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ABSTRACT 

Molecular doping is a promising strategy to fine-tune the electronic properties of halide 

perovskites and accelerate their implementation as next-generation optoelectronics. However, a 

deeper understanding of the role of host-dopant interactions in these systems is needed to fully 

exploit the potential of this avenue. Herein, we demonstrate a surface post-treatment strategy 

employing n-type molecular dopant n-DMBI-H to modulate free hole density in p-type 

CH3NH3Sn0.75Pb0.25I3 films. We show that the adsorption of n-DMBI-H on surface Sn atoms, 

followed by the dissociation of an electron-donating hydride from the dopant, facilitates charge 

transfer to perovskite and hole trapping at the dissociated hydride. We identify this mechanism as 

a key factor dictating doping compensation in perovskite, allowing carrier density control within 

nearly one order of magnitude via the dissociated molecular dopant located at film surfaces and 

grain boundaries. We then exploit n-DMBI-H in perovskite/transport layer junctions, achieving 

reduced carrier losses and improved contact selectivity and performance in p-i-n, Sn-rich 

perovskite solar cells. We expect this work to provide carrier density tuning guidelines for a broad 

range of tin-based perovskite applications.  
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Halide perovskites have become front-runners for next-generation optoelectronics, showcasing a 

high absorption coefficient, defect tolerance and photovoltaic efficiencies over 25%.1–3 To enable 

further breakthroughs in existing applications and meet the needs of a broader range of 

technologies, it is essential to carefully control their electronic properties. Electronic doping allows 

the modulation of carrier density using defects and/or additives, becoming crucial towards optimal 

perovskite energetics and charge transport.4,5 This allows to obtain high-quality junctions in solar 

cells and light-emitting diodes (LEDs),6 to engineer high-performance p- and n-type transistors,7,8 

and to enhance the photocatalytic properties of this class of materials.9 

Although perovskites can be electronically modified through various methods (e.g., 

substitutional/interstitial doping or native defect doping/self-doping),10,11 this remains challenging 

since typical strategies can introduce energetic disorder. Substitutional Bi3+ salts are known to 

generate mid-bandgap states that cause lower carrier lifetime and mobility.12 Likewise, vacancy 

modulation additives (e.g., SnF2) employed to manipulate self-doping in Sn perovskite may form 

secondary phases that favor non-radiative recombination.13 Alternatively, molecular doping 

constitutes a promising avenue to transfer/extract charges to/from perovskite without 

compromising its crystal structure.4,5 However, this route remains largely unexplored in 
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perovskites, where it has mostly been used to optimize electrical conductivity and band alignment 

in solar cells.6,14–16  

In particular, n-type molecular dopants have been elusive vs. their p-type counterparts due to their 

higher ambient sensitivity. Amongst them, (4-(1,3-dimethyl-2,3-dihydro-1H-benzoimidazol-2-

yl)phenyl)-N,N-dimethylbenzenamine (n-DMBI-H) and its derivatives stand out for being air-

stable and yielding strong doping in organic semiconductors, where they are regarded as state-of-

the-art molecular dopants.17,18 Their doping mechanism (typically reported as the thermally-

assisted cleavage of a carbon-labile hydrogen bond to form a strong electron-donating species, i.e., 

a molecular radical or a hydride)19 also makes this class of molecules attractive to induce favorable 

charge transfer in a broad range of hosts. Chen et al. and Huang et al. employed thiophene- and 

diphenylaniline-based n-DMBI-H analogues, respectively, to enhance interfacial electronic 

contact in Pb perovskite solar cells.20,21 However, the physicochemical processes governing 

molecular doping in perovskite/n-DMBI-H systems remain unknown. Critically, the key atomic-

scale perovskite-dopant interactions dictating the underlying doping mechanism must be clarified 

to establish rational guidelines for charge carrier density modulation. This is important in 

molecular dopants containing Lewis base moieties (e.g., amino and/or imidazole groups in n-

DMBI-H) that may coordinate with perovskite metallic ions, deeply influencing charge transfer 

reactions, defect passivation and the overall electronic landscape of the material. 

Lower-toxicity, p-type Sn-based perovskites rely on doping compensation (i.e., lowering their high 

free hole density by introducing electron donors) for their technological deployment.22 This is 

crucial to mitigate fast non-radiative recombination in solar cells and LEDs,23,24 and would greatly 

benefit emerging applications such as Sn perovskite transistors (which require moderate hole 

densities for suitable channel conduction)25 and all-perovskite thermoelectric generators (where n-
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type Sn perovskite are highly sought-after).5 The use of n-type molecular dopants on Sn-based 

perovskites represents a potential path towards this goal,26 yet it has been underexplored to date. 

