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No-hair theorems for scalar-tensor theories imply that the trivial scalar field configuration is the unique
configuration around stationary black hole spacetimes. The most basic assumption in these theorems is that
a constant scalar configuration is actually admissible. In this paper, we classify shift-symmetric Horndeski
theories according to whether or not they admit the trivial scalar configuration as a solution and under
which conditions. Local Lorentz symmetry and the presence of a linear coupling between the scalar field
and Gauss-Bonnet invariant plays feature prominently in this classification. We then use the classification
to show that any theory without linear Gauss-Bonnet coupling that respects local Lorentz symmetry admits
all solutions of general relativity. We also study the scalar hair configuration around black hole spacetimes
in theories where the linear Gauss-Bonnet coupling is present. We show that the scalar hair of the
configuration is secondary, fixed by the regularity of the horizon, and is determined by the black hole
horizon properties.
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I. INTRODUCTION

After more than 100 years since its introduction, general
relativity (GR) is still the most successful theory describing
gravitational interactions. Despite its mathematical sim-
plicity and consistency with observations, many alternative
theories have been proposed with motivations ranging from
quantum gravity, cosmology and resolving dark matter and
energy to testing Lorentz violation in the gravity sector.
Any modification to GR (in 3þ 1 dimensions), by
Lovelock’s theorem [1,2], introduces new degrees of free-
dom. In this regard, scalar-tensor theories, which possess an
additional scalar field, are perhaps the simplest alternatives
to GR.
The new scalar degree of freedom could lead to in-

triguing phenomenology in black hole spacetimes. No-hair
theorems [3–10] seem to suggest the opposite. They imply
that, under certain assumptions regarding symmetries and
asymptotics, the trivial configuration (vanishing scalar
field) is the unique acceptable configuration in a black
hole spacetime. However, no-hair theorems can be circum-
vented by relaxing these assumptions—most notably
allowing the scalar to be nonstationary—or by exploiting
instabilities. This has lead to various scenarios for long-
lived scalar hair [10–18].
Perhaps the most obvious way to find theories for which

black holes have hair is to violate the most basic
assumption of no-hair theorems: that a trivial configuration
for the scalar is admissible in the first place for black hole
spacetimes. Indeed, in Ref. [7] it was shown that static,

spherically symmetric and asymptotically flat black holes
cannot have hair in shift-symmetric scalar-tensor theories.
Shirt symmetry implies invariance under the transformation
ϕ → ϕþ const and it can be thought of as the symmetry
that prevents the scalar to acquire a mass from quantum
corrections. Subsequently, it was pointed out in Ref. [8]
that a linear coupling between a scalar and the Gauss-
Bonnet invariant respects shift symmetry and at the same
time leads to a contribution to the scalar’s field equation
that depends only on the Gauss-Bonnet invariant.1 The
latter does not vanish in black hole spacetimes; it sources
the scalar and makes a constant scalar configuration
inadmissible. It was further shown there that this is the
only coupling term with this property, which at the same
time allows for a constant scalar configuration in flat
space (the Gauss-Bonnet invariant vanished). The latter
is a requirement if one wants the theory to respect local
Lorentz symmetry (LLS). The gradient of the scalar field
∇aϕ picks a preferred direction at any point in spacetime.
Hence, having a nontrivial gradient in flat space is a
violation of LLS.
Let us now consider the implications of the results in

Ref. [8] in terms of the shift-symmetric (SS) Horndeski
theory [21–23]. This is the most general shift-symmetric
scalar-tensor theory which leads to a second-order equation

1Beyond the confines of shift symmetry, it was well known
that a coupling between the scalar and the Gauss-Bonnet invariant
leads to black hole hair [19,20].
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of motion upon variation. The Lagrangian of the theory
reads

