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A lacunarity analysis of the zero-crossings derived from Gaussian stochastic processes with oscil-
latory autocorrelation functions is evaluated and reveals distinct multi-scaling signatures depending
on the smoothness and degree of anti-correlation of the process. These bear qualitative similarities
and quantitative distinctions from an oscillatory deterministic signal and a Poisson random process
both possessing the same mean interval-size between crossings. At very small and large scales com-
pared with the correlation length of the random processes, the lacunarity is similar to the Poisson
but exhibits significant departures from Poisson behaviour if there is a zero-frequency component
to the process’s power-spectrum. A comparison of exact results with the gliding box technique that
is frequently used to determine lacunarity demonstrates its inherent bias.

I. INTRODUCTION

An important role that random processes play in the
natural sciences is to represent the behaviours caused by
variables that influence a system about which informa-
tion is incomplete, entirely absent, or cannot be mea-
sured accurately. There are many statistical descriptors
of stochastic processes that quantify different manifes-
tations of randomness and the Gaussian process has re-
ceived most attention, not least because its two statistical
descriptors, the mean and autocorrelation function, pro-
vide a complete description of its multivariate behaviours
[1]. However, this simplicity does not carry to processes
derived from a Gaussian process; in particular the prop-
erties associated with its zero-crossings [2] still defy such
a complete characterisation. The periods or intervals be-
tween successive zero-crossings, denoted by T , are var-
iously referred to as the residence or return time and
has found application to nonequilibrium physical systems
([3], and references therein), the statistical properties of
random polynomials [4], to phenomena initiated or ter-
minated by crossing a threshold (see [5, 6] and references
therein). Whilst the intervals are primarily affected by
the properties of smoothness and by the different scale-
sizes encapsulated within the autocorrelation function,
there are additional patterns influenced by long correla-
tions between the intervals that familiar correlation mea-
sures fail to capture or describe adequately. The concept
of lacunarity was introduced originally [7] to augment the
statistical descriptors of fractal behaviours. This article
extends its utility and shows that the zero-crossing pro-
cess can present both previously encountered and novel
lacunarity signatures depending on the autocorrelation
properties of the underlying Gaussian process. A partic-
ular focus is the effect on zero-crossings of oscillatory au-
tocorrelation functions, which lead to considerably richer
behaviour [8] and serve as a non-trivial model with which
to explore the effects of weak through to strong correla-
tion. Lacunarity provides an additional tool to examine
these effects and, as will be shown, reveals novel scaling
behaviours caused by the oscillations and the degree of
anti-correlation present in the underlying Gaussian pro-
cess.

II. THEORETICAL PRELIMINARIES

Lacunarity is defined as

Λ(r) =
〈

n2(r)
〉

/ 〈n(r)〉2 = 1 + var (n(r)) / 〈n(r)〉2 , (1)

where 〈·〉 denotes the ensemble or realisation average, and
lacunarity measures departures from translational invari-
ance of the number n(r) of events falling within a ‘box’ of
size r. In the present context the events are zero-crossings
of a stationary Gaussian process x(t), which is assumed
to have zero mean, unit variance σ2 and normalized au-
tocorrelation 〈x(0)x(τ)〉 /σ2 = ρ(τ). Lacunarity charac-
terises the heterogeneity of a process with scale-size, and
is sensitive to the appearance of gaps punctuating the
sequence of events. Since Λ involves the ratio of two
moments it is sensitive to differences in scale-size that
characterise these, and changes to the slope of Λ indi-
cate the emergence of different scaling behaviours in the
fluctuations of the number of crossings.
A related measure for the dispersion of events is the

Fano factor

F (r) = var(n(r))/ 〈n(r)〉 , (2)

which serves to gauge departures from Poisson behaviour,
for which F =1. This was used in [8] to characterise the
zero-crossings of a Gaussian process, albeit for a range of
box sizes commensurate with the mean interval length.
When considering data derived from processes of two

or more dimensions, the shape, orientation and structure
of the box has been shown to be important for obtaining
accurate estimates of Λ [10], but in the one-dimensional
case considered in this article the lacunarity can be calcu-
lated exactly using the properties of Gaussian processes,
some relevant results for which are as follows.
The mean rate of crossings for Gaussian processes is

[9] R̄ =
√

−ρ′′(0)/π, with a mean number of 〈n(r)〉 =
R̄r crossings occurring in a box of size r, giving a mean
interval length of 〈T 〉=1/R̄. The variance in n(r) is [11]

var (n(r)) = R̄r + 2R̄
∫ r

0
(r − τ)

(

U(τ) − R̄
)

dτ, (3)

where
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,

A = −ρ′′ (0)
[

1− ρ2 (τ)
]

− ρ′2 (τ) ,

B = ρ′′ (τ)
[

1− ρ2 (τ)
]