Combining i) electrical, spectroscopy and imaging techniques and ii) ab initio simulations, we 

elucidate the doping compensation mechanism in p-type CH3NH3Sn0.75Pb0.25I3   (MASn0.75Pb0.25I3) 

perovskite thin films employing n-DMBI-H as a post-treatment n-type molecular dopant. We 

identify selective dative bonding between n-DMBI-H amino groups and perovskite surface Sn sites 

as a key interaction that enables dopant-to-perovskite charge transfer through dissociation of a C-

H bond (Scheme 1). We show that this mechanism dictates doping compensation in perovskite, 

reducing free hole density by nearly one order of magnitude via n-DMBI-H located at film surfaces 

and grain boundaries. Finally, we exploit this avenue in perovskite/PCBM junctions, mitigating 

self-doping-related carrier losses and improving contact selectivity and performance in p-i-n, Sn-

rich perovskite solar cells. We expect these findings to enable effective molecular doping 

guidelines, paving the way towards future perovskite-based technologies. 
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Scheme 1. Doping compensation mechanism of n-DMBI-H in Sn-rich perovskite 

(MASn0.75Pb0.25I3 in this work). N-DMBI-H selectively attaches to perovskite Sn surface sites via 

dative bonding (a), followed by the dissociation of the C-labile hydrogen bond in n-DMBI-H and 

dopant-to-perovskite electron transfer (i.e., perovskite hole trapping at dissociated hydride) (b). 

MASn0.75Pb0.25I3 films were prepared as described in the Experimental Section (Supporting 

Information). A Sn-rich perovskite composition with a small portion of Pb was chosen to i) yield 

higher electronic stability than Sn-only analogues27 and ii) compare the effect of the two metals 

on potential host-dopant interactions. To preserve sample morphology and specifically assess the 

effect of n-DMBI-H, the molecular dopant was applied onto fully processed perovskite films as a 

post-treatment solution (0.01, 0.11, 1.12 and 11.22 mM). X-ray diffraction (XRD) reveals highly 

crystalline perovskite films with tetragonal structure and preferential orientation in the [h00] 

direction (Figure S1).1 Perovskite diffraction patterns remain unchanged upon addition of n-
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DMBI-H, confirming that the molecular dopant does not alter the perovskite crystal structure or 

its lattice parameters. 

To detect possible perovskite-dopant interactions (i.e., dative bonding) between n-DMBI-H Lewis 

base moieties (i.e., imidazole, amino) and MASn0.75Pb0.25I3 Lewis acid sites (e.g., Sn2+, Sn4+, Pb2+), 

we analyze changes in chemical environment upon n-DMBI-H treatment at samples surfaces via 

X-ray Photoelectron Spectroscopy (XPS; surface sensitivity: <5 nm). Figure 1a shows Sn 3d5/2 

peaks of control and n-DMBI-H-treated perovskite (0 mM and 1.12 mM, respectively) 

deconvoluted into two components, assigned to i) perovskite Sn2+ ions and ii) Sn4+ states typically 

detected at perovskite surfaces.28 The origins of the smaller Sn2+-to-Sn4+ ratio in the n-DMBI-H-

treated film (Table S1) are discussed in Supplementary Note 1. We observe a binding energy 

decrease for both Sn2+ and Sn4+ components (~0.1 and ~0.2 eV, respectively) in the n-DMBI-H-

treated film vs the bare perovskite sample. This is consistent with higher electron density in Sn 

sites upon molecular dopant adsorption29,30 and suggests both Sn2+ and Sn4+ act as anchoring points 

for n-DMBI-H, being their Lewis acidity a key factor governing perovskite-dopant interactions. 

Indeed, Sn4+ shows a larger chemical shift next to Sn2+ due to its more acidic character, while Pb 

4f signals assigned to Pb2+ sites show no apparent shift (Figure S4), being the weakest Lewis acid 

(Sn4+ > Sn2+ > Pb2+). We therefore conclude that n-DMBI-H binds to perovskite surfaces via 

selective dative bond formation with Sn states. 

