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Abstract

The complex surface topography of river substrates controls near-bed hydraulics and drives the
exchange of subsurface and surface flow. In rivers, the topographic structures that are studied are
usually formed by the flow but, it is known that many animals also create biogenic bedforms,
such as pits and mounds. Here, a Large-Eddy Simulation (LES) model of flow over a pit and a
mound is evaluated with flume experiments. The model includes actual bedform topography, and
the topographic complexity of the surrounding bed surface. Subsurface grains are organized in a
body-centered cubic packing arrangement. Model evaluation showed strong agreement between
experimental and modelling results for velocity (R?> > 0.8) and good agreement for Reynolds
stresses (R? > 0.7), which is comparable to other similar studies. Simulation of the pit shows that
the length of the downwelling region is smaller than the upwelling region and that the velocity
magnitude is higher in the downwelling region. Simulation of the mound reveals that the flow is
forced into the bed upstream of the mound and re-emerges near the top of the mound. The
recirculation zone is limited at the leeside of the mound. With increasing Reynolds number, the
depth of the upwelling region at the leeside of the mound increases. The analysis of shear stress
indicates that sediments on the upstream edge of the pit and on the downstream face of the
mound are relatively unstable. These results demonstrate the effect of biogenic structures on the
near-bed flow field, hyporheic exchange, and sediment stability.

1 Introduction

River substrates are highly heterogeneous at a range of spatial scales, creating a
topographically complex environment (Nikora & Rowinski, 2008; Rice et al., 2014; Sarkar et al.,
2016). Topographic features range from individual grains or clusters of grains that protrude into
the flow (Hassan & Reid, 1990; Heritage & Milan, 2009; Lacey & Roy, 2007) to bedforms
incorporating many sediment grains, such as ripples and dunes (Elliott & Brooks, 1997;
Keshavarzi et al., 2012; Vanoni, 1975), and width-scale undulations in the bed surface (i.e. riffle-
pool units) (Hein & Walker, 1977; Marion et al., 2002; Tonina & Buffington, 2007; Tubino et al.,
1999). The presence of bedforms significantly influences mean and turbulent flow conditions
with implications for solute transfer and sediment dynamics (Best, 2005; Blois et al., 2014;
Dinehart, 1992; Huettel & Gust, 1992). The majority of research on bedforms in rivers has
focused on features generated by the flow and in isolation from ecological processes. However,
organisms living on and within river sediments alter substrate topography (Hassan et al., 2008;
Tonina & Buffington, 2009) and structure (Johnson et al., 2011; Pledger et al., 2017; Statzner et
al., 2000), with implications for near-bed hydraulics (Murray et al., 2002).

The impact of sediment reworking by organisms in sedimentary environments
characterised by fine clastic materials has been studied more extensively than it has in gravelly
substrates (Friedrichs & Graf, 2009; Meysman et al., 2006). When sediment is fine, such as in
many coastal and estuarine areas, structures formed by invertebrate organisms, such as tubes,
tracks, mounds and pits can dominate the surface roughness where the surrounding area is
predominately flat and fine-grained (Volkenborn & Reise, 2006). In these areas, biogenic
bedforms have been shown to have a significant impact on nutrient cycling and the oxygenation
of sediments through promotion of exchange between surface and sub-surface water
(Volkenborn et al., 2010). In particular, the irrigation of burrows actively by animals and



Confidential manuscript submitted to Journal of Geophysical Research-Earth Surface of
AGU journal

passively through pressure differences across bedform morphology affects metabolic processes
occurring within interstitial spaces in sediment (Peine et al., 2009).

When modelling near-bed hydraulics in fine-grained sediments it may be acceptable that
the grain roughness and the bed permeability are ignored or simplified (Best, 2005;
Constantinescu et al., 2013; Friedrichs & Graf, 2009; Kleinhans, 2004; Orvain, 2005). However,
for research on gravel beds, the flow and mass exchange between overlying water and subsurface
flow can be significantly influenced by bed roughness and permeability (Blois et al., 2012;
Harnanan et al., 2015; Higashino, 2013; Inoue & Nakamura, 2011). Most previous numerical
studies of gravel beds predict the spatial distribution of streambed pressure as a function of
channel hydraulics as modified by bed topography, with pressure then used to drive a Darcy
model for subsurface flow (Kondolf, 2000; Nakamura & Stefan, 1994; Qian et al., 2009; Tonina
& Buffington, 2007). In these cases, the water and sediment are separated and, as such, important
information about the exchange of momentum at the sediment-water interface may be lost. In
addition, most predictions of engineering flows are obtained by the Reynolds-averaged-Navier-
Stokes (RANS) approach, in which instantaneous flow cannot be obtained (Bardini et al., 2012;
Higashino et al., 2009).

Studies have summarized the flow patterns around simple geometric shapes in classical hydraulic
engineering (Graf & Istiarto, 2002; Hunt, 1988; Muzzammil & Gangadhariah, 2003; Schlichting,
1980), but the lack of high-resolution data meant these studies were mainly based on simplified
topographies without also considering grain roughness and bed permeability. Higher-resolution
flow data from acoustic Doppler velocimetry (ADV), particle image velocimetry (PIV), and
topography from laser scanners and photographic techniques has enabled improved
quantification of the flow around complex structures, also considering subsurface exchange
processes (Butler et al., 2002; Friedrichs & Graf, 2009; Roy et al., 2002). For example, Blois et
al. (2014) used a simplified geometry comprising six layers of uniform spheres in a laboratory
flume and an endoscopic PIV system to obtain subsurface flow measurements. They found the
flow downstream of coarse-grained bedforms on permeable beds was different to that over
impermeable beds (Blois et al. 2014). Despite this significant advance, the regularly arranged
spheres used were not representative of typical bed roughness and subsurface flow was able to
penetrate through straight passageways between grains, formed by the regular packing of spheres
(Blois et al. 2014). A distinction between the diameter of gravel in the bedform and the
surrounding substrate may also have caused unrealistic flow exchange processes. In addition,
Cooper et al. (2018) studied the flow over water-worked gravel topography. They compared
permeable and completely impermeable surfaces. The impact on surface flows is demonstrated
while the impact on subsurface flows is still unclear. Such hyporheic flow plays important roles
in biochemical exchanges in the river bed, including oxygenation of the bed and removal of
waste products for incubating salmonid eggs (Cardenas et al., 2017; Claret et al., 2010).
Understanding the hydrodynamic process of surface water-groundwater exchange can provide a
fundamental basis for more complex biochemical reactions. Questions remain about modelling
and measuring flow exchange processes around topographic structures in gravel beds,
particularly those associated with living organisms. The specific objectives of the present paper
were to: (1) develop and apply a novel Large Eddy Simulation (LES) model that is able to
simulate simultaneously subsurface flow and surface flow over a pit and the mound; (2) evaluate
the LES model of the flow at representative positions using physical measurements along a
simple transect in a laboratory flume; (3) analyze the near-bed flow heterogeneity and the water
exchange between surface and subsurface flow, and; (4) estimate the impacts of topographic
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changes on grain entrainment. The experiments focus on pits and mounds because tracks and
tubes are unlikely to be present in coarse, non-cohesive material. Pits and mounds are
constructed in gravel-bedded rivers in a range of sediment grain sizes from fine-gravels to
cobbles by crayfish (Johnson et al., 2010, 2011), spawning salmon and trout (Hassan et al., 2008),
lamprey (Hogg et al., 2014), barbel (Pledger et al., 2017) and many other freshwater fish
(Herrington & Popp, 2004; Vives, 1990; Wallin, 1992), including Nocomis micropogin that build
spectacular dome-shaped nests comprising up to 10000 individual gravel particles (Lachner,
1952; Sabaj et al., 2000). These organisms can be important geomorphic agents in gravel-bed
rivers and riparian areas (Butler, 2002; Rice et al., 2012; Statzner et al., 2000). In the LES model,
surface topography data from flume experiments was used and the inner bed was modelled by
packing spheres with the same bed permeability as measured in the flume. As there is no
artificial boundary at the sediment-water interface, both hydrostatic and hydrodynamic flow were
modelled and the flow exchange was predicted.