L ¼ L2 þ L3 þ L4 þ L5; ð1Þ

where

L2 ¼ G2; ð2Þ

L3 ¼ −G3□ϕ; ð3Þ

L4 ¼ G4RþG4X½ð□ϕÞ2 − ð∇a∇bϕÞ2�; ð4Þ

L5 ¼ G5Gab∇a∇bϕ ð5Þ

−
1

6
G5X½ð□ϕÞ3 − 3□ϕð∇a∇bϕÞ2 þ 2ð∇a∇bϕÞ3�; ð6Þ

X ¼ − 1
2
∇aϕ∇aϕ and GiX ¼ ∂XGi. Gi’s are functions of ϕ

and X. Shift symmetry implies that Gi’s only depend on X
[24]. (Throughout this paper we are assuming mostly
positive signature for the metric.) According to Ref. [8],
the no-hair theorem of Ref. [7] should be applicable to SS
Horndeski theories provided that (i) the term αϕG, where α
is a coupling constant and G≡ RabcdRabcd − 4RabRab þ R2

is the Gauss-Bonnet invariant, is entirely absent; (ii) the
functions GiðXÞ are such that LLS is respected. It is worth
pointing out that it is easy to find examples that do not
respect these conditions:
(a) The Cuscuton theory [25] is a SS Horndeski theory

given byG2 ¼
ffiffiffiffiffiffijXjp

. Deriving the equation of motion,
one could directly check that the theory does not have
ϕ ¼ 0 as a solution.

(b) A massless scalar field with linear Gauss-Bonnet
coupling

L ¼ −
1

2
∇aϕ∇aϕþ αϕG: ð7Þ

This is a shift-symmetric theory as the Gauss-Bonnet
term is a total divergence in four dimensions and thus
belongs to SS Horndeski class. In terms of the Gi
functions, the theory is given by G2 ¼ X and G5 ¼
−4α ln jXj [23]. The equation of motion from Lagran-
gian (7) reads

□ϕþ αG ¼ 0; ð8Þ

which clearly shows ϕ ¼ 0 is not in the space of
solutions on a generic background spacetime [8].

The discussion above suggests strongly that one should
be able to classify SS Horndeski theories according to
whether they accept the trivial configuration ϕ ¼ 0 as a
solution in flat space and in general spacetimes. It also
suggests that this classification could help understand the
properties of black holes in these theories. Below we

introduce this classification, we determine the condition
that a theory needs to satisfy (in terms of the Gi functions)
in order to belong in a certain class, and we use it to
uncover some interesting properties for the theories that
belong in each class. We expect these properties, and the
classification in general, to be useful in various applica-
tions. Sticking to our initial motivation, we use it to prove
that a black hole in Horndeski theory cannot have an
independent charge.

II. CLASSIFICATION

In this section, we identify three mutually exclusive
classes in SS Horndeski theories. Let us define Eϕ½ϕ; g� to
be the scalar field equation of motion derived from
Lagrangian (1). Then we define the following.
Class 1.—SS Horndeski theories satisfying

Eϕ½ϕ ¼ 0; g� ¼ 0; ∀ g: ð9Þ

These theories admit ϕ ¼ 0 solutions for the scalar and
hence all of the solutions of GR.
Class 2.—SS Horndeski theories which are not in class 1

but satisfying

lim
g→η

Eϕ½ϕ ¼ 0; g� ¼ 0; ð10Þ

where ηab is the Minkowski metric. These theories do not
admit ϕ ¼ 0 solutions and hence they do not share GR
solutions in general. However, they have Minkowski
spacetime as a solution, and this solution is smoothly
connected to other solutions.
Class 3.—This class is defined as the complement of

classes 1 and 2 combined; i.e., it consists of theories that
either do not admit flat space with as a solution at all or
formally admit it but it is a disconnected solution.
Following the discussion in the introduction regarding

Lorentz symmetry, theories in classes 1 and 2 respect LLS,
while class 3 theories are Lorentz violating. Before ending
this section, let us mention an important result regarding the
scalar field equation of motion which we use extensively in
the following sections. By virtue of shift symmetry, the
theory acquires a Noether’s current Ja associated to the
shift symmetry which is given explicitly by

Ja ¼ G2XJað2;1Þ þ G3XJað3;1Þ
þG4XJað4;1Þ þG4XXJað4;2Þ

þG5XJað5;1Þ þG5XXJað5;2Þ; ð11Þ

where

Jað2;1Þ ¼ −∇aϕ; ð12Þ

Jað3;1Þ ¼ ∇aϕ□ϕ −∇a∇bϕ∇bϕ; ð13Þ
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Jað4;1Þ ¼ 2Gab∇bϕ; ð14Þ