We further focus on the N 1s XPS signals of Lewis base moieties in n-DMBI-H. For this, we 

compare a reference n-DMBI-H film with control (0 mM) and n-DMBI-H-treated (1.12 mM) 

perovskite samples (Figure 1b). The signal of reference n-DMBI-H is deconvoluted into two 

components, i.e., pristine n-DMBI-H (~399.9 eV) and oxidized n-DMBI-H (~401.5 eV)31,32 

(further details provided in Supplementary Note 2). In control perovskite (0 mM), a single 
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component assigned to MA+ cations is detected (~402.2 eV).28 It is apparent that the contribution 

of oxidized n-DMBI-H is stronger in the n-DMBI-H-treated perovskite film (1.12 mM) vs the 

pristine n-DMBI-H sample (66% vs 26%, respectively; Table S1). This is consistent with electron 

donation from the molecular dopant to perovskite. To validate the perovskite-dopant interaction 

observed previously, we compare the chemical shifts of N 1s components across all samples in 

Figure 1b; in this case, we expect molecular dopant signals to shift towards higher binding energies 

due to electron density loss around N upon dative bond formation.29,30 Interestingly, we only 

observe a binding energy increase (~0.2 eV) in the oxidized n-DMBI-H peak of n-DMBI-H-treated 

perovskite film with respect to the bare molecular dopant sample (labeled as 1.12 mM and n-

DMBI-H in Figure 1b, respectively). This indicates that n-DMBI-H bonded to perovskite surface 

is oxidized, suggesting that only those dopant molecules that undergo Lewis acid-base interactions 

with the perovskite proceed to transfer their charge to the host. These results identify host-dopant 

dative bonding as a key step to enable charge transfer.  

Figure 1. a. Sn 3d5/2 XPS spectra of control (0 mM) and n-DMBI-H-treated (1.12 mM) perovskite 

films. Dashed lines: positions of Sn2+ and Sn4+ components in control perovskite sample. b. N 1s 

XPS spectra of an n-DMBI-H film (n-DMBI-H) and control and n-DMBI-H-treated perovskite 
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films (0 mM and 1.12 mM, respectively). Dashed lines: positions of the oxidized n-DMBI-H 

component in the n-DMBI-H sample and the MA+ component in the perovskite control sample.  

We employ density functional theory (DFT) simulations to examine the bond between n-DMBI-

H and the perovskite and to elucidate possible charge transfer mechanisms. For this, we investigate 

the interaction of an n-DMBI-H molecule with the Sn0.5Pb0.5I2-terminated (001) surface of a 

reference MASn0.5Pb0.5I3 system, as specified in the Computational Details (Supporting 

Information). We analyze n-DMBI-H adsorption considering two alternative binding groups in the 

molecule, i.e., amino group vs imidazole ring, and find the former to yield the most stable 

perovskite-dopant interaction (Figure S5). n-DMBI-H adsorption through the amino group is 

calculated ~0.4 eV more favorable at the Sn site relative to Pb (Table S2), in accordance with our 

experimental observations.  

We next explore the possible charge transfer pathways that can lead to perovskite doping 

compensation following molecular adsorption. As tin-halide perovskites are inherently p-doped 

by the presence of Sn vacancies,11 we investigated the charge transfer process by calculating the 

trapping energy of the hole on the adsorbed molecule at the surface, thus simulating the 

molecule@perovskite system in the neutral state and in presence of one positive charge. The 

analysis has been extended to include the possible temperature-activated cleavage of the C-H bond 

between the imidazole ring and its labile proton at the surface (see Reactions 1 and 2 and Table 

S3).  
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(n-DMBI-H)@ Perovskite → (n-DMBI+ + H- )@Perovskite, ΔE = +0.43 eV   (1) 

         +h+ ↓ ΔE = -0.77 eV        +h+ ↓ ΔE = -0.99 eV 

 (n-DMBI-H)+@ Perovskite → (n-DMBI+ + H•)@Perovskite, ΔE = +0.21eV   (2) 

Figure 2. pDOS and frontier orbital plots of a. (n-DMBI-H)@ Perovskite; b. (n-DMBI+ + H- 

)@Perovskite; c. (n-DMBI-H)+@ Perovskite; d. (n-DMBI+ + H•)@Perovskite, calculated at PBE0 

level of theory. For a. and b., the highest occupied molecular orbital (HOMO) is plotted, while for 

positively charged systems the lowest unoccupied orbital (LUMO). Dashed lines in the pDOS 

diagrams indicate the energy of the highest occupied states.  

