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Abstract 
Background: Cancer	 cells	 must	 alter	 their	 metabolism	 to	 support	 prolifera3on.	 Immune 

evasion also plays a role in supporting tumour progression. This study aimed to find whether 

enhanced	 glutamine	 uptake	 in	 breast	 cancer	 (BC)	 can	 derive	 the	 existence	 of	 specific	

immune	cells	subtypes,	including	the	subsequent	impact	on	pa3ent	outcome.	

Method: SLC1A5, SLC7A5, SLC3A2 and immune cell markers; CD3, CD8, FOXP3, CD20 

and CD68, in addition to PD1 and PDL1 were assessed using immunohistochemistry on 

TMAs constructed from a large BC cohort (n=803). Patients were stratified based on SLC 

protein expression into accredited clusters and correlated with immune cell infiltrates and 

patient outcome. The effect of transient siRNA knockdown of SLC7A5 and SLC1A5 on 

PDL1 expression was evaluated in MDA-MB-231 cells. 

Results: High SLCs were significantly associated with PDL1 and PD1+, FOXP3+, CD68+ 

and CD20+ cells (p<0.001). Triple Negative (TN), HER2+ and luminal B tumours showed 

variable associations between SLCs and immune cell types (p≤ 0.04). The expression of 

SLCs and PDL1, PD1+, FOXP3+ and CD68+ cells was associated with poor patient outcome 

(p<0.001). Knockdown of SLC7A5 significantly reduced PDL1 expression. 

Conclusion: This study provides data that altered glutamine pathways in BC appears to play 

a role in deriving specific subtypes of immune cell infiltrates, which either support or 

counteract its progression. 



Background 
Altered metabolic pathways are readily accepted as part of the revised hallmarks of cancer 

where cancer cells adapt their metabolism in order to resist the unfavourable, nutrient-

deprived conditions and to respond to the increased energy demands required by their 

unremitting proliferation (1). Many cancer cells are highly reliant on amino acids for their 

growth, not only because they are precursors for nucleotide and protein synthesis, but also 

because they activate mammalian target of rapamycin complex1 (mTORC1) through nutrient 

signalling pathways which in turn regulates protein translation and cell growth (2, 3).  

Solute carrier family 1 member 5 (SLC1A5) and solute carrier family 7 member 5 (SLC7A5) 

are two key amino acid transporters which have been attracting attention due to their role in 

supporting tumour metabolism. Primarily, SLC1A5 maintains the sodium-coupled influx of 

glutamine, whereas SLC7A5 mediates the efflux of this amino acid in exchange with the 

influx of leucine, an essential amino acid and potent activator of mTORC1 (4, 5). SLC7A5 

requires a covalent association with the heavy chain of SLC3A2, for its functional expression 

in plasma membrane (6). We have previously described the potential utility of these 

transporters as prognostic factors in certain BC subtypes (7, 8). Further, we have recently 

stratified BC patients into three accredited clusters based on the protein expression of these 

three solute carriers (9). 

The role of the tumour microenvironment (TME) is well known with respect to disease 

development and progression. One of the important components of the TME is immune cells, 

including the regulatory T-cells (Treg) and tumour associated macrophages (TAM), which 

gain pro-tumoural functions stimulating tumour growth, progression, invasion, and 

metastasis. Conversely, other immune cells such as CD8+ and CD20+ lymphocytes are 

responsible for anti-tumoural responses by activating host defence mechanisms preventing 



immune evasion (10, 11). Immune evasion is a strategy used by tumours to evade a host's 

immune response in an attempt to maximize their probability to continue surviving and 

growing.  Tumour immune evasion include several mechanisms such as progressive 

formation of an immune suppressive environment within the tumour and the selection of 

tumour variants resistant to immune effectors (immunoediting)	(12).	

