset, it is likely that two-thirds of
those samples are steady-state class. This class imbalance
problem has been well documented in the literature [55–
57]. Failure cases tend to be considerably less abundant than
steady wear cases. The less represented classes are more
likely to be misclassified than the majority examples due to
the design principles of the learning process. The training
process optimises the overall classification accuracy which
results in the misclassification of the minority classes.
Therefore, several techniques could be applied to balance
the number of samples of each class. Because the time
series corresponding to one layer of the workpiece can be as
long as 220,000 measurements, the data can be resampled.
This would generate more than one sample from each layer,
particularly with the break-in and failure cases. At the same
time, an undersampling can be done by adding another class
for the cases that are approaching the failure region. Thus, a
fourth class that identifies this region could, in fact, be more
useful as currently the low-wear region covers a wide range
of tool wear values. It is important to remark that tool wear
progresses differently depending on the type of tool, type of
material, cutting parameters and other cutting conditions. It
is not possible to identify the degree of class imbalance for
a tool for which no prior data has been collected. Therefore,
class imbalance needs to be detected and acted upon as part
of the data preparation prior to model training.

A balanced number of cases among all classes will be
crucial to achieve accuracy homogeneity across all wear
regions. The overall results are nevertheless promising,
showing that the CNN was successfully capable of
capturing the intrinsic structures of the sensory data. This
method is then scalable to include the remaining cut data.

A second experiment was performed by adding a 4th
class that corresponds to the area prior to entering the failure
region (Fig. 9). This area is of particular interest to this
study as it considers a point in time were decisions could be
taken to extend the life of the tool. The number of instances
per case was also increased by taking two more sub-
sequences from each layer, for a total of three 2,000 sample
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Fig. 8 Sample images of
rescaled forces in the x-axis at
different stages of flank wear. It
can be observed how the shapes
in the image become more
circular as the signal becomes
smoother. It can also be
observed how the information
by individual flute is kept

sub-sequences from the middle of each layer (cut event);
enough so that the experiment could still be kept short for
the proof of concept. Sequences were again encoded into
images and labelled according to the wear value and the new
classes. A total of 954 images were produced, where 70%
was used for training and 30% for testing. The results are
shown in Table 5.

The overall accuracy of the classification was 89%,
which is about the same compared with the first experiment.
However, there was an improvement on the percentage
of cases correctly classified per class. For example, the
break-in wear region went up from 82% in the previous
experiment, whereas the steady wear region remains at 94%.
The severe wear region, which was introduced in this round
of experiments, is correctly classified 82% of the time.
Despite this, it can be seen that only 6 cases (9%) of the
severe region were classified as steady wear. The other 6
cases were classified as failure due to their proximity to
the failure values. Finally, the failure region cases were
accurately classified 82% of the time, which is again an

Table 3 O perating conditions during dry milling

Parameter Value

Max steps 1000 steps

Learning rate 0.01

Learning rate decay factor 0.1

Number of examples per epoch 100 images

Number of epochs per decay 100 epochs

Training set size 220 images

improvement over the first experiment. From the number of
cases, it can still be observed that there is a class imbalance
that could be affecting the training process.

In a third experiment, the class imbalance was addressed
using a stratified undersampling technique. In the previous
experiments, the datasets used for training were kept small
to avoid high computational load for a proof of concept.
However, it is possible to sample more subsequences from
each of the 315 cuts. For the c6 tool, it is possible to sample
up to 95 subsequences from each cut, generating a total
of 29,925 3-channel images. An undersampling strategy to
deal with class imbalance is suitable in this case as the
dataset is large enough to avoid losing critical features.
Using a strata based on the wear classes defined, sampling
of each class was done individually, making sure classes
such as steady state were undersampled to achieve an equal
number of samples across all classes. After performing the
undersampling, a training set consisting of 14,000 images
and a test set of 6,000 images were produced. These were
used to train and validate a new model.

As the size of the training had increased considerably,
images were reduced to 256 × 256. It was also decided to
move from a generic Tensorflow architecture implementa-
tion to a more tuned one, by changing the size of the filters
for both convolution layers from 5×5 to 16×16 for the first
convolution and from 5 × 5 to 8 × 8 for the second convolu-
tion. Given that the GASF images are typically capturing 7
complete revolutions of the tool (21 cycles of the signal as
the tool has 3 flutes), the kernel of the first convolution was
set to a size of 16, which allows capturing a complete signal
cycle. This means that the convolution will be searching for
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Table 4 Confusion matrix summarising the results on the test set

NT = 95 Actual break-in wear, N(%) Actual steady wear, N(%) Actual failure region, N(%)