 

Both the homolytic and heterolytic n-DMBI-H(ads) surface dissociation were investigated in the 

neutral case. In the homolytic bond cleavage, the n-DMBI-H molecule dissociates into a n-

DMBI•(ads) molecular radical species19,33 and a radical hydrogen H•(ads), while for the heterolytic 

cleavage, the molecule provides two ionic species, i.e. n-DMBI+(ads) and a hydride, H-. DFT 
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analysis shows that the dissociation of the neutral n-DMBI-H molecule at the surface is 

thermodynamically unfavorable by 1.57 and 0.43 eV in the homo- and hetero- bond cleavage 

cases, respectively (see Table S3), indicating that the heterolytic dissociation is the most probable 

temperature-activated dissociation path in the neutral state (Reaction 1).  

The projected density of states (pDOS) of the n-DMBI-H@Perovskite and the (n-DMBI+ + H-

)@Perovskite systems are reported in Figure 2a and 2b. For the sake of comparison, the pDOS of 

MASn0.5Pb0.5I3 reference system and additional perovskite-dopant systems are presented in Figure 

S6 and S7, respectively. In the case of n-DMBI-H@Perovskite, we observe a new state (N, C, H) 

near the valence band maximum (VBM) of the perovskite system assigned to the HOMO of the 

adsorbed n-DMBI-H molecule. Correspondingly, the charge density isosurface plot of the last 

occupied state reveals a clear charge localization on the molecule. Similarly, in the (n-DMBI+ + 

H-)@Perovskite system a new state emerges near the VBM, but it is associated with the negative 

H adsorbed at the surface (see Figure 2b).  

These results indicate that charge transfer between a perovskite VBM hole and the localized states 

introduced by the molecule dopant are responsible for the de-doping of the perovskite. This is 

confirmed by the orbital analysis of the positive charged states of the n-DMBI-H@Perovskite and 

the (n-DMBI+ + H-)@Perovskite systems, see Figure 2c, 2d. As expected, in both cases a clear 

localization of the hole on the n-DMBI-H molecule and the H ion is observed, respectively. DFT 

calculations show that the positive (n-DMBI+ + H•)@Perovskite system is slightly less stable than 

the undissociated positive molecule (n-DMBI-H)+@Perovskite by 0.21 eV (see Reaction 2), 

indicating that in presence of extra holes, i.e., in p-doped substrates, the dissociation of the 

molecule with hole localization on the H is competitive with the hole localization on the 

undissociated molecule. Despite being slightly energetically unfavorable, molecular dissociation 
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at the surface should be entropically favored, further assisting the likelihood of such process at 

high temperature. Hole transfer from the perovskite substrate to the adsorbed molecule in n-DMBI-

H@Perovskite and on the H ion in (n-DMBI+ + H-)@Perovskite are thermodynamically favorable 

by 0.77 and 0.99 eV, respectively. The doping activity is also confirmed by the analysis of the 

(+/0) thermodynamic ionization levels of the two systems. In both cases, deep (+/0) transitions 

placed at 0.42 and 0.64 eV above the VBM are reported for the n-DMBI-H molecule and the 

splitted (n-DMBI+ + H-) system, see Table S4, highlighting that the positive species are stable for 

Fermi levels close to the VBM, i.e., in the case of p-doped substrate.      

The proposed charge transfer pathway is scrutinized by investigating structural changes in n-

DMBI-H before and after contact with perovskite films. Proton nuclear magnetic resonance (1H-

NMR) signals of n-DMBI-H (Figure S8) show a downfield shift after interacting with perovskite, 

indicating lower electron density around the analyzed protons compatible with the formation of 

cationic molecular dopant species (Reactions 1 and 2). The integration of 1H-NMR peaks in Figure 

S8 (Table S5) further reveals a relative decrease in labile hydrogens after n-DMBI-H contact with 

perovskite (~0.86 vs ~0.98), supporting the dopant dissociation mechanism shown herein.   