Composition of the inflammatory cell infiltrates in BC also correlates with clinical outcome, 

where an abundant infiltration of pro-tumorigenic cells is associated with poor outcome while 

TME enriched in cells with anti-tumorigenic functions have a favourable effect on patient 

survival (13-15). Programmed Cell Death 1 (PD1) and its activating ligand, Programmed 

Death Ligand 1 (PDL1) act in attenuating the anti-cancer immune response and promoting T-

regulatory cell development and function.  Indeed, PDL1 is expressed by tumour cells of 

several cancer types, with evidence of an association with aggressive tumour behaviour and 

poor prognosis (16-20). 

Previous studies show that the cellular contents of the TME change in parallel with tumour 

growth/progression and the accompanied alterations in glucose metabolism in cancer cells is 

tightly linked to the composition of the surrounding immune cells (21, 22). We therefore 

hypothesise that the reprogramming of glutamine metabolism will have an impact on the 

structure of the immune cells. This study aimed to determine whether over-expression of the 

key glutamine solute carriers can derive the existence of specific subtypes of immune cells, in 

addition to their supportive role in estimating the clinical outcome. 



MATERIAL AND METHODS 

Patient Cohort  

This study evaluated a well-characterised cohort of early stage, primary operable, invasive 

BC patients aged ≤ 70 years. Patients (n=803) presented at Nottingham City Hospital from 

1989 to 1998. Patient management was uniform and based on tumour characteristics by 

Nottingham Prognostic Index (NPI) and hormone receptor status. Clinical history, tumour 

characteristics, information on therapy and outcomes are prospectively maintained. Outcome 

data included development and time to distant metastasis (DM) and breast cancer specific 

survival (BCSS), defined as the time (in months) from the date of primary surgical treatment 

to the time of death from BC. The clinicopathological parameters for the BC series are 

summarised in (Supplementary table 1). 

Tissue microarrays (TMAs) and Immunohistochemistry 

TMAs consisting of 0.6mm tumour tissue cores were arrayed and immunohistochemically 

profiled for SLC1A5, SLC7A5, SLC3A2, PD1, PDL1, CD3, CD8, CD68, CD20 and FOXP3, 

as previously described (23)  (9) (13) (24).  

TMA sections stained with SLC1A5, SLC7A5, SLC3A2, PDL1 and PD1 were scanned using 

high-resolution digital images (NanoZoomer; Hamamatsu Photonics, Welwyn Garden City, 

UK), at x20 magnification. Evaluation of staining was based on a semi-quantitative 

assessment using a modified histochemical score (H-score) (25) as previously described (9). 

Clustering analysis of SLC1A5, SLC7A5 and SLC3A2 protein expression was previously 

performed using two algorithms, partitioning around medoids (PAM) and K-means, to 

stratify tumours into the optimal number of clusters based on their H-score. The three clusters 

were characterised as follows: Low SLCs (SLC1A5-/SLC7A5-/SLC3A2-), High SLC1A5 

(SLC1A5+/SLC7A5-/SLC3A2-) and High SLCs (SLC1A5+/SLC7A5+/SLC3A2+) (9). 



Immunohistochemical detection of a panel of lymphocyte markers including pan T-cell CD3, 

cytotoxic T-cell CD8, T-reg FOXP3, B-cell CD20 and Histiocytic cell marker; CD68 was 

previously determined and the total number of each immune cell type was counted in each 

tumour core using a Nikon Eclipse 80i microscope (Nikon, Tokyo, Japan) as described 

(13-15).  BC molecular subtypes were defined, based on tumour IHC profile and the Elston-

Ellis (26) mitotic score, as: ER+/HER2- Low Proliferation (mitotic score 1), ER+/HER2- 

High Proliferation (mitotic score 2 and 3), HER2-positive class: HER2+ regardless of ER 

status, Triple Negative (TN): ER-, PgR- and HER2- (27). 

siRNA transfection of SLC7A5 and SLC1A5 

The TN cell line, MDA-MB-231, was obtained from American Type Culture Collection; 

Rockville, MD, USA and cultured in Roswell Park Memorial Institute (RPMI-1640) medium 

(Sigma-Aldrich, UK) supplemented with 10% foetal bovine serum (Sigma-Aldrich, UK). 