2 Methods

2.1 Experimental method and setup

Physical measurements were obtained in a glass-walled, tilting, 0.6 m wide, 8 m long
laboratory flume in the Department of Geography, Loughborough University (Figure 1). The
grain size used in experiments was narrowly graded gravel of 5-11 mm in b-axis diameter
because it is known that crayfish are active on substrates of this size in rivers (Johnson et al.,
2014), that crayfish construct pits and mounds in material of this size (Johnson et al., 2010), and
that this size of gravel was unlikely to be mobilised in the flows used in the experiments. The
modelled and measured results therefore have a 1:1 scale. The gravel was predominately bladed
(Sneed & Folk, 1958) and well rounded (0.8) (Krumbein, 1941). The density of the grain was
taken as 2650 kg m. The experimental area of the flume was filled with gravel and screeded flat
to a bed depth of 0.1 m. Upstream and downstream of the experimental section, roughness
boards were used to generate a boundary layer. These were constructed from river gravels (5~35
mm b-axis diameter) fixed to boards and positioned so their surface was flush with that of the
loose gravels. Fixed boards ensured that incoming hydraulic conditions were consistent between
runs.

In the experimental section, the two kinds of artificial bed structures; a pit and a mound,
were constructed by hand to the dimensions recorded in Johnson et al. (2010) study of crayfish
pits and mounds after 24 hours of activity. As such, pits were circular dishes with a diameter of
135 mm and a maximum depth of 20 mm. Mounds were also circular, with a diameter of 140
mm and a maximum elevation above the bed of 20 mm. Each feature was positioned in the
centerline of the flume.

The bed porosity (¢) was 0.357 and was calculated using the water displacement method
in a transparent container of 0.61 m < 0.37 m % 0.12 m.
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Figure 1. Schematic of the flume set-up. The image is a top-view of the flume. The roughness
substrate corresponds to the gravel with the diameter of 25-35mm and the diameter of gravel in
the experimental section is 5-11mm.

2.2 Flow conditions

To investigate the effects of flow velocity on near-bed and subsurface flow, two flow
conditions were adopted: a ‘high’ flow and a ‘low’ flow (Table 1). Each flow condition was used
for each bed structure. The conditions used are a simplification of river flows but are comparable
in bulk statistics to small streams; for example, the Froude number (Fr) at the low flow condition
approximates pools in the work of Hilldale (2007) and the higher flow approximates glides. At
the beginning of each run, the flume channel was slowly filled with water, ensuring no
disturbance to the bed or bedform. According to the Shields diagram and logarithmic velocity
distribution, the velocity for both runs is much slower than the critical erosion velocity (around 1
ms™?).

An acoustic Doppler velocimeter (ADV) was used to measure the flow in all flume runs.
The ADV was used to measure 3 velocity profiles, each containing measurements at 5 depths.
The measurement depths were 2 cm, 5 cm, 8 cm, 10 cm and 15 cm above the substrate surface
and each record was 2 minutes long at 100 Hz recording frequency. The profiles were at 15 cm
upstream of the centrepoint of the bedform, 15 cm downstream from the bedform, and directly
over the centrepoint of the bedform. The three profiles were located at the most representative
positions where accelerating flow, decelerating and recirculating flow occurred. This information
was used to evaluate the modeling results at these key locations. The sampling volume diameter
of the ADV was 6 mm and the sampling volume height was 7 mm. The total sampling volume
was approximately 0.2 cm®. Signal-to-noise ratio was maintained above 15 dB or greater and
correlations were greater than 90% above 5 cm from the bed and greater than 80% nearest the
bed in both flow conditions.

The shear velocity, u«, obtained from the velocity and Reynolds shear-stress (RSS)
profiles, was used to scale the turbulent quantities. The Reynolds shear-stress profiles were
extended linearly to the bed surface to determine u= as 0.0093 m s and 0.0206 m s for low-
and high- velocity conditions respectively. Values of u- were also determined from the ratio of
the velocity slope as 0.0088 m s and 0.0187 m s respectively, providing similar estimates and
increasing confidence in the estimates.

Table 1
Flow Parameters for both Runs in the Flume Experiment
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Flow parameters Low velocity High velocity
Water depth, h (m) 0.225 0.230
Discharge, Q (m®/s) 0.012 0.024
Bulk velocity, Up (m/s) 0.089 0.174
Bulk Reynolds number, Rep 20000 40000
Froude number, Fr 0.06 0.12

*The bulk Reynolds number Rey, is defined as Uph/v, where Uy is the bulk velocity, h is the flow depth and v is
the coefficient of kinematic viscosity of the fluid.