Our results demonstrate that dative bonding between surface Sn in perovskite and amino groups 

in n-DMBI-H, together with C-H bond dissociation in the molecular dopant, mediates doping 

compensation in Sn-rich perovskites. This unveils important requisites for efficient carrier density 

tuning via this class of molecular dopants, namely i) the presence of moieties with Lewis base 

character and ii) adequate energetic alignment with perovskite hosts; as such, analogues that only 

satisfy the first condition are not expected to modulate perovskite electronic properties effectively 

(Figure S9). 
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The regions within the film microstructure where n-DMBI-H is located and may interact with 

perovskite are monitored through various imaging techniques. Top-view scanning electron 

microscopy (SEM) images of perovskite films (Figure 3a) show pinhole-free morphologies with 

closely packed, submicron-sized grains (~200-500 nm), and indicate that perovskite topography 

remains unchanged after n-DMBI-H treatment at concentrations up to 1.12 mM. However, we 

observe dot-like features on perovskite at high concentrations (11.22 mM); possibly, excess n-

DMBI-H forms small aggregates upon the saturation of surface Sn sites via dative bonding. To 

prove homogeneous molecular dopant distribution at the surface, we analyze control and n-DMBI-

H-treated perovskite films (0 vs 1.12 mM, respectively) via hyperspectral photoluminescence (PL) 

imaging (Figure 3b). We note that n-DMBI-H leads to PL quenching in perovskite (Figure S10 

and Table S6), which allows mapping of the molecular dopant location on films. In Figure 3b, PL 

intensity in the n-DMBI-H-treated sample decreases evenly throughout the film microstructure 

relative to the control sample, corroborating that the molecular dopant is dispersed 

homogeneously. Slight PL variations within each sample may originate from grain heterogeneity 

caused by local lattice strain.34 We further confirm full coverage by the molecular dopant via time-

of-flight secondary ion mass spectrometry (ToF-SIMS) surface analysis (Figure S11), which 

shows a homogeneous distribution of diagnostic ion markers for n-DMBI-H (linear combination 

of the C5H6N+ and C17H20N3+ ion intensities) on perovskite films. 

Possible n-DMBI-H diffusion into MASn0.75Pb0.25I3 films is explored via ToF-SIMS depth 

profiling (Figure 3c, 1.12 mM; further analysis at higher concentration and imaging of sample 

interfaces shown in Figures S12 and S13, respectively). The intensity of ions characteristic of 

perovskite (i.e., MA+, Sn+, Pb+) remains constant and only drops once the indium tin oxide (ITO) 

substrate is reached (as noted by a concurrent increase in In+ intensity). In contrast, the n-DMBI-
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H ion marker trace reveals a progressive decrease as deeper sample regions are reached, indicating 

the infiltration of n-DMBI-H into the perovskite layer (most likely via grain boundaries).35 To 

visualize the localization of species in the sample and verify that n-DMBI-H penetration into 

perovskite occurs consistently throughout the film, we employ a ToF-SIMS 3D rendering of 

secondary ions of interest (3D secondary ion images; Figure 3c). We detect three well-defined 

sample regions, i.e., a molecular dopant top layer that diffuses into the perovskite film (n-DMBI-

H signal, C17H20N3+), a compact perovskite film (MA+, Sn+ and Pb+ signals) and the ITO bottom 

layer (In+ signal). The overlay of n-DMBI-H, Sn+ and In+ signals clearly shows that a molecular 

dopant concentration gradient exists in all scanned regions of the perovskite film. ToF-SIMS 

analysis of wedge-shaped cross-sections in Figure S13 further confirms a uniform lateral 

distribution of the dopant in the perovskite film and demonstrates the absence of the C17H20N3+ 

ion in control samples. Altogether, the 2D and 3D chemical imaging techniques applied here 

suggest that n-DMBI-H resides both at the top film surface and within grain boundaries, yielding 

high contact area between the molecular dopant and perovskite. 
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Figure 3. a. Top-view SEM images of n-DMBI-H-treated MASn0.75Pb0.25I3 films at varying 

molecular dopant concentrations. b. Hyperspectral PL imaging of control (0 mM) and n-DMBI-

H-treated perovskite films (1.12 mM). c. ToF-SIMS depth profiles of perovskite films treated with 

an n-DMBI-H solution (1.12 mM) and corresponding 3D secondary ion images reconstructed from 

100 surface analyses taken at intervals of ~4 µm (field of view: 50µm×50µm). 