Predicted break-in wear 14 (82.35%) 2 (0.03%) 0 (0%)

Predicted steady wear 3 (17.64%) 62 (93.93%) 3 (0.25%)

Predicted failure region 0 (0%) 2 (0.03%) 9 (0.75%)

Total 17 (100%) 66 (100%) 12 (100%)

The table shows the classification given by the CNN for all the cases on the test set, indicating the number of correctly classified as well as the
incorrectly classified. NT refers to the total number of images in the test set

Fig. 9 Four stages of tool wear
for cutters c1, c4 and c6, and
sample images of forces in the
y-axis that correspond to those
regions

Table 5 Confusion matrix summarising the results with four classes on the test set

NT = 282 Actual break-in Actual steady Actual severe Actual failure

Wear N(%) Wear N(%) Wear N(%) N(%)

Predicted break-in wear 32 (88.88%) 2 (1.5%) 0 (0%) 0 (0%)

Predicted steady wear 4 (11.11%) 125 (94%) 6 (8.69%) 0 (0%)

Predicted severe wear 0 (0%) 6 (4.5%) 57 (82.60%) 8 (18.18%)

Predicted failure region 0 (0%) 0 (0%) 6 (8.69%) 36 (81.81%)

Total 36 (100%) 133 (100%) 69 (100%) 44 (100%)

The table shows the classification given by the CNN for all the cases on the test set, indicating the number of correctly classified as well as the
incorrectly classified. NT refers to the total number of images in the test set

Fig. 10 Confusion matrices summarising the results of the M6 model (cutter c6) with four classes using the stratified undersampling technique
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features at a flute level. The stride of the kernel was set to 4
due to the size of the image, allowing a reduction of the fea-
ture map by a quarter. The pooling layer that follows uses
a kernel of size 3, which allows a further reduction of the
feature map to a size of 32×32. This is enough to keep the
detected low-level features that will be grouped into higher
level ones by the following convolution.

Results with the new trained model are shown in Fig. 10,
where the model is labelled as M6, as it is the model that
corresponds to cutter c6. Overall, M6 was able to achieve a
96.4% accuracy on the test set. The classification accuracy
increased for both the break-in and failure regions to 99.7%
and 97.5% respectively when tested on c6. The lowest
accuracy was shown in the severe region, where a result of
92.6% correctly classified cases was achieved.

To understand the capabilities and limitations of the
approach when a different set of data is available, a
similar sampling and training was done with cutters c1

and c4, generating two additional models, M1 and M4,
respectively. Each of these models were validated against
the same cutter as well as the other two cutters. Accuracy
results per class are shown in Fig. 11 and the overall
results in Table 6. All experiments were carried out on a
2.80 GHz Intel Core i7-7600C CPU and 32GB RAM. The
average training time for one batch (100 images) is 7.6 s,
so a complete epoch takes approximately 16.5 min for any
model. The testing time for one sample using any model
is 0.2727 s. Although the training time is computationally

Table 6 Summary of the accuracy (in %) of each model (labelled M1,
M4 and M6) when validated against the same cutter and other cutters

Cutter

c1 (%) c4 (%) c6 (%)

M1 96 89.3 80.4

Model M4 79.6 96.8 80.9

M6 71.6 85.18 96.4

expensive, testing is not, which still makes it applicable
for real-time monitoring. Training time can be improved by
using a higher specification processor or GPU as well as by
parallelising the code and/or training one-class classifiers in
parallel.

As can be observed in Table 6, there is not one model
so far that works best when validated against all cutters.
However, the model developed with c1 (M1) achieves the
highest accuracy across the three models when validated
against other cutters (accuracy of 89.3% on c4, and an
accuracy of 80.4% on c6). M1 particularly struggles
classifying correctly the failure cases of c6 (see Fig. 11 first
row). Looking at Fig. 9, it can be seen that c1 wears out at
a very high rate during the first 20 cuts, reaching the steady
state earlier than the other two cutters, and developing a
lower tool wear after 315 cuts. This can explain why a model
developed with this tool might perform badly on highly
worn cutters as it does not provide enough examples of the

Fig. 11 Confusion matrices summarising the accuracy results (0–100 %) for M1 (top row) and M4 (bottom row) across c1, c4 and c6 using four
tool wear classes and the stratified undersampling for training/testing
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degree of wear that was developed by c6. Unfortunately,
a more in-depth analysis onto these differences in wear
degradation cannot be performed as no additional data
or meta-data is available regarding the conditions of the
PHM2010 data experiments. However, these results suggest
that a better model can be built if a combination of both
cutters’ data was used in the training process.