2.3 Topographic characterization

After each experimental run, the flume was slowly drained, taking care not to disturb
sediment grains. Then the bedform and surrounding substrate were photographed. A digital
elevation model (DEM) of the bed surface was generated from these photographs using Structure
from Motion (SfM). This technology is widely used in reconstructing three-dimensional (3-D)
models from images (Szeliski, 2011; Tang et al., 2018). In both runs, at least 12 ground control
points (GCPs) were placed around the bed structures. The spatial positons of the GCPs in the
Cartesian coordinates were also measured by a point gauge. The focal length of the camera was
29 mm and the resolution of the photos was 3264 x 2448 pix. Parallel photos were taken with a
40% side and forward overlap. The error of the reconstructed DEM was approximately 4 mm.

2.4 Numerical Method

A LES model called Hydro3D that is able to simulate simultaneously subsurface flow
and surface flow in one numerical scheme, was used for the simulations of flow through and
over pits and mounds. Hydro3D has been evaluated for and applied to several complex flows,
including the flow over rough and permeable beds (Bomminayuni & Stoesser, 2011; Fang et al.,
2018; Han et al., 2018; Kara et al., 2015; Stoesser & Nikora, 2008). The solute transfer and flow
exchange across the sediment-water interface were also successfully predicted by the LES model.
The dimensionless LES equations obtained by filtering of the incompressible Navier-Stokes
equations can be written as:

o
OX:

(1)

%+%:_a_p+m_% (2)

o OX; oX; oX; OX;
where u; and u;j are the ith and jth components of the resolved instantaneous velocity
vector (i or j = 1, 2, 3); x1, X2 and x3 represent the spatial location vectors in the x, y and z
directions, respectively; p is the resolved pressure divided by the density; v is the kinematic
viscosity; S;jj is the strain-rate tensor, S; =J/2(aui/axj +0U; /0x; ) The subgrid scale (SGS) stress ij

results from filtering of the nonlinear convective fluxes, which is defined as zjj = -20:S;j. In this
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study, the SGS viscosity ot is computed from the wall-adapting local eddy viscosity (WALE)
proposed by Nicoud & Ducros (1999) as follows:

d.d 3/2
= (coay—List) 3)

(Sijsij )5/2 R (S.(Jj Si? )5/4

where Cy = 0.46 and A = (AxAyAz). The traceless symmetric part of the square of the
velocity gradient is computed as:

i =%(gikgkj +9jkgki)—%5ijgfk with g; =2—)l:; 4)

Finite differences method was used to discretize the governing equations on a staggered
Cartesian grid. The convection and diffusion terms were approximated by 4th-order accurate
central differences (Kampanis & Ekaterinaris, 2006). An explicit 3-step Runge-Kutta scheme
was used to integrate the equations in time, providing 2nd-order accuracy. Within the time step,
convection and diffusion terms were solved explicitly in a predictor step which was followed by
a corrector step during which the pressure and divergence-free-velocity fields were calculated by
Poisson equation (Cevheri et al., 2016). Since the outer contour of the elements (included in the
roughness and permeable bed) intersected with the grid lines, the direct forcing immersed
boundary method (IBM) was incorporated in the LES model (Peskin, 1972). The details of the
IBM treatment were available in Fang et al. (2014).

2.5 Numerical experiments and bed configuration

To reproduce the gravel-bed structures present in the physical modelling, the numerical
gravel bed was divided into two parts. One part was the bed surface, which contains information
about grain-scale roughness and topography (i.e. the pit and the mound). The other part is the
subsurface, which contains information about the bed permeability. The DEM of the bed surface
was used to generate topography in the numerical model. To make the surface permeable, a
moving average method was used and the porosity of the surface set to 0.357, equal to the
porosity of the subsurface (Figure 2a). It is difficult to get spatial information, such as packing
arrangements, for the subsurface because the grains are not visible and direct measurements are
destructive. Therefore, to generate subsurface grain arrangements, and to simplify the bed for
simulation, body centered cubic packing spheres were chosen to simulate an idealized permeable
bed (Figure 2b). Importantly, this approach avoids pore spaces aligning in straight tubes, which
arises from simpler cubic packing arrangements (Blois et al., 2014; Dybbs & Edwards, 1984;
Horton & Pokrajac, 2009; Manes et al., 2009; Sinha et al., 2017). The intrinsic porosity of the
body centered cubic packing domain is 0.3108 and the intrinsic diameter of the sphere is Di. To
make it more similar to the real bed used in physical experiments, Di was reduced to 0.981D;,
which leads to a porosity of 0.357 and D is 8 mm, which is the median diameter of the gravels
used in experiments. Using the bed surface as an upper limitation, the two parts were combined
together, as shown in Figure 2c.
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(b)

Figure 2. (a) The permeable bed surface used in the simulation. The digital elevation model
(DEM) is generated by structure from motion (SfM) and the porosity of the surface is 0.357. (b)
The basic repeating domain of body centred cubic packing spheres used in the bed. The diameter
of sphere is 8mm and the porosity of the domain is 0.357. (¢) Computational setup of the
permeable bed with reproduced bed roughness on the surface and packing spheres in the
subsurface. The flow depth is around 0.18m and the bed thickness is around 0.1m. The length of
the area is 0.84m and the width is 0.36m.

The scales of the computational domain are shown in Table 2. The same bulk Reynolds
numbers recorded in the physical experiments (Rep = 20,000 and 40,000), were adopted in the
numerical simulation. The code was parallelized using a message-passing interface and the
domain-decomposition technique. The uniform spacing of the grids was 1mm and the
dimensionless one was Ax*, Ay*, Az* = (AX, Ay, Az)>ux/v, where ux= (z/p)°® is the shear velocity,
7 = hdp/dx and dp/dx are the pressure gradient driving the flow. The bed thickness (H) is 0.1 m,
which is around twelve times the diameter of spheres. The flow depth (h) is 0.18 m, which is
defined as the vertical distance from the crest of the roughness elements to the free surface.
Cyclic boundary conditions were used in the streamwise and the spanwise directions. The free
surface was set as a frictionless rigid lid and treated as a plane of symmetry. The Froude numbers
of the experiment are 0.06 and 0.12 for two kinds of flow conditions, which are much smaller
than 1, so the treatment of free surface is applicable. In Figure 3, autocorrelations of streamwise
and vertical velocity, R,, and R, are used to check if the domain is large enough. The data
are taken along the streamwise and spanwise direction at the elevation about 5 cm above the bed
surface. The correlations decrease to zero within 0.1m, so the computational area is large enough
to include all scales of vortices concerned. The simulation was initially run for 10 flow-throughs
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to establish fully developed turbulence. One flow-through was defined as the length of the
computational area (0.84 m) divided by the bulk velocity (Uy). Then the simulation was

continued for another 30 flow-throughs to collect turbulence statistics.