Jað4;2Þ ¼ ð∇c∇dϕÞ2∇aϕ − ð□ϕÞ2∇aϕ

þ 2□ϕ∇a∇bϕ∇bϕ − 2∇b∇cϕ∇cϕ∇a∇bϕ; ð15Þ

Jað5;1Þ ¼ −∇aϕGcd∇c∇dϕþ Gab∇b∇cϕ∇cϕ −□ϕRab∇bϕ

þ Rcbda∇c∇dϕ∇bϕþ Rcd∇cϕ∇a∇dϕ; ð16Þ

Jað5;2Þ ¼
∇aϕ

6
½ð□ϕÞ3 − 3□ϕð∇c∇dϕÞ2 þ 2ð∇c∇dϕÞ3�

−
1

2
ð□ϕÞ2∇a∇bϕ∇bϕþ 1

2
ð∇c∇dϕÞ2∇a∇bϕ∇bϕ

þ□ϕ∇b∇cϕ∇cϕ∇a∇bϕ

−∇b∇cϕ∇cϕ∇a∇dϕ∇d∇bϕ: ð17Þ

The equation of motion for the scalar field can be thought
of as the conservation of the Noether’s current, namely

Eϕ½ϕ; g� ¼ −∇aJa: ð18Þ

Inspecting carefully the terms in the current shows that
they have a specific scaling dimension with ϕ, Jai ½βϕ� ¼
βniJai ½ϕ�, where

nð2;1Þ ¼ 1; nð3;1Þ ¼ 2;

nð4;1Þ ¼ 1; nð4;2Þ ¼ 3;

nð5;1Þ ¼ 2; nð5;2Þ ¼ 4: ð19Þ

We will use this scaling property in the next sections.

A. Class 1: Theories with GR solutions

In this section, we derive the conditions on the Gi’s for
a theory to be in class 1. We impose the defining condition
of the class as follows:

0 ¼ Eϕ½ϕ ¼ 0; g� ¼ lim
ϵ→0

Eϕ½ϵϕ̄; g� ∀ g; ð20Þ

where ϕ̄ can be any differentiable field configuration.
This is to ensure that the ϕ ¼ 0 solution can be reached
smoothly. In other words, we disregard theories in which
the GR branch is dynamically disconnected from any other
solution. In order to make use of the scaling properties in
Eq. (19), we define the following functions:

Fð2;1ÞðXÞ ¼ jXj1=2G2X; Fð3;1ÞðXÞ ¼ XG3X;

Fð4;1ÞðXÞ ¼ jXj1=2G4X; Fð4;2ÞðXÞ ¼ jXj3=2G4XX;

Fð5;1ÞðXÞ ¼ XG5X; Fð5;2ÞðXÞ ¼ X2G5XX ð21Þ

and currents

jað2;1Þ ¼ jXj−1=2Ja2; jað3;1Þ ¼ X−1Ja3;

jað4;1Þ ¼ jXj−1=2Jað4;1Þ; jað4;2Þ ¼ jXj−3=2Jað4;2Þ;
jað5;1Þ ¼ X−1Jað5;1Þ; jað5;2Þ ¼ X−2Jað5;2Þ ð22Þ

and rewrite the Noether’s current as

Ja ¼ Fð2;1Þjað2;1Þ þ Fð3;1Þjað3;1Þ
þ Fð4;1Þjað4;1Þ þ Fð4;2Þjað4;2Þ

þ Fð5;1Þjað5;1Þ þ Fð5;2Þjað5;2Þ: ð23Þ

The scalings are designed such that the new currents j’s are
scale invariant jai ½ϵϕ̄; g� ¼ jai ½ϕ̄; g�; the ϵ dependence is
now encoded in Fi’s. In particular, the behavior of FiðXÞ
close to X ¼ 0 is crucial for ϵ → 0 limit.
If Fi functions are such that FiðX ¼ 0Þ ¼ 0, then the

current Ja vanishes as ϵ → 0. Thus the equation of motion
is satisfied. As a result, FiðX ¼ 0Þ ¼ 0 are sufficient
conditions for a theory to belong to class 1. In what
follows, we show that FiðX ¼ 0Þ ¼ 0 are necessary as
well.
According to our definition, a theory is in class 1 if for all

spacetime metrics gab

lim
ϵ→0

Eϕ½ϵϕ̄; g� ¼ 0: ð24Þ

Let us restrict ourselves to static spherically symmetric
field configuration ϕ̄ and metric and choose the metric to be
infinitesimally close to the flat metric:

gabdxadxb ¼ −ð1þ ϵ1hðrÞÞdt2 þ
dr2

1þ ϵ2fðrÞ
þ r2dΩ2;