Mycoplasma testing was carried out on a routine basis using the MycoAlert Detection kit 

(R&D Systems). 5x104 cells were seeded per well in a 24-well plate and transfected using the 

reverse transfection method with 25 pmol and 100 pmol siRNA (ThermoFisher Scientific), 

for SLC7A5 and SLC1A5 respectively, and lipofectamine (RNAiMAX) according to the 

manufacture’s protocol. 

siRNA anti-sense sequences were as follows: 5’-UUGGGAUCUAGAUUGGACAca-3’ (for 

SLC7A5) and 5’-AAAGAGUAAACCCACAUCCtc-3’ (for SLC1A5). Untransfected cells 

were carried out alongside the experiment as controls. SLC7A5 and SLC1A5 expression of 

transfected cells was performed in duplicate and determined by Western blotting analysis 

(Supplementary figure 2A-B). 



Statistical analysis 

Statistical analysis was performed using SPSS 24.0 statistical software (SPSS Inc., Chicago, 

IL, USA). The Chi-square test was performed for inter-relationships between categorical 

variables. Differences between two groups of normalised data were assessed using t-test. 

Survival curves were analysed by Kaplan-Meier with Log Rank test. This was performed 

with BC specific death; those who died of other causes, alive and lost to follow-up were 

censored. P-values were adjusted using Bonferroni correction for multiple testing. A p-value 

˂0.05 was considered significant. The study endpoints were 10-year breast cancer specific 

survival (BCSS) or distant metastasis free survival (DMFS). 

This study was approved by the Nottingham Research Ethics Committee 2 under the title 

‘Development of a molecular genetic classification of breast cancer’ and the North West – 

Greater Manchester Central Research Ethics Committee under the title ‘Nottingham Health 

Science Biobank (NHSB)’ reference number 15/NW/0685. 



Results 

Expression of SLC1A5, SLC7A5, SLC3A2 and immune cell markers in BC 

Expression of the three solute carriers was predominantly in the membrane of the invasive 

BC cells, with intensity levels varying from absent to high. High expression of the solute 

carriers was also observed in lymphocytic infiltrates, which were in the stroma adjacent to the 

tumour cells (Figure 1A-1C). Immunohistochemical expression of solute carriers and 

immune cell markers in invasive BC cores are illustrated in Supplementary figure 1. 

Association of SLCs with immune cell infiltrates 

Tumour infiltrating FOXP3+ lymphocytes and CD68+ macrophages were both predominant 

in tumours with High SLCs and to a lesser extent in those tumours with High SLC1A5 

expression (Table 1, p<0.0001). CD20+ lymphocytes were mainly observed in tumours with 

High SLCs expression (Table 1, p<0.0001). While PDL1 was highly expressed in tumours 

with High SLCs and High SLC1A5 expression, PD1+ cells were mainly expressed with 

tumours with High SLCs expression (Table 1, p<0.0001). In contrast, there was no significant 

association between the SLCs clusters and CD3+ or CD8+ T lymphocytes (Table 1, p=0.84 

and p=0.24) respectively.   

Association between SLCs clusters and immune cells infiltrates varied among BC 

molecular subtypes 

CD68+ cells were significantly associated with High SLCs expression in both ER+ high 

proliferative/luminal B and TN subtypes (Table 2 and 3, p=0.02 and p=0.03) respectively. In 

contrast, FOXP3+ cells were only associated within TN tumours showing High SLCs 

expression (Table 3, p=0.02). CD20+ cells were only observed in ER+ high proliferative/



luminal B tumours with High SLCs (Table 2, p=0.04). PD1 and PDL1 were also significantly 

expressed in HER2+ tumours with High SLCs expression (Table 3, p=0.03 and p=0.04) 

respectively. However, within TN tumours, only PDL1 expression was associated with High 

SLCs expression (Table 3, p=0.04). There were no significant associations between the SLCs 

clusters and immune cells infiltrates in ER+ low proliferative/luminal A tumours (Table 2). 