Table 2
Computational geometry for simulations
Computational scale Domain numbers
(mm) X XY X7 Number of points Grid spacing
XXy X7 X XYy X7 AX*, Ayt AZ*
840 x 360 x 272 14 <6 %3 840 x 360 x 272 26~53

y (m)

Figure 3. The autocorrelation of streamwise and vertical velocity components, R, and R,
which is taken along the (a) streamwise and (b) spanwise direction at the elevation about 5cm

above the bed surface.
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3 Results

3.1 Evaluation of the LES model

To evaluate the numerical model, velocity profiles were extracted at the same location as
in the measured data under both flow conditions. The sampling volume of the ADV was about
0.2 cm?®, which contains about 200 grid units in the simulation. If the data in only one grid unit
are used to compare with the experimental data, the near-bed Reynolds normal stress will be
systematically over-predicted because the variance of Reynolds normal stress inside the
averaging volume is large and the near-bed sampling grid cells may be affected by the protruding
gravels (see Supporting Information). To make a better comparison between the experimental
and simulated data, we adopted a moving-averaged of a cylinder with the same size as the
sampling volume of ADV along each velocity profile of LES. The modelled and measured mean
velocity and Reynolds normal stress are shown in Figure 4 and 5. In Figure 4, the measured
profiles of streamwise mean velocity are compared with the results of LES. In both cases, there
is a good overall agreement with a coefficient of determination of 0.89 and 0.88 in flow
conditions with low and high flow velocity for the pit and 0.87 and 0.85 for low and high flow
velocity with the mound. In addition, for the pit, the velocity profiles located upstream and
downstream show positive values near the bed, while the streamwise velocity is negative around
z/h = -0.1 in the centre of the pit due to the strong recirculation zone. For the mound, the small
negative value above the mound top is caused by the small recirculation zone inbetween two
gravel grains located on top of the mound. In general, the pit caused less flow disturbance than
the mound, evidenced by the fact velocity profiles from the three positions are more similar over
the pit than those over the mound.
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Figure 4. The mean simulated velocity profiles for low (dashed lines) and high (solid lines) flow
velocity. The points are comparable to measured velocities for low (open) and high (filled) flow
velocity, 15 cm upstream of the bedform (red), above the center of the bedform (blue) and 15 cm
downstream of the bedform (black) for (a) the pit and (b) the mound.

The profiles of normalized Reynolds normal stress are compared between experimental
and numerical results. A coefficient of determination is 0.72 and 0.69 in flow conditions with
low and high flow velocity for the pit and 0.72 and 0.74 in equivalent conditions for the mound.
Whilst weaker than the prediction of velocity, the coefficients are higher than those obtained in
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similar studies (Sinha et al., 2017) and represent the difficulty in modelling the inherent
variability in high-order, near-bed flow quantities. Divergence between measured and modelled
values may be caused by highly non-uniform flow around the bed roughness. However, the
tendency for Reynolds normal stress to increase when it is closer to the bed is similar. As shown
in Figure 5, for the pit, the highest Reynolds normal stress is caused by the shear layer located
between the recirculation zone in the pit and the overlying flow.

(a) . . c o uu/u, (b) uu/tr*

4 8 0 4 8 0 4 8 0 4 8§ 0 4 8
1.0 v v

0.5

=>|m

0.0 0.0 |

0.5 b -0.5

Figure 5. The simulated streamwise Reynolds normal stress for low (dashed lines) and high
(solid lines) flow velocity. The points are comparable calculated values for low (open) and high
(filled) flow velocity from measured data, 15 cm upstream of the bedform (red), above the center
of the bedform (blue) and 15 cm downstream of the bedform (black) for (a) the pit and (b) the
mound.

3.2 Numerical results - surface flow

Mean flow velocity (Figure 6a) follows the expected trend over a depression with
decreasing velocity over the pit surface and a recirculation zone inside the pit (Yager et al., 1993),
with the velocity in the recirculation zone an order of magnitude slower than the free-stream,
consistent with previous studies (Abelson & Denny, 1997). Mean flow accelerates over the stoss
side of the mound (Figure 6b), with flow separation or deceleration from the leeside of the
mound. The Reynolds shear stress is high around the separation line, which is attributed to the
high velocity gradient between the recirculation zone inside the pit and the overlying flow
(Figure 6c). In addition, some protruding gravels also cause the higher Reynolds shear stress
within the corresponding region, such as the gravels located around x = 0.1 m and 0.4 m in Fig.
6¢. For the mound (Figure 6d), a shear layer exists between the reversed flow region and the
overlying flow, which expands downstream about 10 times the mound height.

A zone of maximum turbulent kinetic energy (TKE) is contained within the shear layer
for both bedforms (Figure 6e and 6f) and the distributions of turbulent kinetic energy are similar
to Reynolds shear stress. The mound increases turbulent kinetic energy more than the pit, and
elevated turbulent kinetic energy has greater spatial extent along the bed surface. In addition, the
turbulent kinetic energy is nearly zero upstream of the pit where reversed flow and low pressure
exists. Vorticity is prevalent along the bed surface in both cases, especially where gravel grains
protrude (Figure 6g and 6h). The high vorticity magnitude in the mean flow is a result of the time
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averaging of the vorticity associated with the arch-shaped vortex tubes extending over top part of
gravels. In Figure 6h, the maximum vorticity exists over the stoss side of the mound, as the
accelerated flow velocity causes more violent vortices. At the leeside of the mound, the vorticity
dissipates quickly, within a distance approximately 5 mound heights in length. The vorticity
shows a similar pattern on the upstream edge of the pit as for the leeside of the mound, most
likely because of the topographic similarity between these areas. However, the reversed flow
inside the pit is more intense and stable than the recirculation zone near the leeside of the mound,
with some negative vorticity clearly evident at the bottom of the pit (Figure 6g).
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Figure 6. Contours and streamlines of mean streamwise velocity (a and b), Reynolds shear stress
(c and d), turbulent kinetic energy (TKE) (e and f) and out of plane vorticity (g and h) for the pit
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(a, ¢, e and g) and the mound (b, d, f and h) in low flow velocity. The x and z are both in meter.
Equivalent figures for high flow are presented in Supporting Information.