+ ρ (τ) ρ′2 (τ) ,

whence the variance increases linearly with r for large r.
The integral in (3) can be evaluated by quadrature once
ρ(τ) is specified, and is here assumed to have the forms

ρij(τ ; a) = gi(τ) fj(τ ; a) , (4)

with

fj(τ ; a) =

{

cos (aτ), j = 1,

cos2
(

aτ/
√
2
)

= 1

2

(

1 + cos(
√
2at)

)

, j = 2,
(5)

where a≥ 0 and gi(τ) is a function with expansion near
the origin

gi(τ) = 1− 1

2

(τ

ℓ

)2

+O
(

|τ |3
)

,

with consequence that the mean interval length is 〈T 〉=
πℓ if a = 0. Expansions of gi(τ) having even powers of
τ alone describe processes smooth to all orders, with the
effect that the intervals are anti-bunched, i.e. repelled,
from each other. In contrast, a sub-fractal process is
one for which the derivative of the process is a fractal,

and these obtain from the presence of a term O
(

|τ |3
)

in the expansion for gi(τ). In this case the intervals
are bunched, i.e. clustered, leading to higher variance of
n(r). The subscript i indexes different models as follows,
which have been selected for having properties that en-
able exploring different aspects of smoothness and scale:

g1(τ) = exp

(

− τ2

2ℓ2

)

, Gaussian,

g2(τ) =
3

2
exp

(

− |τ |√
3ℓ

)

− 1

2
exp

(

−
√
3 |τ |
ℓ

)

, Wong [12],

g3(τ) =
sin
(√

3τ/ℓ
)

√
3τ/ℓ

, sinc,

g4(τ) = sin

[

π

2
exp

(

− 2

π

|τ |
ℓ

)]

, exponential. (6)

The scale-size ℓ is set to unity hereafter. Models 1 and
3 are both infinitely differentiable while models 2 and
4 are sub-fractal. Models 1, 2 and 4 are exponentially
bounded, whereas the envelope of model 3 decreases as
τ−1. The oscillations due to the sinusoid are necessary for
model 3 to possess a physically realizable energy density
spectrum—their absence would render the total power in-
finite and thereby unphysical. This requirement holds for
any autocorrelation function decaying slower than τ−1.
The intervals described by model 4 are approximately
exponentially distributed, as shown in the Appendix,
but they are slightly positively correlated and therefore
not consistent with a Poisson process. The oscillatory
terms fj(τ ; a) are selected to illustrate the distinct and

novel manifestations that oscillations in the autocorrela-
tion can produce. While both are oscillatory, the cosine
model has both positive and negative regions of corre-
lation, whereas the cosine-squared model has only non-
negative correlation, and lacunarity detects these distinc-
tions. Inclusion of these oscillatory terms modifies the
expansion near the origin the same way up to terms in
τ2 for both models:

ρij (τ ; a) = 1− 1 + a2

2
τ2 +O

(

|τ |3
)

,

with the consequence that the mean interval length is re-
duced to 〈T 〉= π/

√
1 + a2 → π/a, for large values of a,

which is consistent with x(t) having the half-period of a
deterministic sinusoid. Consequently with increasing a,
x (t) appears progressively more regular, resembling the

deterministic function xd(t; a)= cos
(√

1 + a2t
)

that has
the same mean interval length, but with variance of the
intervals that scale as a−7/2 and a−1 for the cosine and
cosine-squared models respectively (see Fig. 3), as can be
calculated accurately using a Markov chain assumption
[13] and verified by simulation results. Consequently el-
ements of stochasticity in x(t) persist and are distinct
from the superficial similarity of the process to xd(t);
lacunarity is sensitive to these differences in behaviours
and characterises variations manifested by the processes.

III. SIMULATION METHODS

For processes with prescribed autocorrelation func-
tions, lacunarity can also be evaluated from simulations
[8, 14] using either contiguous discrete boxes or the ‘glid-
ing box’ method [15] to compute lacunarity (1). Sup-
pose that the resolution of the simulation is ∆t, selected
to be much less than the correlation length of the pro-
cess, and a realisation is of total length L=N∆t, where
N≫1. The contiguous box method counts the number of
crossing events falling within contiguous boxes of length
r that are selected so that ∆t ≪ r ≪ L, the latter in-
equality required to ensure that the effective sample size
is sufficiently large that the variance in (1) is computed
accurately. The procedure is repeated with progressively
larger box sizes to reveal the scaling of the lacunarity
with r. The largest box size that can be used is there-
fore governed by the length the realisation. The gliding
box method involves, for a box of size r, counting the
number of crossings as the box is ‘glided’ in increments
of ∆t along the realisation. This has the apparent effect
of using the data more efficiently by increasing the sam-
ple size, but in fact the counts in boxes that overlap are
correlated which impacts accuracy of the computed vari-
ance and hence lacunarity. It is therefore instructive to
compare the contiguous box and gliding box techniques
with the exact analytical results in order to evaluate their
accuracy in terms of the volume of data available to com-
pute the lacunarity. The gliding box technique has been
employed extensively (e.g. [16] and references therein,
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FIG. 1. A comparison between the exact and simulation es-
timates of var (n(r)) as a function of normalized box-size for
the g1 correlation function.

where further details for implementing the technique can
be found) to measure lacunarity of small data sets where
the precise nature of the stochastic process and its auto-
correlation are unknown.