The co-occurrence of SLCs and immune cells infiltrates correlates with patient outcome 

Variable associations with patient outcome were observed when investigating the co-

occurrence of the SLCs clusters with the immune cell markers. The co-existence of high 

SLCs with FOXP3+ T lymphocytes was predictive of a shorter BCSS (Figure 2A, p<0.001). 

Similar associations were observed when CD68+ macrophages, PD1+ cells and PDL1 

expression, were considered (Figure 2B-D, p<0.001). However, patients with tumours 

showing both high SLCs and CD20+ lymphocytes, showed better BCSS (Figure 2E, 

p<0.001). 

There was a comparable observation regarding the association of SLCs and immune cell 

markers with DMFS, where high SLCs expression accompanied by the presence of either 

FOXP3+, CD68+, PD1+ cells or PDL1 expression showed significantly shorter DMFS 

(Supplementary figure 3A-D, all p<0.001). In contrast, the presence of CD20+ lymphocytes 

and High SLCs conferred a longer DMFS (Supplementary figure 3E, p=0.002). 

SLC7A5 plays a role in PDL1 expression in TNBC 

Functional analysis was carried out using the TNBC cell line, MDA-MB-231, due to the high 

expression of PDL1 together with SLC7A5 and/or SLC1A5 expression and also based on the 

significant associations found between SLCs and immune cell markers, including PDL1, 

within the TN BC subtype (Figure 3B-C). 



siRNA knockdown of SLC1A5 or SLC7A5 in MDA-MB-231 reduced the protein expression 

of PDL1. However, this observation was only significant upon targeting SLC7A5 (Figure 3D, 

p=0.01) but not SLC1A5 (Figure 3E, p=0.13). Significant reduction of PDL1 protein 

expression was also observed in cells transfected with both SLC1A5 and SLC7A5 siRNAs. 

(Figure 3F, p=0.02). 



Discussion  

Breast cancer is a heterogeneous disease with various subtypes (28) that are different in terms 

of morphology, molecular profiles, response to therapy and clinical behaviour. Breast cancer 

also shows heterogeneity in metabolic reprogramming, where highly proliferative tumours 

are distinguished based on their metabolic signatures (29-31).  

Cancer cells undergo metabolic changes in order to satisfy the demands of necessary energy 

and cellular building blocks. One of the most prominent is the increase in glutamine 

consumption which is reflected by the up-regulation of the key glutamine transporters 

(SLC1A5 and the SLC7A5-SLC3A2 dimeric complex) at the surface of the tumour cells. We 

have recently demonstrated that the combined expression of the three solute carriers 

(SLC1A5, SLC7A5 and SLC3A2) is associated with poor prognosis and short BCSS, 

particularly in the highly proliferative BC subtypes (9).   

Besides metabolic reprogramming, immune evasion is also considered as an emerging 

hallmark of cancer (1).  The role of immune cells in tumour evasion is increasingly barbed, as 

many tumours not only escape recognition by the adaptive immune response but also 

sometimes cooperate with the pro-tumourigenic immune cells to become invasive and more 

aggressive. Furthermore, there is a link between the two mentioned hallmarks, as changes in 

the tumour cell metabolism can influence the component and function of the inflammatory 

infiltrates (21, 32). This study showed that altered glutamine metabolism, which was detected 

by the over-expression of the key glutamine transporters (SLC1A5, SLC7A5 and SLC3A2) 

was significantly associated with the existence of specific subtypes of immune cells, namely 

CD68+ macrophages, FOXP3+ Regulatory T Cells (Tregs), CD20+ B lymphocytes and 

PD1+ Lymphocytes along with its tumour-expressing ligand (PDL1). However, no 

association was observed between the SLCs and CD3+ or CD8+ T lymphocytes. 