To show the vortex structure more clearly, a Q iso-surface is presented in Figure 7. For
both cases, there are prevalent arch-shaped vortices on the bed surface, which are caused by
protruding gravels, except for the flow region inside the pit and the region behind the mound,
where the absence of vortices is due to the low flow velocity in the reversed flow region. At the
stoss side of the mound, the vortices appear to merge and are locally parallel to the edge of the
gravel at which they are generated, but they do not extend over the shear layer length behind the
mound. The high Reynolds shear stress in the shear layer is caused by instantaneous vortices,
which are not stable in time. Therefore, the vortices in the shear layer downstream of the mound
disappear in the mean flow field. These vortex tubes are visualized in one of the instantaneous
flow fields in Figure 8 for the mound. It shows that most vortex tubes are located within the
shear layer, leading to high levels of Reynolds shear stress in the same region. It should be
noticed that the Q value is much larger in the instantaneous flow field than that used in the mean
flow field.

g/[/b Il 5 =u

0.1 01 03 0507 09

(@) the pit and (b) the mound in low velocity.
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Figure 8. Visualization of instantaneous vortex tubes using Q iso-surface and a paralleled plane
colored by instantaneous velocity for the the mound in low velocity. The Q iso-surface is colored
by the mean streamwise velocity. One horizontal plane colored by instantaneous streamwise
velocity is used to blank the vortices closed to the bed surface.

3.3 Numerical results - flow exchange under low flow conditions

Figure 9 shows the simulated flow inside the bed and the flow exchange with the
overlying surface flow. The pit creates a downwelling area on the downstream face (x = 0.3~0.36
m; Figure 9b) and an upwelling zone within the pit itself (x = 0.2~0.3 m; Figure 9b), as well as
the downstream edge of the pit (x = 0.36~0.4 m; Figure 9b). The downwelling region in the pit is
mainly caused by the flow reattachment, which intrudes into the bed. Part of this intrusion flow
reemerges downstream at the rim of the pit, where the accelerating flow leads to a pressure
decrease in the fluid. When flow approaches the mound, it is locally deflected, generating a high-
pressure area at the upstream face. As shown in Figure 9b, the intruding flow with negative
vertical velocity develop as a hemispherical zone below the stoss side of the mound, with
resulting porewater flows directed both upstream and downstream. The interstitial flow velocity
in this downwelling region is about 0.008Uy at the depth of 3 grain diameters for low flow
conditions. On top of the mound, the flow accelerates due to the reduced cross-sectional area of
the flow, which results in decreased pressure, pulling porewater up from deeper sediment layers
towards the surface. The velocity of porewater at the depth of 3 diameters of the sediment in this
region is about 0.012Uy in low flow conditions. On the downstream side of the mound, due to the
expanding cross-section, decelerating flow causes a second high pressure area and downwelling
region. The intruding velocity is about 0.003Uy at the depth of 3 grain diameters under low flows.
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Figure 9. Streamlines and contours of streamwise mean velocity (left panels, a and c¢) and
vertical mean velocity (right panels, b and d) for the pit (top panels, a and b) and the mound
(bottom panels, ¢ and d) in low velocity. The x and z are both in meters. Note that the magnitude
of velocity inside the bed is low so the colour ramp scale represents a small range of velocities.

Figure 10 shows the distribution of pressure over the pit and the mound. As discussed
above, the positive pressure regions correspond to downwelling regions and negative pressure
regions correspond to upwelling regions. Moreover, the magnitude of pressure along the bed
surface as well as inside the bed of the mound is greater than that of the pit, illustrating more
intense flow exchange and porewater flow caused by the mound. The high coherence of vortex
tubes over the pit and the leeside of the mound are illustrated by the instantaneous pressure
distribution in Figure 10b and 10d. Inside the vortex tubes, the pressure is reduced to negative
values with respect to the background levels, correlating with high local circulation. Most of the
vortex tubes lose their coherence around the downstream edge of the pit and before x = 0.5 m of
the mound in Figure 10.
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Figure 10. Contours of mean (left panels, a and ¢) and instantaneous (right panels, b and d)
pressure for the pit (top panels, a and b) and the mound (bottom panels, ¢ and d) in low velocity.
The x and z are both in meters.

3.4 Numerical results - flow exchange at low and high flows

The results with low and high flow velocity are presented in this section to show the
effects of depth on positions of upwelling and downwelling. As shown in Figure 11, the increase
of flow velocity has no obvious effects on the streamwise length of upwelling and downwelling
areas while the penetration depth shows some differences. For the pit, from low to high flow
velocity, the upwelling depth around x = 0.28 m and the downwelling depth around x = 0.33 m
increase by 1.5 and 1.3 times respectively whereas the upwelling depth at the downstream rim
(around x = 0.37 dm) does not change. For the mound, with the increasing flow velocity, the
penetration depth around the stoss side and the top of the mound (x = 0.2~0.33 m) increases by
1.3 times. At the leeside of the mound (x = 0.33~0.38 m), there is an obvious increase of
penetration depth with the ratio of 1.8.
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Figure 11. The upwelling and downwelling region for (a) the pit and (b) the mound. The solid
line and dashed line show the contour lines of mean vertical velocity with low and high flow
velocity respectively. The contours are the result of low flow velocity. The x and z are both in
meters.

3.5 Effect of flow on fine-sediment entrainment around the bed structures

In this section we investigate the impact of pit and mound topography on the theoretical
entrainment of fine sediment covering the surface, which is a common occurrence in many
gravel-bed rivers and has implications for the exchange of surface and sub-surface water, and the
transfer of oxygen and metabolites to and from the bed. The near-bed distribution of Reynolds
shear stress and velocity, modelled in section 4.4, were used to evaluate the regions in which
sediment of 0.1 mm b-axis diameter (e.g. sand) will be entrained. The proportion of fine
sediment in the surface size distribution was set to be 20%. Using the surface-based transport
model for mixed-size sediment developed by (Wilcock & Crowe, 2003), the entrainment
threshold of fine sediment zr was determined. The ratios of mean and instantaneous near-bed
Reynolds shear stress to the entrainment threshold of 0.1 mm sediment is shown in Figure 12.
For the pit, the fine sediment is stable everywhere and only approaches criticality at the top of
protruding gravels. Sediment on the downstream face undergoes higher stresses than on the
upstream face, most likely caused by the intense flow exchange in the downwelling region. For
the mound, the ratio is relatively high at the downstream edge of the mound, corresponding to
the origin of the shear layer where flow separation occurs. Near the lateral edges of the mound,
strong flow acceleration occurs leading to the amplification of the near-bed stress. The spanwise
width of the high shear layer on the one side is about 0.08 m (y = 0.04~0.12 m; Figure 12c). At
the front of the mound, the shear stress increases due to flow deflection. At the stoss side of the
mound, as the flow climbs the mound, the shear stress is negative whereas the downstream side
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of the mound is associated with low shear stress (x = 0.36~0.44 m; Figure 12c) because of flow
deceleration. Judging by the instantaneous flow field (Figure 12b and 12d), the characteristic
regions are similar to those in the mean flow field, but the ratio of near-bed stress to critical
entrainment shear stress becomes much greater than that in the mean flow field.
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Figure 12. The ratio of mean (a and c¢) and instantaneous (b and d) near-bed shear stress to
critical entrainment shear stress of 0.1 mm sediment in the vicinity of a pit (a and b) and a mound
(cand d) in low velocity. The x and y are both in meters.