We assess perovskite doping compensation by exploring the electronic and charge transport 

properties of n-DMBI-H-treated MASn0.75Pb0.25I3 thin films. As shown in Figure 4a, the mean 

electrical conductivity (σ) of control perovskite samples (0 mM n-DMBI-H) is ~1.18 S·cm-1, in 

agreement with previous work.36 Upon increasing n-DMBI-H concentration, σ undergoes a total 

~5-fold decrease to ~0.22 S·cm-1 (1.12 mM n-DMBI-H). To clarify the trend in σ, we analyze the 

effect of n-DMBI-H on the majority carrier density (hole density: [p]) and hole mobility (µh) of 
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perovskite films via Hall effect measurements (Figures 4b and 4d). Firstly, Figure 4b shows that 

the addition of the molecular dopant leads to a reduction in [p]; ranging nearly one order of 

magnitude from ~5·1018 cm-3 in control samples to ~7·1017 cm-3 in n-DMBI-H-treated films (1.12 

mM). We attribute the decrease in [p] to electron transfer from n-DMBI-H to perovskite and 

therefore the compensation of free holes in perovskite, in good agreement with the mechanistic 

insights shown above. It must be noted that [p] does not change significantly for concentrations 

higher than 1.12 mM (11.22 and 67.3 mM; Figure S14). This may arise from minimal dopant-to-

perovskite electron transfer upon the saturation of Sn sites with n-DMBI-H, although a strong 

counteraction effect from p-type Sn2+ vacancies in perovskite cannot be ruled out. This strategy is 

therefore suited for fine-tuning carrier density, rather than to induce a shift to n-type behavior. 

Future approaches that targets hosts with higher surface area (e.g., low-dimensional perovskites) 

or introduce specific growth conditions to lessen the impact of intrinsic defects might broaden the 

range of control over carrier density. Further evidence of doping compensation is obtained via 

Seebeck coefficient (S) measurements (Figure 4c). Given the inverse proportionality between S 

and [p] (i.e., S ∝ m*/[p]2/3, where m* represents hole effective mass), we rationalize the increase 

in S from ~138 µV·K-1 to ~162 µV·K-1 (0 mM and 1.12 mM n-DMBI-H, respectively) as a net 

drop of [p] in the perovskite. Secondly, we analyze µh of n-DMBI-H-treated perovskite films in 

Figure 4d. Control samples exhibit a mean µh of ~1.6 cm2·V-1·s-1 that only drops slightly to ~1.2 

cm2·V-1·s-1 upon 0.01 mM n-DMBI-H treatment, staying this value almost constant at higher 

molecular dopant concentrations (up to 11.22 mM). We attribute the small loss in µh to charge 

carrier scattering by molecular dopants at grain boundaries. This effect only has a major impact at 

much higher n-DMBI-H concentrations (i.e., 67.3 mM; Figure S14). We therefore conclude that 
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the decrease in σ of perovskite films (Figure 4a) is primarily mediated by the compensation of [p] 

via n-DMBI-H, playing µh a minor role due to its relative invariability (σ ∝ [p]·µh). 

Further proof of n-DMBI-H-mediated doping compensation is obtained via Kelvin probe (KP) 

measurements of perovskite films (Figure 4e). Work functions become shallower as n-DMBI-H 

concentration increases, indicating a weaker p-type character in perovskite as per the trend 

previously observed for [p] (Figure 4b). The changes in work function registered with the KP are 

consistent with Ultraviolet Photoelectron Spectroscopy (UPS) measurements (Figure S15; ~0.1 

eV difference from 0 mM to 0.01 mM n-DMBI-H in both methods). However, we note that the 

presence of a molecular dopant overlayer atop perovskite surfaces at high n-DMBI-H 

concentrations may contribute to the large work function shifts obtained via KP. From the band 

diagrams in Figure 4f (constructed from optical bandgap and photoelectron spectroscopy 

measurements; Figure S16), VBMs of perovskite rise upon molecular dopant treatment. This 

suggests a decrease in ionization energy due to a band filling effect, where electrons donated from 

the dopant fill the empty states in the valence band and make the highest occupied energy levels 

shallower.13,37 Concurrently, optical bandgaps become narrower (from ~1.23 eV to ~1.20 eV in 

control and 11.22 mM n-DMBI-H-treated samples, respectively), as typically shown in Sn-based 

perovskite systems upon doping compensation.13,23 
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Figure 4. a. Electrical conductivity (σ), b. free hole density ([p]), c. Seebeck coefficient (S), d. 

Hole mobility (µh), e. work functions (vs vacuum) and f. band edge energies (vs vacuum) of n-

DMBI-H-treated MASn0.75Pb0.25I3 thin films. 