ð25Þ

where ϵ1 and ϵ2 are small numbers. With staticity, spherical
symmetry and smoothness at the center, the scalar field
equation of motion reduces to Jr ¼ 0; thus, we require

lim
ϵ→0

Jr½ϵϕ̄; g� ¼ 0: ð26Þ

Imposing the above to hold in any order of ϵ1 and ϵ2, we get
at X ¼ 0

ϵ01ϵ
0
2 order∶ Fð2;1Þ ¼ Fð3;1Þ ¼ Fð4;2Þ ¼ 0; ð27Þ

ϵ1 and ϵ2 order∶ Fð4;1Þ ¼ 0; Fð5;1Þ ¼ −Fð5;2Þ; ð28Þ

ϵ1ϵ2 order∶ 5Fð5;1Þ þ 4Fð5;2Þ ¼ 0: ð29Þ

The combination of the above conditions yields

FiðX ¼ 0Þ ¼ 0: ð30Þ
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Equation (30) is derived by restricting the metric to be
static, spherically symmetric and close to flat spacetime;
thus, it constitutes a set of necessary conditions for Eq. (20)
to hold. Combining this with the previous result, we have
shown that FiðX ¼ 0Þ ¼ 0 is a set of necessary and
sufficient conditions for a theory to be in class 1. In
particular, this means that Eq. (26) is satisfied to all orders
in ϵ1 and ϵ2.
On a final note we should mention that all FiðX ¼ 0Þ, if

not divergent, are not independent since they are related
through their definitions as derivatives of Gi functions. In
particular,

Fð4;2ÞðX ¼ 0Þ ¼ −
1

2
Fð4;1ÞðX ¼ 0Þ;

Fð5;1ÞðX ¼ 0Þ ¼ −Fð5;2ÞðX ¼ 0Þ: ð31Þ

B. Class 2: Theories with Minkowski solution

So far, we have focused on theories which admit ϕ ¼ 0
as a solution on any background spacetime metric. Now, we
turn our attention to class 2 theories which do not satisfy
this property and only admit the trivial solution on a flat
spacetime.
In the definition of class 2 in Eq. (10), we require the

limit gab → ηab to exclude theories that have ϕ ¼ 0
solution on flat spacetime when this solution cannot be
reached smoothly. Intuitively, Eq. (10) requires that, start-
ing from a perturbed flat metric and then damping the
perturbations, there is always a solution to the scalar field
equation of motion which is continuously connected
to ϕ ¼ 0.
Considering a static spherically symmetric metric and

taking the limit to the flat metric in Eq. (10), similar to our
argument in the previous section, we get the following
necessary conditions at X ¼ 0:

Fð2;1Þ ¼ Fð3;1Þ ¼ Fð4;2Þ ¼ 0;

Fð4;1Þ; Fð5;1Þ; andFð5;2Þ are finite and at least one nonzero:

ð32Þ

As we mentioned earlier, the values of Fi ’s at X ¼ 0 are not
all independent. In fact, using Eq. (31) yields

Fð4;1ÞðX ¼ 0Þ ¼ 0;

Fð5;1ÞðX ¼ 0Þ ¼ −Fð5;2ÞðX ¼ 0Þ ≠ 0: ð33Þ

As a result, the only nonzero values among FiðX ¼ 0Þ are
the ones coming from G5.
In the derivation above, we have only considered the

limit to the flat metric through spherical perturbations;
hence, the above constitute a set of necessary conditions at
this point. In the next section, we show that they are also

sufficient condition for class 2. Moreover, we discuss how
class 2 and class 1 theories are related.

C. Relation between class 1 and 2

Let us consider a class 2 theory with Lagrangian L. By
the argument in the previous section, we know Eqs. (32)
and (33) must hold.
Now let us define

Fð5;1ÞðXÞ ¼ cþ F̃ðXÞ; ð34Þ

where c ¼ Fð5;1ÞðX ¼ 0Þ; thus, F̃ðX ¼ 0Þ ¼ 0. Using the
definition of Fð5;1Þ in terms of G5, this gives