4 Discussion

4.1 Model performance and comparison to other studies

We have applied a LES model with bed roughness generated by SfM and sphere-packing
permeable bed to predict the near-bed and subsurface flow in the vicinity of pits and mounds.
Evaluation between the numerical and experimental results showed good quantitative agreement
in the mean flow field with low and high flow velocity. The results of Reynolds normal stress
were less similar than the mean flow velocity, but the level of agreement (coefficient of
determination was about 0.72) was comparable to other studies that focus on boundary layer
flow. For example, the coefficient of determination was 0.42 and 0.43 for turbulent kinetic
energy in Sinha et al. (2017) and in Ferguson et al. (2003) and the highest values of turbulent
Kinetic energy are under-predicted by about 50% in Bradbrook et al. (1998).
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The near-bed flow patterns observed are similar to previous studies (Carling et al., 2006;
Huettel & Gust, 1992) giving confidence in the results. Some differences can be ascertained; for
example, the size of the recirculation region downstream of the mound is much smaller than that
expected over an impermeable and smooth dune, which would normally extend to 6 bedform
heights in the streamwise direction (Best, 2005; Sinha et al., 2017). The smaller size here may be
caused by perturbations from the surrounding substrate roughness and the downwelling behind
the mound, both rarely incorporated in previous modelling efforts.

It is noted that the flume experiment in the present study did not measure any subsurface
flow due to the difficulties of measuring within pore spaces; however, the modelled subsurface
flow patterns are similar to the recorded results of Huettel & Gust (1992). For the pit, the
upstream and downstream rims correspond to the upwelling region. The high pressure inside the
pit causes downwelling at the downstream face of the pit. For the mound, the downwelling
region is located in front of the mound, with resulting porewater flows directed upstream and
downstream direction. The negative pressure and upwelling are located at the top of the mound
and a second downwelling develops downstream of the mound. However, the diameter of
sediment used in their experiments was much finer (0.3 mm) than the size of gravels used in this
study (8-11 mm). In their flume experiments, the interstitial flow is driven mostly by the surface
pressure and the flow speed just below the surface is about zero (0.0001 m s™) compared to the
bulk flow velocity (around 0.1 m s™). As the grain diameter becomes larger, the size of pore
spaces will increase, increasing flow exchange and the speed of upwelling and downwelling flow,
perhaps explaining the comparably faster velocities modelled here. The interstitial flow through
salmonid redds in gravel beds has been measured to be between 0.0003-0.002 m s in the field
(Zimmermann & Lapointe, 2010) and about 0.001-0.003 m s in previous simulations (Tonina &
Buffington, 2009), similar to the magnitudes recorded in the modelled results. For the pit, a
distinction between the findings here in gravels and past work in fine sediment is that the deepest
part of the pit is included in the upwelling region (Figure 9) but is a zone of downwelling in fine-
sediment beds (Huettel & Gust, 1992). The differences may be caused by the high bed
permeability and intense flow exchange at the downstream side of the pit where flow intrusion
occurs, leading to a more concentrated high pressure zone than the reversed zone. Therefore, the
whole reversed zone corresponds to the upwelling region. In addition, the interstitial flow
velocity in the upwelling region is about 0.003Uy at the depth of 3 diameters of the sediment
below the surface, which is slightly slower than the velocity in the downwelling region.

Previous experiments that conducted simulations of an isolated permeable dune over a
permeable bed found that flow through the dune negated the formation of flow separation in the
leeside (Blois et al., 2014, Sinha et al. 2017). Although the form of dunes in past work is similar
to the mound in those experiments presented here, the results were quite different. There are two
main reasons for the discrepancy. Firstly, due to the simple cubic packing method adopted in
other simulations, the permeable dune allowed the passage of some flow through it without any
blocking, leading to the absence of flow separation. As this straight passage is not realistic,
centred cubic packing was adopted in the present study preventing flow from penetrating straight
through bedforms in numerical models. Secondly, the diameters of spheres which formed the
dune and the bed were different in past simulations, resulting in the lack of flow exchange at the
interface between two parts. With the uniform composition of the mound and the bed in the
present study, the flow exchange prediction is more realistic given the similarity in conditions
between model and experimental conditions. However, it should be noted that assuming constant
porosity could neglect the variations of sediment size and overstate the flow rate in the positions
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where the sediment is finer and less permeable. As sediment composition and grain size in the
field is highly non-uniform and spatially variable, we could not directly extrapolate the present
quantitative findings to the field. In addition, it is noted that the particles in experiments are more
bladed than spherical, which may result in more irregular seepage channels in physical model
than in numerical model. Several studies have related the bed tortuosity to bed porosity both
theoretically (Berner, 1988) and empirically (Archie, 1942; Boudreau, 1996; Iversen &
Jorgensen, 1993). As the bed porosity in simulations is the same as that in experiments, we may
speculate the distinction in the shape of the particles may not have significant influence on the
results.

4.2 Comparison of a pit to a mound

For the near-bed and subsurface flow, the pit had a minimal impact on the surrounding
area whereas the influence of the mound extended beyond the physical structure to the
surrounding area. Table 3 presents a summary of variables indicating the impact of a pit and
mound in low and high flow velocity. It shows that both the streamwise length of the shear layer
and the maximum value of turbulent kinetic energy were higher over the mound than the pit.
While the maximum value of Reynolds shear stress was higher over the pit, that value was
located around the reattachment point (x = 033 m in Figure 7c). Two main
upwelling/downwelling regions inside the pit (x = 0.26 m and 0.34 m in Figure 10b) and over the
mound (x = 0.2 m and 0.3 m in Figure 10d) were considered when calculating the penetration
depth. The results showed that the streamwise length of the upwelling or downwelling region
was limited around the pit, i.e. x = 0.2~0.4 m, while it expanded to x = 0.06~0.5 m for the mound.
Moreover, the ratio of penetration depth was much higher than the ratio of streamwise length
between two kinds of bed structures, especially for the upwelling region, illustrating the mound
contributed most to the penetration depth. At the sediment-water interface, the intruding velocity
is higher than reemerging velocity over the pit and the relative magnitude changes over the
mound.