Our previous study on the same BC cohort, showed that the main component of the 

inflammatory infiltrates is the pan T lymphocyte population (CD3+ cells) along with CD8+ 

cells being more frequent than FOXP3+ cells. The CD68+ macrophages were more frequent 

while CD20+ B lymphocyte were the least (33). In this study, however, we observed that 

changes in the metabolic activity of the cancer cells, which is reflected by an increase in 

glutamine transport, derive specific components of immune cells which was restricted to 

CD68+, FOXP3+, CD20+ along with PD1+ cells.  This indicates that in these circumstances, 

the Antigen Presenting Cells (APC), CD68+ cells, are recognised only by specific 

subpopulations of T and B-lymphocytes. 

When different BC subtypes were examined, a significant association was observed in ER+ 

highly proliferative/luminal B, TN and HER2+ tumours, but not the ER+ low proliferative/

luminal A subtype. Both luminal B and TN tumours showed associations with CD68+ 

macrophages. These two subtypes are aggressive, highly proliferative and exhibit high 

metabolic activity. Consequently, aggressive cancer cells secrete high levels of reactive 

oxygen species (ROS) in their microenvironment (34). The latter can cause a state of 

pseudohypoxia in the adjacent stromal compartment with concomitant up-regulation of 

Hypoxia Inducible Factor 1α (HIF1α), known to induce the pro-tumourigenic CD+68 

macrophages (35, 36). The same scenario can be applied when amino acids, particularly 

leucine, activate mTORC1 which upregulates HIF1α (37). Previous studies have shown that 

PD1/PDL1 are mainly expressed in HER2+ and TN subtypes (20, 38, 39). This study further 

shows that the expression of PD1 and/or PDL1 is mainly associated with high SLCs 

expression but restricted to HER2+ and TN tumours.  

In this study, we observed high expression of the solute carriers in the stromal lymphocytes. 

This is expected as glutamine transporters are not only necessary for cancer cells, they are 



also important for optimal lymphocyte proliferation and differentiation (40-43). Additionally, 

macrophages may require glutamine as it is the main precursor for arginine (44). The latter 

can be catalysed by Arginase 1 to support cell proliferation and tissue remodelling (45).  

Indeed, the up-regulation of glutamine transporters in the cancer cells and their neighbouring 

immune cells, might indicate that both cell types are substantially comparable in their 

requirements of amino acids, which can be obtained from the TME, to support their survival 

and proliferation.  Furthermore, TME might be a source of stromal glutamine, as it has been 

found that the metabolic stress in TME triggers genomic instability, which subsequently 

acquire the non-malignant cancer-associated fibroblasts (CAF) a catabolic phenotype with 

enhanced macroautophagy. This catabolic state produces a nutrient-rich environment, with 

increased amounts of pyruvate, lactate, ketone bodies and glutamine (46). This phenomenon 

also substantiates the cancer-stromal symbiosis which subsequently supports cancer growth 

and progression.  

We and others revealed that high expression of glutamine solute carriers is associated with 

poor patient outcome (7,	 8,	 47). Similarly, the presence of FOXP3+ and CD68+ cells also 

correlate with shorter survival (33). However, CD20+ cells tend to be associated with better 

survival (33). In this study we showed that the co-occurrence of SLCs with FOXP3+ and 

CD68+ cells can predict shorter survival compared to the presence of one without the other, 

whereas the combination of the SLCs with CD20+ cells derive better patient outcome.  

The association between PD1/PDL1 and survival in BC is controversial (20,	 48-50). This 

study, however, showed that the co-expression of SLCs with PD1 or PDL1 was associated 

with shorter distant metastasis free survival and breast cancer specific survival, indicating 

that patients with BC showing an increase in their amino acid metabolic activity which might 

influence poor outcome in PD1/PDL1+ tumours. 



We observed that targeting SLC7A5 by transient siRNA significantly reduced the expression 

of PDL1 in TN cells. This can be attributed to the role played by this protein in activating the 

mTORC1 pathway, through importing essential amino acids, such as leucine. This might take 

place in parallel with the activation of mTORC1 through the AKT-mTOR signalling pathway, 

which is previously identified as a tight regulator of PDL1 expression in several cancers, 

including TNBC (38,	51,	52). 