G5 ¼ c ln jXj þ
Z

X
dX0 F̃ðX0Þ

X0 ¼ c ln jXj þ G̃5; ð35Þ

where

G̃5 ≡
Z

X
dX0 F̃ðX0Þ

X0 ; ð36Þ

satisfying XG̃5X ¼ 0 at X ¼ 0.
By substituting G5 from Eq. (35) in Lagrangian L,

the ln jXj contribution turns into a linear Gauss-Bonnet
coupling term, and we get

L ¼ L̃ −
c
4
ϕG; ð37Þ

where L̃ is a Lagrangian with G5 in L replaced by G̃5.
2

Note that L̃ satisfies Eq. (30) and, thus, it belongs to class 1.
Consequently, we have proven that the Lagrangian of any
class 2 theory is a linear Gauss-Bonnet coupling plus a
class 1 theory Lagrangian.
This result further proves that Eqs. (32) and (33) are

sufficient conditions for class 2 condition Eq. (10). In order
to see this, consider the equation of motion derived from
Eq. (37) which reads

Eϕ½ϕ; g� ¼ Ẽϕ½ϕ; g� −
c
4
G: ð38Þ

Ẽϕ is the equation of motion derived from L̃ and satisfies
Ẽϕ½ϕ ¼ 0; g� ¼ 0, as it belongs to class 1. As a result,

Eϕ½ϕ ¼ 0; g� ¼ −
c
4
G; ð39Þ

which clearly satisfies Eq. (10).

III. BLACK HOLE SOLUTIONS OF CLASS 2

So far, we have been working out the classification of SS
Horndeski theories, and we have shown that class 2 theories

2Note that Lagrangian L is linear in terms of Gi ’s.
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are closely related to the ones in class 1. The scalar field for
class 2 theories must have a nontrivial configuration on
curved spacetimes, and this means that their black hole
solutions must have hair (this generalizes the logic of
Ref. [8] to all theories in class 2). We study the behavior of
the scalar hair in black hole spacetimes for class 2 theories
in this section.
It has been shown that for a canonical massless scalar

field with linear Gauss-Bonnet coupling [corresponding to
L̃ ¼ X in Eq. (37)], the scalar hair of the black hole is
secondary for stationary axisymmetric [26] (static, spheri-
cally symmetric [27,28]) black holes. In this section, we
generalize this result to a wider class of theories with linear
Gauss-Bonnet coupling.
The first case that we consider is a static, spherically

symmetric spacetime and scalar field. The advantage in this
case is that we do not put any restriction on the theory and
asymptotics of the black hole. The proof applies to all class
1 and class 2 theories, i.e., to all non-Lorentz breaking
theories.
Then, we consider the case of a stationary, asymptoti-

cally flat black hole spacetime and stationary scalar field,
without assuming extra spacetime symmetries. In this case,
we assume that the dominant contribution to the kinetic
term of the Lagrangian in the weak field limit is the
canonical kinetic term. Essentially, this means that all
corrections to the canonical kinetic term are higher-order
field contributions, that are relevant when the scalar field is
strong. Let us place this condition in the context of a class 2
theory with Lagrangian L. As we have shown, L can be
expressed as

L ¼ L̃þ αϕG; ð40Þ

where L̃ (with G̃i functions) is in class 1 and α ≠ 0.3 Hence,
our condition regarding the weak field dominance of the
canonical kinetic term implies that the dominant term to the
Noether’s current J̃a (of L̃) at infinity is −∇aϕ. Finally, we
assume (for technical reasons of the proof) that the surface
gravity of the Killing horizon is constant.
In both cases discussed above, and with the assumptions

listed, we prove that the scalar charge is secondary.

A. Spherical black holes

Consider a static spherically symmetric black hole with
the following metric:

gabdxadxb ¼ −hðrÞdt2 þ dr2

fðrÞ þ r2dΩ2 ð41Þ

and a horizon at r ¼ rH given by fðrHÞ ¼ hðrHÞ ¼ 0. For a
static spherically symmetric spacetime

G ¼ ∇aGa; Ga ¼ ð0;Gr; 0; 0Þ; Gr ¼ 4ðf − 1Þfh0
r2h

:

ð42Þ

Ja ¼ J̃a − αGa satisfies the symmetries of the spacetime.
Hence the only nontrivial component of Ja in the coor-
dinates defined by Eq. (41) is Jr. Explicitly solving
∇aJa ¼ 0, we get