Table 3

Near-bed flow variables: the streamwise length of shear layer (cm), the maximum value of
Reynolds shear stress and turbulent kinetic energy normalized by u=?; Subsurface flow variables:
the streamwise length of upwelling and downwelling region (cm), the penetration depth of
upwelling and downwelling region (cm).

Flow conditions Low flow velocity High flow velocity
Flow variables Pit  Mound  Ratio Pit  Mound  Ratio
Length of shear layer (cm) 14 20 0.7 14 15 0.9
Maximum value of Reynolds shear stress (1/ u?) 4.8 4.1 1.17 4.9 4.3 1.14
Maximum value of turbulent Kinetic energy (1/ u=?) ~ 10.7 12 0.89 10.5 11.7 0.9

Length of upwelling/downwelling region (cm) 10/4 12/6  0.83/0.67 11/4 12/6  0.91/0.67
Depth of upwelling/downwelling region (cm) 0.8/26 6.4/49 0.13/0.53 1.2/3.4 8.3/6.4 0.14/0.53

The distribution of critical Shields values was related to bed topography, with high
relative elevation leading to a higher entrainment potential. However, it should be noted that
grain position will also be important. On the mound, the highest shear stresses occur on the
downstream top edge, where friction angles are also low, making these grains vulnerable to
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entrainment. In contrast, the highest stresses in the pit occur on the downstream face where
friction angles are high and grains will be relatively hard to move.

4.3 Potential significance of biogenic bedforms to aquatic animals

Aquatic animals in rivers actively construct pits and mounds to provide shelter to avoid
predators (Statzner et al., 2000) and to situate eggs (Groot & Margolis, 1991; Quinn, 2018).
Biogenic bedforms may also have other benefits due to their flow effects. For example, the
recirculation region in the leeside of a mound or inside of the pit is likely to act as a collector for
suspended material and thus to increase the availability of food particles in these areas. A similar
effect is known to facilitate the filter or deposit feeding strategy of many animals that use their
body-form to generate vortices to encourage food particle deposition (Carey, 1983; Friedrichs &
Graf, 2009). As the near-bed velocity inside the pit and behind the mound was relatively low,
animals located there will experience minimal flow stresses and minimize potential dislocation.
This could be significant to animals such as crayfish, which are large and not streamlined,
leaving them vulnerable to entrainment. Being able to posture in a pit, reducing their exposure to
the flow, could be highly beneficial (Maude & Williams, 1983).

At the downstream end of the pit, violent downwelling occurs causing flow intrusion into
the bed. At the top of the mound, the accelerating flow and low pressure cause upwelling from
the bed. The corresponding flux may be biologically important, as some fish redds are
combinations of pit and mounds (Crisp & Carling, 1989; Tonina & Buffington, 2009). Salmonid
redds oxygenate buried embryos, removing waste products and enhance embryo survival to
emergence (Coble, 1961; Greig et al., 2007; Tonina & Buffington, 2009). A shear layer is found
above the pit as well as around the downwelling region due to intense momentum exchange. The
analysis of 0.1mm sediment shows that areas of high shear stresses are likely associated with
entrainment of fines and areas of low stress to fine sediment deposition. If entrainment of fines
leads to a coarser matrix in downwelling regions, finer material may be entrained and infiltrate
into the subsurface sediment pores, causing the subsurface material to become finer (Beschta &
Jackson, 1979; Casas-Mulet et al., 2017; Franssen et al., 2014; Lisle, 1989; Meyer et al., 2005;
Mooneyham & Strom, 2018; Papanicolaou et al., 2011; Wooster et al., 2008). For example, the
shear stress around the downstream part of the pit is relatively high and this corresponds to the
downwelling region. Thus, we can speculate that if finer sediment comes from the upstream, the
permeability of the bed in that region will decrease and the top layer of the bed may be clogged
due to the intrusion of the finer sediment. This may suppress the mass transfer and flow
exchange to the deeper bed, causing problems such as increased fish-egg mortality rates. In
contrast, if deposition corresponds to an upwelling region, such as upstream of the pit, the
upwelling flow may flush the fine sediment or restrict its deposition.

In the present study, we focused on the basic unit of the chosen biological bedforms (i.e.
the pit and the mound). Due to the complexity of actual biogenic prototypes, the inferences
drawn here are primarily about constructed bedforms. In natural streambed settings the
excavation of a pit often forms an adjacent mound. Together these two associated forms may
uniquely influence flow patterns and exchange processes. There are many different species that
excavate pits into streambed sediments and multiple factors (e.g., mode of excavation, the size of
the organism, the characteristics of the streambed and flow field) interact to create pits and/or
mounds of variable size and form. The positioning and height of the mound relative to the pit
will be critical to the flow field and are variable. For example, crayfish tend to distribute
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excavated material widely around the pit, potentially giving them a better view of predators and
competitors by limiting the mound height (Johnson et al., 2010). In contrast, in salmon redds the
large grains settle in the pit and the finer sediment is deposited to a downstream mound called
the tailspill (Buxton et al., 2015; Tonina & Buffington, 2009). In addition, the variations in grain
size and hydraulic conductivity across redds will cause different subsurface flow patterns in
comparison to bedforms with well sorted gravels. Changing the diameter and shape of the grains
used to form the permeable beds in modelled simulations may achieve the goal of realistically
simulating flow over and through salmonid redds but would be more computationally
challenging.