Although clinical trials with monoclonal antibodies targeting PD1/PDL1 interaction have 

shown promising results, with durable responses, in several human cancers (53-55), not all 

patients respond to this targeted therapy. Therefore, it is critical to find effective approaches 

that could allow personalisation of treatment of PD1/PDL1+ tumours. This study not only 

provides clinical evidence that SLCs in BC could aid the personalisation of anti-PD1/PDL1 

inhibition therapies, it also emphasises that targeting the amino acid transporter, SLC7A5, 

along with the anti-PDL1 immunotherapy could be considered as a novel approach to 

synergistically enhance the therapeutic effect.  



Conclusion 

This study revealed that there are associations between the two cancer hallmarks, metabolic 

reprogramming and immune evasion. Altered glutamine pathways in cancer cells can derive 

specific subtypes of inflammatory infiltrates, which acts either with or against the 

aggressiveness and progression of the BC cells. Targeting both SLC7A5 and PD1/PDL1 can 

be a new approach which will counteract the highly proliferative and aggressive BC 

subtypes. 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Table	1:	Associa.on	of	SLCs	with	different	subtypes	of	immune	cell	markers

Immune	cell	marker Low	SLCs High	SLC1A5 High	SLCs χ2 Adjusted

n	(%) n	(%) n	(%) (p-value) p-value

CD3	

Nega%ve 36	(56.3) 21	(32.8) 7	(10.9) 1.7

Posi%ve 268	(54.1) 142	(28.7) 85	(17.2) (0.42) 0.84

CD8

Nega%ve 71	(57.7) 35	(28.5) 17	(13.8) 4.9

Posi%ve 236	(48.9) 140	(29.0) 107	(22.2) (0.08) 0.24

FOXP3

Nega%ve 148	(63.8) 67	(28.9) 17	(7.3) 37.3

Posi%ve 188	(44.9) 122	(29.1) 109	(26.0) (7.9x10-9) <0.0001

CD68

Nega%ve 139	(67.1) 47	(22.7) 21	(10.1) 35

Posi%ve 165	(42.7) 124	(32.1) 97	(25.1) (2.5x10-8) <0.0001

CD20

Nega%ve 255	(55.4) 134	(29.1) 71	(15.4) 17.1

Posi%ve 81	(44.5) 47	(25.8) 54	(29.7) (0.0001) 0.0004

PD1

Nega%ve 203	(52.1) 111	(28.5) 76	(19.5) 42.5

Posi%ve 134	(36.1) 85	(22.9) 152	(41.0) (6.0x10-10) <0.0001

PDL1

Nega%ve 81	(67.5) 28	(23.3) 11	(9.2) 16.8

Posi%ve 287	(48.2) 178	(29.9) 130	(21.8) (0.0002) 0.0004

�1



Table	2:	Associa.on	of	SLCs	with	immune	cell	markers	in	ER+	low	prolifera.ve/luminal	A	and	ER+	high	prolifera.ve/luminal	B	BC	subtypes

ER+	low	prolifera.ve/luminal	A ER+	high	prolifera.ve/luminal	B

Immune	cell	marker Low	SLCs High	SLC1A5 High	SLCs χ2 Adjusted Low	SLCs High	SLC1A5 High	SLCs χ2

n	(%) n	(%) n	(%) (p-value) p-value n	(%) n	(%) n	(%) (p-value)

CD3	

Nega%ve 10	(66.7) 4	(26.7) 1	(6.7) 1.41 3.92 10	(41.7) 12	(50.0) 2	(8.3) 1.31

Posi%ve 95	(79.8) 20	(16.8) 4	(3.4) (0.49) 93	(52.5) 67	(37.9) 17	(9.6) (0.51)

CD8

Nega%ve 22	(75.9) 5	(17.2) 2	(6.9) 0.22 6.23 20	(47.6) 16	(38.1) 6	(14.3) 0.56

Posi%ve 82	(78.8) 17	(16.3) 5	(4.8) (0.89) 84	(50.6) 65	(39.2) 17	(10.2) (0.75)