Jr ¼ C
r2

ffiffiffi
f
h

r
; ð43Þ

where C is a constant. Thus, we have

C
r2

ffiffiffi
f
h

r
¼ J̃r − α

4ðf − 1Þfh0
r2h

: ð44Þ

The explicit form of J̃r is given by [24]

J̃r ¼ −fϕ0G̃2X þ f2ðϕ0Þ2 rh
0 þ 4h
2rh

G̃3X

þ fϕ0 2hf − 2hþ 2rfh0

r2h
G̃4X

− 2f3ðϕ0Þ3 hþ rh0

r2h
G̃4XX

þ f2ðϕ0Þ2h0 1 − 3f
2r2h

G̃5X þ f4ðϕ0Þ4 h0

2r2h
G̃5XX: ð45Þ

Assuming regularity of the scalar field at the horizon, i.e.,
ϕ0ðrHÞ is finite, one can see that J̃rðrHÞ ¼ 0 (in the next
section, we will see the generalization of this result beyond
spherical symmetry). As a result, evaluating Eq. (44) at
r ¼ rH fixes the constant C:

C ¼ 4α
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f0ðrHÞh0ðrHÞ

p
sgnðf0ðrHÞÞ: ð46Þ

Substituting this value back in (44), we get

J̃r ¼ 4α

r2

ffiffiffi
f
h

r � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f0ðrHÞh0ðrHÞ

p
sgnðf0ðrHÞÞ

þ ðf − 1Þ
ffiffiffi
f
h

r
h0
�
: ð47Þ

The important fact about this equation is that the right-hand
side depends only on the geometry and hence J̃r is
completely fixed by the spacetime.
The explicit form of J̃r in Eq. (45) shows that it depends

on the scalar field only through ϕ0. In other words,
combining Eqs. (47) and (45) yields an algebraic equation
for ϕ0 in terms of geometrical quantities. This means that
the scalar field configuration is completely fixed by the
geometry. Hence, the scalar hair is secondary and we have
proven the desired result. Note that in the above proof we3The arguments below apply to α ¼ 0 as well.
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did not use any restriction on the theory apart from not
being Lorentz violating (i.e., not belonging in class 3).
In general, Eq. (47) possesses multiple solutions for ϕ0

even when α ¼ 0. Treating the G̃i’s as polynomial func-
tions in X, we can rearrange Eq. (47) in the following
format:

Xm
n¼2

αnAnðrÞϕ0n − fϕ0 þ αA0ðrÞ ¼ 0; ð48Þ

where αA0ðrÞ comes from the Gauss-Bonnet term [rhs of
Eq. (47)] and the αnAnðrÞ terms originate from J̃r, with n
controlled by the choice of the G̃i. We have assumed here
that the canonical kinetic term is present and this gives
the fϕ0 contribution. This polynomial equation can have
multiple real roots. However, not all these roots will
correspond to physically relevant solutions.
To see this, first set αn ¼ 0, in which case one gets the

unique (known) solution ϕ0 ¼ αA0ðrÞ=f. When αn ≠ 0 this
solution will receive corrections that vanish as αn → 0 and
the limit is smooth. More branches of solutions can also
arise now, but these solutions are not expected to have a
smooth limit as αn ≠ 0 and hence they are not continuously
connected with the only branch that exists for αn ¼ 0.
Moreover, it is not clear whether any of these new solutions
will have the correct asymptotic behavior or whether they
correspond to regular solutions of the whole theory (here
only the scalar equation is considered). This behavior
persists for α ¼ 0, in which case αn ¼ 0 leads to the GR
solution ϕ0 ¼ 0.
It is also worth pointing out that, for a spacetime with

multiple horizons, f0ðrHÞ changes sign on successive
horizons. Hence, the values of C calculated on different
horizons (to ensure the regularity of ϕ) cannot match. This
means that the scalar field is singular on at least one of the
horizons in such a spacetime. For example, spherically
symmetric black holes with de Sitter asymptotics are
expected to be singular. This agrees with the results and
conclusions obtained numerically in [29,30].