5 Conclusions

The near-bed turbulence and hyporheic exchange are important to sediment stability,
solute transfer across the sediment-water interface and survival of benthic organisms. The
surface and subsurface flow in rivers can be influenced by grain roughness, bedforms and bed
permeability. All these three factors were included in the present unified water-sediment three-
dimensional model. The LES model with the combination of substrate roughness generated by
structure from motion and sub-surface sphere-packing beds, performed well. Evaluation using
flume experiments indicated that numerical results successfully approximated measurements.
Experiments and modelling demonstrated that pits and mounds distorted the surrounding flow,
increasing heterogeneity in the flow environment. The results are supported by other work that
indicates that mound-like structures act as a bluff body, with flow accelerating over and around
them and recirculation downstream. Flow skims over the pit, with low flow and recirculation in
the pit itself. The numerical results extend this knowledge by also showing that these
topographic features may promote exchange processes with subsurface flow, with pressure
differences over the objects driving vertical porewater flows. For the pit, the length of the
downwelling region is smaller than the upwelling region and the flow velocity is higher in the
region of downwelling region. In contrast, a zone of downwelling exists upstream of the mound
as flow is forced into the structure, and upwelling occurs over the top of the mound. The size of
the separation zone is limited on the leeside of the mound because mounds constructed by
animals tend to be more symmetrical than dunes. With an increase in velocity, the upwelling
depth on the leeside of the mound increases dramatically while the streamwise length of
upwelling and downwelling region shows little change. The numerical results are helpful in
extending our knowledge of the potential role of living organisms in affecting sediment
entrainment, the near bed hydraulic environment and, flow exchange through modifications in
bed topography. Further research could include multiple pits and mounds or typical redd
structures to see the potential impacts on these processes. Better understanding of these processes,
and the interaction between life, bed structure and topography, and near-bed hydraulics would
help develop more complete models of river-bed entrainment, function and metabolism.
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Flow Parameters for both Runs in the Flume Experiment

Flow parameters Low velocity High velocity
Water depth, h (m) 0.225 0.230
Discharge, Q (m®/s) 0.012 0.024

Bulk velocity, Up (m/s) 0.089 0.174

Bulk Reynolds number, Rep 20000 40000
Froude number, Fr 0.06 0.12

*The bulk Reynolds number Rey, is defined as Uph/v, where Uy is the bulk velocity, h is the flow depth and v is
the coefficient of kinematic viscosity of the fluid.

Table 2
Computational geometry for simulations

Computational scale Domain numbers
(mm) X XY X7 Number of points Grid spacing
XXy X7 X XYy X7 AX*, Ayt AZT
840 x 360 x 272 14 <6 %3 840 x 360 x 272 26~53
Table 3

Near-bed flow variables: the streamwise length of shear layer (cm), the maximum value of
Reynolds shear stress and turbulent kinetic energy normalized by u~?; Subsurface flow variables:
the streamwise length of upwelling and downwelling region (cm), the penetration depth of
upwelling and downwelling region (cm).

Flow conditions Low flow velocity High flow velocity
Flow variables Pit  Mound  Ratio Pit  Mound Ratio
Length of shear layer (cm) 14 20 0.7 14 15 0.9
Maximum value of Reynolds shear stress (1/ u=?) 4.8 4.1 1.17 4.9 4.3 1.14
Maximum value of turbulent kinetic energy (1/ u+?)  10.7 12 0.89 10.5 11.7 0.9

Length of upwelling/downwelling region (cm) 10/4 12/6  0.83/0.67 11/4 12/6  0.91/0.67
Depth of upwelling/downwelling region (cm) 0.8/2.6 6.4/49 0.13/0.53 1.2/3.4 8.3/6.4 0.14/0.53

Figure 1. Schematic of the flume set-up. The image is a top-view of the flume. The roughness
substrate corresponds to the gravel with the diameter of 25-35mm and the diameter of gravel in
the experimental section is 5-11mm.
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Figure 2. (a) The permeable bed surface used in the simulation. The digital elevation model
(DEM) is generated by structure from motion (SfM) and the porosity of the surface is 0.357. (b)
The basic repeating domain of body centred cubic packing spheres used in the bed. The diameter
of sphere is 8mm and the porosity of the domain is 0.357. (c¢) Computational setup of the
permeable bed with reproduced bed roughness on the surface and packing spheres in the
subsurface. The flow depth is around 0.18m and the bed thickness is around 0.1m. The length of
the area is 0.84m and the width is 0.36m.

Figure 3. The autocorrelation of streamwise and vertical velocity components, R, and R,

which is taken along the (a) streamwise and (b) spanwise direction at the elevation about 5cm
above the bed surface.

Figure 4. The mean simulated velocity profiles for low (dashed lines) and high (solid lines) flow
velocity. The points are comparable to measured velocities for low (open) and high (filled) flow
velocity, 15cm upstream of the bedform (red), above the center of the bedform (blue) and 15cm
downstream of the bedform (black) for (a) the pit and (b) the mound.

Figure 5. The simulated streamwise Reynolds normal stress for low (dashed lines) and high
(solid lines) flow velocity. The points are comparable calculated values for low (open) and high
(filled) flow velocity from measured data, 15cm upstream of the bedform (red), above the center
of the bedform (blue) and 15cm downstream of the bedform (black) for (a) the pit and (b) the
mound.

Figure 6. Contours and streamlines of mean streamwise velocity (a and b), Reynolds shear stress
(c and d), turbulent kinetic energy (TKE) (e and f) and out of plane vorticity (g and h) for the pit
(a, ¢, e and g) and the mound (b, d, f and h) in low flow velocity. The x and z are both in meter.
Equivalent figures for high flow are presented in Supporting Information.

Figure 7. Visualization of arch-shaped vortex tubes over the bed surface using Q iso-surface for
(@) the pit and (b) the mound in low velocity.

Figure 8. Visualization of instantaneous vortex tubes using Q iso-surface and a paralleled plane
colored by instantaneous velocity for the the mound in low velocity. The Q iso-surface is colored
by the mean streamwise velocity. One horizontal plane colored by instantaneous streamwise
velocity is used to blank the vortices closed to the bed surface.

Figure 9. Streamlines and contours of streamwise mean velocity (left panels, a and c¢) and
vertical mean velocity (right panels, b and d) for the pit (top panels, a and b) and the mound
(bottom panels, ¢ and d) in low velocity. The x and z are both in meter. Note that the magnitude
of velocity inside the bed is low so the colour ramp scale represents a small range of velocities.

Figure 10. Contours of mean (left panels, a and ¢) and instantaneous (right panels, b and d)
pressure for the pit (top panels, a and b) and the mound (bottom panels, ¢ and d) in low velocity.
The x and z are both in meter.

Figure 11. The upwelling and downwelling region for (a) the pit and (b) the mound. The solid
line and dashed line show the contour lines of mean vertical velocity with low and high flow
velocity respectively. The contours are the result of low flow velocity. The x and z are both in
meter.
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Figure 12. The ratio of mean (a and c) and instantaneous (b and d) near-bed shear stress to
critical entrainment shear stress of 0.1 mm sediment in the vicinity of a pit (a and b) and a mound
(c and d) in low velocity. The x and y are both in meter.