FOXP3

Nega%ve 61	(80.3) 12	(15.8) 3	(3.9) 0.94 3.72 47	(55.3) 34	(40.0) 4	(4.7) 3.76

Posi%ve 50	(73.5) 14	(20.6) 4	(5.9) (0.62) 69	(51.1) 49	(36.3) 17	(12.6) (0.15)

CD68

Nega%ve 55	(85.9) 7	(10.9) 2	(3.1) 4.75 0.45 50	(66.7) 21	(28.0) 4	(5.3) 10.6

Posi%ve 47	(70.1) 15	(22.4) 5	(7.5) (0.09) 56	(43.8) 54	(42.2) 18	(14.1) (0.005)

CD20

Nega%ve 92	(79.3) 19	(16.4) 5	(4.3) 0.56 3.00 83	(50.3) 69	(41.8) 13	(7.9) 8.03

Posi%ve 20	(74.1) 5	(18.5) 2	(7.4) (0.75) 32	(60.4) 12	(22.6) 9	(17.0) (0.01)

PD1

Nega%ve 85	(79.4) 19	(17.8) 3	(2.8) 3.01 0.66 64	(50.8) 53	(42.1) 9	(7.1) 6.02

Posi%ve 42	(71.2) 12	(20.3) 5	(8.5) (0.22) 54	(50.5) 35	(32.7) 18	(16.8) (0.04)

PDL1

Nega%ve 24	(82.8) 4	(13.8) 1	(3.4) 0.6 1.46 19	(70.4) 6	(22.2) 2	(7.4) 3.64

Posi%ve 99	(76.2) 24	(18.5) 7	(5.4) (0.73) 109	(0.9) 80	(37.4) 25	(11.7) (0.15)
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Table	3:	Associa.on	of	SLCs	with	immune	cell	markers	in	HER2+	and	Triple	Nega.ve	BC	subtypes

HER2+ Triple	Nega.ve

Immune	cell	marker Low	SLCs High	SLC1A5 High	SLCs χ2 Adjusted Low	SLCs High	SLC1A5 High	SLCs χ2

n	(%) n	(%) n	(%) (p-value) p-value n	(%) n	(%) n	(%) (p-value)

CD3	

Nega%ve 3	(75.0) 1	(25.0) 0	(0.0) 3.02 1.76 3	(30.0) 4	(40.0) 3	(30.0) 4.68

Posi%ve 22	(33.8) 26	(40.0) 17	(26.2) (0.22) 16	(25.4) 9	(14.3) 38	(60.3) (0.09)

CD8

Nega%ve 5	(62.5) 3	(37.5) 0	(0.0) 4.37 0.77 6	(30.0) 7	(35.0) 7	(35.0) 7.72

Posi%ve 23	(31.1) 30	(40.5) 21	(28.4) (0.11) 18	(21.2) 11	(12.9) 56	(65.9) (0.02)

FOXP3

Nega%ve 6	(46.2) 6	(46.2) 1	(7.7) 2.47 1.74 9	(42.9) 6	(28.6) 6	(28.6) 9.86

Posi%ve 22	(30.6) 31	(43.1) 19	(26.4) (0.29) 18	(19.8) 13	(14.3) 60	(65.9) (0.007)

CD68

Nega%ve 4	(26.7) 4	(26.7) 7	(46.7) 5.18 0.35 3	(20.0) 7	(46.7) 5	(33.3) 10.1

Posi%ve 24	(35.3) 31	(45.6) 13	(19.1) (0.07) 18	(21.4) 11	(13.1) 55	(65.5) (0.007)

CD20

Nega%ve 20	(42.6) 17	(36.2) 10	(21.3) 3.05 0.84 13	(21.7) 13	(21.7) 34	(56.7) 1.55

Posi%ve 9	(24.3) 18	(48.6) 10	(27.0) (0.21) 12	(25.0) 6	(12.5) 30	(62.5) (0.46)