B. Stationary black holes

Now, let us present the proof for stationary black holes.
The proof goes beyond spherical symmetry and uses only
stationarity of the black hole spacetime. However, it is
restricted to a subclass of theories in classes 1 and 2, as we
have explained earlier.
Consider a generic stationary asymptotically flat black

hole spacetime with a Killing vector ξa and Killing horizon
H. The equation of motion from Lagrangian (40) reads

∇aJ̃a ¼ α∇aGa; ð49Þ

where J̃a is the Noether’s current associated with L̃
and ∇aGa ¼ G. Integrating above in a spacetime region

bounded by the Killing horizon of the black hole (H),
infinity (∞) and two (partial) Cauchy hypersurfaces (C1

and C2), we get

Z
H
naJ̃a þ

Z
∞
naJ̃a ¼ α

Z
H
naGa þ α

Z
∞
naGa; ð50Þ

where na is the normal to the boundary. Note that the
integrals over C1 and C2 (by isometry) cancel each other.
On the Killing horizon na ¼ ξa and

ξaJ̃a ¼ 0; ð51Þ

provided that the scalar field is regular, static and H has
constant surface gravity [31]. Moreover,

Z
∞
naGa ¼ 0 ð52Þ

for asymptotically flat spacetimes. Consequently,

Z
∞
naJ̃a ¼ α

Z
H
naGa: ð53Þ

The left-hand side of the above gives the scalar charge
of the black hole. In order to see this, consider “1=r”
expansion of the scalar field near infinity:

ϕ ¼ C
r
þOð1=r2Þ: ð54Þ

Substituting this expansion in the Noether’s current (and
imposing asymptotic flatness), we get

Z
∞
naJ̃a ¼ 4πC: ð55Þ

Note that in the above the only nonvanishing contribution is
from−∇aϕ by the restriction we imposed on the theory that
the canonical kinetic terms dominates in a weak field.
Substituting this back in Eq. (53) yields

4πC ¼ α

Z
H
naGa: ð56Þ

The right-hand side of the above is a purely geometrical
quantity. As a result, the scalar charge is fixed by the
geometry; i.e., the scalar charge of the black hole is
secondary. This generalizes the proof presented in
Ref. [26] beyond axisymmetry and to a wider class of
theories within SS Horndeski; the charge of the scalar field
is fixed by the properties of the horizon.
Equation (56) holds for α ¼ 0, corresponding to class 1

theories too. In this case, we conclude that

C ¼ 0: ð57Þ
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In other words, the scalar charge of a hairy solution (if
exists) of class 1 theories vanishes, and the asymptotic
falloff of the scalar field is faster than 1=r.
We finish this section by the following observation. If the

spacetime possesses multiple horizons, we expect Eq. (56)
to hold on each horizon. As a result (if α ≠ 0),

Z
H1

naGa ¼
Z
H2

naGa: ð58Þ

This is a very restrictive condition on the spacetime
geometry. In particular, the scalar field cannot remain
regular if the above does not hold. As we have shown in
the previous section, the above cannot hold for static
spherically symmetric black holes. Equation (58) indicates
that stationary black holes with multiple horizons (within
theories we considered in this section) are also irregular at
least on one of the horizons.

IV. SUMMARY AND CONCLUSION

In this paper, we have presented a classification of shift-
symmetric Horndeski theories that could be useful in
various applications. We argued that Horndeski theories
can be split in three classes: (i) theories that admit all of the
spacetimes of GR with a constant scalar configuration;
(ii) theories do not belong to the previous class but that
admit flat space with constant scalar; (iii) theories in which
the scalar has to be nontrivial in flat space or do not admit
flat space at all, and hence they are Lorentz violating. We
have identified the conditions on the Gi function appearing

in the action that correspond to each class of theories. We
have also proven that the Lagrangian of any theory in class
2 is equal to the Lagrangian of some theory in class 1 plus a
term featuring a linear coupling between the scalar and the
Gauss-Bonnet invariant. In particular, this means that any
locally Lorentz-invariant shift-symmetric Horndeski theory
admits all GR solutions, provided it does not contain a
linear Gauss-Bonnet coupling.
We have used our classifications to obtain some new

results in the context of no-hair theorems. In particular, we
have shown that all theories in class 2 will necessarily have
hairy black hole solutions. We have further shown under
fairly general conditions that the hair is secondary; i.e., the
scalar charge for these hairy black holes is fixed by the
regularity of the horizon and is determined by the horizon
properties.
Our result underscore the important role that a linear

coupling between the scalar field and Gauss-Bonnet term
plays for black holes and complement the earlier results of
Refs. [8,24]. This is the unique interaction term that forces
a Lorentz-invariant theory within the shift-symmetric
Horndeski class to have hairy black hole solutions.
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