We have shown that n-DMBI-H modulates carrier density in perovskite through a dissociative 

adsorption mechanism. To investigate the potential of this avenue in optoelectronics, we apply n-

DMBI-H treatments on p-i-n MASn0.75Pb0.25I3 solar cells (architecture: 

ITO/PEDOT:PSS/Perovskite/PCBM/BCP/Ag). Photovoltaic parameters of our devices and 

external quantum efficiency (EQE) spectra of champion cells are provided in Figure S17/Table S7 

and Figure S18, respectively. Current density-voltage (J-V) curves in Figure 5a clearly show a 

solar cell performance increase upon molecular dopant treatment, with power conversion 

efficiencies (PCE) soaring from 3.16% (0 mM n-DMBI-H) to 7.15% (11.22 mM n-DMBI-H). We 

emphasize that these results are accomplished in absence of any additives (e.g., SnF2, reducing 

agents) or compositional engineering (e.g., 2D phases)38 to isolate the contribution from n-DMBI-
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H, reaching a champion PCE comparable to previous examples based on similar perovskite 

compositions (i.e., MA-based and Sn-rich/Sn-only absorbers).39–42 Specifically, we observe higher 

short-circuit current density (Jsc; 25.23 mA·cm-2 > 15.91 mA·cm-2) and open circuit voltage (Voc; 

0.51 V > 0.35 V); we ascribe the decrease in fill factor (FF) at higher n-DMBI-H concentrations 

(Figure S17) to excess molecular dopant build-up at the perovskite/PCBM interface (Figure 2c). 

We identify two main routes where mitigating p-type self-doping in perovskite benefits the device 

performance. Firstly, lowering [p] in Sn-based perovskites (see Figure 4b) is known to enhance 

their optoelectronic properties13 and reduce carrier losses in solar cells.43 In line with this, dark J-

V curves in Figure S19 show lower leakage current after n-DMBI-H treatment and suggest lower 

recombination and enhanced carrier collection consistent with the increase in Jsc and Voc.44 

Secondly, n-DMBI-H post-processing enhances the quality of the perovskite/PCBM interface. 

Time-resolved and steady-state PL in Figure 5b show a stronger PL quenching in 

perovskite/PCBM bilayers in the presence of molecular dopant (average lifetime, τav: 5.50 ns > 

2.99 ns), implying higher contact selectivity and reduced interfacial recombination.45 We note that 

the PL intensity and lifetime of these films is shorter vs pristine perovskite (τav = 7.40 ns), as 

expected after adding the PCBM electron transport layer (see Table S6 for fitting parameters). 

Further information on the link between n-DMBI-H and carrier recombination is provided in 

Supplementary Note 3. We conclude that managing carrier tuning via n-DMBI-H provides a viable 

path towards the optimization of Sn-rich perovskite solar cells, suppressing charge losses arising 

from self-doping and improving interfacial quality between perovskite and PCBM (schematically 

shown in Figure 5c). 
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Figure 5. a. J-V curves of champion Sn-rich, additive-free perovskite solar cells treated with 

varying concentrations of n-DMBI-H. b. Time-resolved PL decays of control perovskite films and 

perovskite/PCBM samples with/without n-DMBI-H treatment (1.12 mM). Inset: steady-state PL 

spectra of samples in the main figure. c. Schematic representing n-DMBI-H doping compensation 

on perovskite solar cells leading to i) reduced free hole density and carrier losses and ii) improved 

perovskite/PCBM contact quality and selectivity.  
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In summary, we demonstrated that dissociative bonding between n-type molecular dopant n-

DMBI-H and p-type MASn0.75Pb0.25I3 is an essential step to enable carrier tuning in perovskite. 

Critically, we found perovskite-dopant interactions between amino moieties in n-DMBI-H and Sn 

atoms in perovskite surface to be key in facilitating charge transfer via perovskite hole trapping at 

adsorbed dissociated hydride species. Via this mechanism, n-DMBI-H can reduce free hole density 

by nearly an order of magnitude with minimal impact on carrier mobility, being film surfaces and 

grain boundaries the targeted sites. We exploited this carrier density tuning route in Sn-rich, 

additive-free MASn0.75Pb0.25I3 p-i-n solar cells, obtaining improved photovoltaic efficiencies 

arising from i) reduced self-doping-related carrier losses and ii) higher perovskite/PCBM contact 

selectivity. The greater fundamental understanding of the underlying doping mechanisms provided 

herein will enable valuable molecular doping strategies for future perovskite optoelectronics and 

beyond. 
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