When analysing the results obtained with M6, it was
observed that this model is very good at identifying
failure cases when tested on c4. The model correctly
classifies tool failure 95.8% of the time. This model shows
again a weakness in identifying the severe region (see
Fig. 10). Most of the cases that are incorrectly classified are
identified as failure cases, which could be explained by the
abrupt change in wear rate of c4 when approaching failure.
M4 did not show particularly good results when identifying
tool failure. This model achieved 75% and 70% accuracy
when tested in c1 and c6. What is interesting to point out is
that M4 is particularly good at identifying the severe region
on c6, achieving a 97.7% accuracy. This again highlights
the importance of making sure that a training dataset be a
good representation of the search space in order to achieve
generalisation.

In general, the results of the three models show the
ability of the architecture used to learn force patterns and
relate those to wear classes. The architectural setup of the
CNN used in this last experiment allowed finding relevant
features at a flute level, which is necessary for the approach
to detect the current maximum wear regardless of the flute
that is developing the wear. This is important, as it ensures
that the technique can achieve good results regardless of
the tool used. The accuracy obtained in particular classes
shows the importance of presenting the CNN with samples
that are representative of all the input space during training.
A more robust model would need to be enriched with data
from different cutters to ensure this.

5 Comparison of the proposed approach
to previous work

The proposed approach has its advantages and disadvan-
tages when compared with other approaches. Making a
fair comparison in terms of accuracy is not straightforward
due to several factors. First, to compare against classical
machine learning, the best set of features would need to be
found and not chosen arbitrarily. There are a wide range
of algorithms for selecting and fusing features [58]; how-
ever, it is not in the scope of this paper to explore these.
In addition, each approach has an “ideal” parametrisation
depending on the problem and specific instantiation of the
methodology, for example, selecting the right number of
hidden layers and nodes in each layer of an ANN. For

this reason, the comparison is approached differently, by
describing the power of using GASF as a tool to auto-
matically encode raw signals into images. The features
of GASF images are ultimately exploited by an off-the-
shelf CNN implementation that outputs the different stages
of wear.

Most of the published works in tool wear prediction or
tool wear classification perform some type of specific data
pre-processing such as statistical feature selection using
mean, maximum, standard deviation and median. Wu et
al., for example, use these four features across multiple
sensor data to perform tool wear prediction using ANNs,
SVMs and random forests, the latter achieving the lowest
root mean square error (RMSE) [9]. In Zhao et al., a deep
learning approach using convolutional bi-directional LSTM
(CBLSTM) network to perform tool wear prediction is
presented. In this work, sensor signals are reduced from
200,000 measurements into 100 datums of maximum and
mean values, and these are fed into the CBLSTM model.
From three different configurations of the approach, the
authors report that CBLSTM with dropout achieves the
lowest RSME. [42]. The main disadvantage of manual
feature extraction is that, unless it is continuously re-applied
to update the models, it does not consider changes in the
data distribution related to either noise or the tool wear
phenomenon itself, making it unreliable in some cases. An
example of this can be seen in cutter c1. Inspecting the data
of this cutter, it was found that, although mean, maximum
and median statistics follow generally the same trend with
a tendency to increase with every cutting event, there is a
peculiar change in these statistics for cutter c1 as seen in
Fig. 12. The figure shows how there is a sudden increase
in the maximum force along the x-axis (also applies for the
mean, median and standard deviation) around cutting events
225 and 250, then the values return to their normal trend.
Although change was not much in the wear measurements

Fig. 12 Maximum force in newtons (N) in the x-axis at each cutting
event for cutters c1, c4 and c6
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during this period of time (from 131.25 to 136.9 mm), the
force values did show changes. This suggests that some
conditions of the experiment changed and were reflected on
the sensor readings but were not actually related to changes
in tool wear. From the results reported in Zhao et al., it is
interesting to note that the highest RMSE obtained is on
cutter c1, particularly during cutting events 225 and 250.
This strongly suggests that there is a sensitivity to maximum
and mean values, as the highest errors occur during the
aforementioned cutting events. Although the method in [42]
employs a deep learning approach, their results suggest that
the model is not picking up the information on how one
measurement changes in relation to another one in the time
series, like a typical deep neural network would do. In their
work, the dimensionality reduction performed averages 2k
measurements, corresponding to nearly 7 revolutions of the
tool, therefore losing the details of each individual flute.
As each flute might wear out at a different rate, retaining
flute level information is relevant as it provides a better
understanding of how the tool is wearing through time.
Figure 13 shows two force samples and their corresponding
GASF images between cutting events 225 and 250. By
visually inspecting the images, it can be inferred that not
much change in the force patterns has happened during
these cutting events. The GASF image encoding provides

the CNN the right level of information for it to learn
how the tool erodes at the flute level as well as how
patterns change from one flute to another regardless of the
actual force measurement made. From the results shown
in Fig. 11, it can be seen that M4 achieves an accuracy
of 83% on the severe cases of c1. Taking into account
that a third of the mean force measurements are showing
a significant increase (Fig. 12), the CNN is still quite
reliable in classifying these as severe (having only 17%
as failure).