PD1

Nega%ve 14	(37.8) 20	(54.1) 3	(8.1) 8.57 0.03 11	(29.7) 7	(18.9) 19	(51.4) 1.35

Posi%ve 16	(29.1) 20	(36.4) 19	(34.5) (0.01) 19	(20.4) 18	(19.4) 56	(60.2) (0.50)

PDL1

Nega%ve 8	(47.1) 9	(52.9) 0	(0.0) 7.4 0.04 7	(50.0) 3	(21.4) 4	(28.6) 7.48

Posi%ve 19	(26.0) 32	(43.8) 22	(30.1) (0.02) 21	(19.4) 20	(18.5) 67	(62.0) (0.02)
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Triple	Nega.ve

Adjusted

p-value

0.72

0.14

0.02

0.03

1.84

1.5

0.04
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ER+	high	prolifera.ve/luminal	B

Adjusted

p-value

4.08

5.25

0.9

0.02

0.04

0.12

0.3
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Figure legends 

Figure 1. The expression of solute carriers was predominant in the cell membrane of the 

breast cancer cells (Red arrows) and the adjacent immune cells infiltrates (Black arrows). A)  

Figure 2. Breast cancer specific survival in SLCs and immune markers co-expression. A) 

SLCs and FOXP3. B) SLCs and CD68. C) SLCs and PD1. D) SLCs and PDL1. E) SLCs and 

CD20. 

Figure 3. PDL1 protein expression in western blotting. A) Western blot analysis of PDL1 

protein expression in MDA-MB-231 cells transfected with SLC7A5 and/or SLC1A5 SiRNA. 

Western blot results in different BC cell lysates for B) SLC7A5 and C) SLC1A5.  The bar 

graph summarises the expression levels of PDL1 protein, using β-actin as normalised control, 

upon D) SLC7A5 SiRNA transfection. E) SLC1A5 SiRNA transfection. F) SLC7A5 and 

SLC1A5 SiRNA transfection. Data represent the mean and error bars of three independent 

experiments.    









Supplementary table 1: Clinicopathological parameters of the Nottingham BC series 

 
 
Parameters 

Nottingham TMA series 
n (%) 

Tumour size  

≤ 2cm 658 (51.6) 

> 2cm 616 (48.4) 

Grade  

1 207 (16.3) 

2 415 (32.7) 

3 649 (51.1) 

Tumour type  

Ductal (including mixed) 1052 (82.6) 

Lobular 115 (9.0) 

Medullary-like 34 (2.7) 

Miscellaneous 9 (0.7) 

Special type 64 (5.0) 

Lymph Node Stage  

1 774 (60.9) 

2 396 (31.2) 

3 101 (7.9) 

Follow-up Status  

Alive 650 (51.0) 

Died from Breast Cancer 425 (33.4) 

Died from other causes 199 (15.6) 

ER  

Negative 325 (25.8) 

Positive 934 (74.2) 

PgR  

Negative 509 (41.8) 

Positive 709 (58.2) 

HER2  

Negative 1051 (86.7) 



Positive 161 (13.3) 

 
 
 
 

 
 
Supplementary figure 1. Immunohistochemical expression of SLC1A5, SLC7A5, SLC3A2 
and PDL1 in invasive BC tumour cells (upper panel). Immunohistochemical expression of 
CD68, CD20, FOXP3 and PD1 in lymphocytic infiltrates of the invasive BC cores (lower 
panel). 
 
 
 
 

 
 
 

 
 
 

 
 

 
 
 
 
 
Supplementary figure 2. Knockdown of SLC7A5 and SLC1A5 in MDA-MB-231 cell lines. 
A) SLC7A5 expression in MDA-MB-231 transfected with SLC7A5 SiRNA and control (un-
transfected) cells. B) SLC1A5 expression in MDA-MB-231 transfected with SLC1A5 
SiRNA and control (un-transfected) cells. 



 
 

 
 
Supplementary figure 3. Distant metastasis Free Survival in SLCs and immune markers co-
expression. A) SLCs-FOXP3. B) SLCs-CD68. C) SLCs-PD1. D) SLCs-PDL1. E) SLCs-
CD20. 

 