A similar comparison with the work of Wu et al. [9] is
not straightforward as results are presented as total accuracy
on the test set, with no detail of which tools were used
for training and for testing. As a result, it is not possible
to determine from the reported results how the proposed
approaches are capable of dealing with the noise or changes
in the data distribution.

A current disadvantage of the GASF representation is
the loss of the magnitude information of the measurement
during normalisation, as this normalisation process is
performed individually by image, not taking into account
the maximum value of all the observations. A combination
of GASF and actual magnitude encoding could potentially
be more effective, particularly for the cases like in c1, where
conditions could change suddenly.

Fig. 13 Sample images of
rescaled forces in the x-axis
during cutting events: a 225 and
b 250. Although there is a
sudden increase on the mean
force during cutting events 225
and 250 (which is not visible
after normalisation), the wear
does not increase at that same
rate. In fact, the GASF images
suggest there is not much
change on the wear as the force
patterns are very similar
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6 Conclusions and future work

This paper presents an approach to tool wear classification
by means of sensory data imaging and deep learning. The
GASF encoding keeps the temporal correlations for each
flute, which is an advantage over classification methods
that are based on statistical features, where the features
of a particular flute are lost. Experimental results show
the ability of the CNN to capture and learn the features
on the raw data to correctly classify tool wear condition.
Overall, the percentage of accurately classified cases on
the test set is high, achieving in most cases above 80%
when testing in a new cutter. The moment prior to the
transition from critical wear to failure is in most cases
correctly identified, and the cases where it is incorrectly
classified were generally labelled as a failure, which from
an application standpoint means the replacement of the tool
would still be enacted. These results show the importance
of using a training sample set that can represent all of the
input space. In this case, the training set needs to be enriched
with samples from multiple cutters to ensure the successful
detection of the transition period from severe to failure. The
application of this work will allow for the extension of the
remaining useful life of the tool, improve cut quality and
ensure machining elements are replaced before failure.

Future work will include parallelisation of the architec-
ture and its implementation to run in GPUs as well as
incorporating the approach in a cloud architecture. Tech-
niques for partially retraining the architecture will also be
explored to study its adaptation capabilities when new data
becomes available. Additional work will also include exper-
imentation with more input channels on the GASF image to
feed in multiple sensor data and improve the accuracy of the
classification. Finally, further enhancements to the encod-
ing technique will be investigated such as incorporating the
magnitude information.

Funding information The authors received support from the Horizon
2020 MC-SUITE (ICT Powered MaChining Suite) project funded by
the European Commission under grant agreement No 680478.

Open Access This article is distributed under the terms of the
Creative Commons Attribution 4.0 International License (http://
creativecommons.org/licenses/by/4.0/), which permits unrestricted
use, distribution, and reproduction in any medium, provided you give
appropriate credit to the original author(s) and the source, provide a
link to the Creative Commons license, and indicate if changes were
made.

References

1. MacDougall W (2014) Industrie 4.0 Smart Manufacturing for the
Future. GTAI Germany Trade and Invest

2. Wang J, Ma Y, Zhang L, Gao RX, Wu D (2018) Deep learning
for smart manufacturing: Methods and applications. J Manuf Syst

48:144–156. https://doi.org/10.1016/j.jmsy.2018.01.003, special
Issue on Smart Manufacturing

3. Bonifacio M, Diniz A (1994) Correlating tool wear, tool life, sur-
face roughness and tool vibration in finish turning with coated car-
bide tools. Wear 173(1):137–144. https://doi.org/10.1016/0043-
1648(94)90266-6

4. Ambhore N, Kamble D, Chinchanikar S, Wayal V (2015) Tool
condition monitoring system: A review. Mater Today: Proc
2(4):3419–3428. https://doi.org/10.1016/j.matpr.2015.07.317, 4th
International Conference on Materials Processing and Charac-
terzation

5. Kong D, Chen Y, Li N (2017) Force-based tool wear estimation
for milling process using gaussian mixture hidden markov models.
Int J Adv Manuf Technol 92(5):2853–2865. https://doi.org/10.
1007/s00170-017-0367-1

6. Niaki FA, Ulutan D, Mears L (2015) In-process tool flank wear
estimation in machining gamma-prime strengthened alloys using
kalman filter. Procedia Manuf 1:696–707. https://doi.org/10.1016/
j.promfg.2015.09.018, 43rd North American Manufacturing
Research Conference, NAMRC 43, 8-12 June 2015, UNC Char-
lotte, North Carolina, United States

7. Wang P, Gao RX (2015) Adaptive resampling-based particle
filtering for tool life prediction. J Manuf Syst 37:528–534.
https://doi.org/10.1016/j.jmsy.2015.04.006

8. Cosme LB, D’Angelo MFSV, Caminhas WM, Yin S, Palhares
RM (2018) A novel fault prognostic approach based on particle
filters and differential evolution. Appl Intell 48(4):834–853.
https://doi.org/10.1007/s10489-017-1013-1

9. Wu D, Jennings C, Terpenny J, Kumara S (2016) Cloud-based
machine learning for predictive analytics: Tool wear prediction in
milling. In: 2016 IEEE International Conference on Big Data (Big
Data), pp 2062–2069. https://doi.org/10.1109/BigData.2016.7840
831

10. Sick B (2002) On-line and indirect tool wear monitoring in
turning with artificial neural networks: a review of more than
a decade of research. Mech Syst Signal Process 16(4):487–546.
https://doi.org/10.1006/mssp.2001.1460

11. Wuest T, Weimer D, Irgens C, Thoben KD (2016) Machine learn-
ing in manufacturing: advantages, challenges, and applications.
Prod Manuf Res 4(1):23–45. https://doi.org/10.1080/21693277.
2016.1192517

12. Terrazas G, Martı́nez-Arellano G, Benardos P, Ratchev S (2018)
Online tool wear classification during dry machining using real
time cutting force measurements and a cnn approach. J Manuf
Mater Process 2(4):72. https://doi.org/10.3390/jmmp2040072

13. PHMSociety (2010) 2010 phm society conference data challenge,
https://www.phmsociety.org/competition/phm/10, Accessed Jan-
uary 31, 2018

14. Cui X, Zhao J, Dong Y (2013) The effects of cutting parameters
on tool life and wear mechanisms of cbn tool in high-speed face
milling of hardened steel. Int J Adv Manuf Technol 66(5):955–
964. https://doi.org/10.1007/s00170-012-4380-0

15. Taylor F (1907) On the art of cutting metals. Trans Am Soc Mech
Eng 38:31–35

16. Poulachon G, Moisan A, Jawahir I (2001) Tool-wear mechanisms
in hard turning with polycrystalline cubic boron nitride tools. Wear
250(1):576–586. https://doi.org/10.1016/S0043-1648(01)00609-3,
13th International Conference on Wear of Materials

17. Karandikar JM, Abbas AE, Schmitz TL (2013) Tool life prediction
using random walk bayesian updating. Mach Sci Technol
17(3):410–442. https://doi.org/10.1080/10910344.2013.806103

18. Sun J, Rahman M, Wong Y, Hong G (2004) Multiclassification
of tool wear with support vector machine by manufacturing
loss consideration. Int J Mach Tools Manuf 44(11):1179–1187.
https://doi.org/10.1016/j.ijmachtools.2004.04.003

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/j.jmsy.2018.01.003
https://doi.org/10.1016/0043-1648(94)90266-6
https://doi.org/10.1016/0043-1648(94)90266-6
https://doi.org/10.1016/j.matpr.2015.07.317
https://doi.org/10.1007/s00170-017-0367-1
https://doi.org/10.1007/s00170-017-0367-1
https://doi.org/10.1016/j.promfg.2015.09.018
https://doi.org/10.1016/j.promfg.2015.09.018
https://doi.org/10.1016/j.jmsy.2015.04.006
https://doi.org/10.1007/s10489-017-1013-1
https://doi.org/10.1109/BigData.2016.7840831
https://doi.org/10.1109/BigData.2016.7840831
https://doi.org/10.1006/mssp.2001.1460
https://doi.org/10.1080/21693277.2016.1192517
https://doi.org/10.1080/21693277.2016.1192517
https://doi.org/10.3390/jmmp2040072
https://www.phmsociety.org/competition/phm/10
https://doi.org/10.1007/s00170-012-4380-0
https://doi.org/10.1016/S0043-1648(01)00609-3
https://doi.org/10.1080/10910344.2013.806103
https://doi.org/10.1016/j.ijmachtools.2004.04.003


Int J Adv Manuf Technol
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