One way to simulate approximately a Gaussian pro-
cess is the Fourier transform method, described for ex-
ample in [8, 14], but iterative refinements to the gen-
eration method [17] ensure better accuracy, and for a
Gaussian process this is verified by checking that the re-
alisations conform to the higher-order properties they
must satisty [18], viz.

〈

x3(0)x(τ)
〉

/σ4 = 3ρ(τ) and
〈

x2(0)x2(τ)
〉

/σ4 = 1+2ρ2(τ). Employing the contigu-
ous box or gliding box techniques require care to ensure
that box sizes are both significantly larger than the res-
olution of the simulation and significantly less than the
total simulation length. Figure 1 illustrates the regime
where estimates of Λ from data are accurate by display-
ing var (n(r)) as a function of normalized box size for
the model g1. The exact analytical result determined
from equation (3) is displayed together with two empir-
ical techniques based on 2000 computer-generated reali-
sations with each simulation of length ≈ 5000R̄−1. The
result of the contiguous-boxes method agrees approxi-
mately with the exact results for R̄r≤1000, correspond-
ing to 5 or more contiguous boxes spanning each simu-
lation’s length. Although conspicuously less noisy, the
gliding-box technique is nevertheless systematically bi-
ased and consistently underestimates both the magni-
tude and dependence of the variance on box size. The
inset shows the region where both empirical methods ac-
cord with the exact result. Whilst simulations provide
a wealth of information additional to that contained in
moment-based measures, it is sufficient to use analytical
results hereafter and to determine Λ using equation (3)
and numerical quadrature.

IV. EXACT RESULTS

Figure 2 shows Λ(r) as a function of normalized
box-size R̄r for processes with autocorrelation func-
tions gi(τ), together with that for a Poisson process
that is marginal between sub-fractal and smooth pro-
cesses. The inset displays the dimensionless gradient
γ = d log (Λ− 1)/d log (r) of these curves. For R̄r ≪ 1,
Λ = 1/Prob (n(r) = 1) ≈ 1/R̄r, and so Λ is the same
for all the processes, with γ ≈−1; indeed, this relation-
ship is exact for the Poisson process which maintains a
constant slope of −1 at all scales, a characteristic with
which other processes may be compared for gauging the
effect of correlation. For 10−1 < R̄r < 1, the smooth
processes have fewer than two crossings in a box with
high probability and so the fluctuations in number are
essentially binomially distributed [14], with Λ less than
the corresponding Poisson value and γ<−1. At larger r
the Poisson and binomial fluctuations become asymptot-
ically similar and the slope returns to −1, although the
value of Λ remains less than that for the Poisson process.
By contrast the fluctuations for the sub fractal processes
are slightly greater than the Poisson case in the regime
10−1<R̄r < 1 because clustering enables more than two
crossings to occur within a box with higher probability
than the smooth case, consistent with their number be-
ing negative-binomially distributed [14]. Consequently γ
exceeds −1 but again the fluctuations scale asymptoti-
cally with the Poisson at larger r, now with Λ exceeding
the Poisson value. Note that γ for the sinc-process has
separate regimes where it is less than and greater than
−1. Indeed, the derivative is oscillatory near R̄r = 1,
which is an artifact of the autocorrelation function be-
ing non-monotonic in this region. The envelope of this
process is power-law, which is synonymous with intermit-
tent ‘bursts’ of crossings, although these clusters are too
infrequent and limited in scale to make the fluctuations
super-Poisson. We shall now see how oscillations in the
autocorrelation functions modify these results.
The energy density spectra associated with the auto-

correlation functions reveal how the oscillatory terms lo-
calise power in the limit of large values of a and whether
the oscillations affect the processes when compared with
those described by the gi(τ) functions alone. The energy
density spectrum is

E(ω) =
1

2π

∫

∞

−∞

ρ(τ) cos (ωτ) dτ.

The key difference between the two oscillatory classes of
autocorrelation function is that the cosine-squared mod-
els possess significant energy at zero-frequency by virtue
of having always non-negative correlation. The effect is
that energy is directed to the non-oscillatory part of the
spectrum, as described by the gi(τ). In contrast, the co-
sine models are positively and negatively correlated with
the effect that the energy becomes concentrated in a nar-
row interval about the frequency of oscillation, a. This
explains the differences in the variances of the interval
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FIG. 2. Lacunarity and its dimensionless slope (inset) for
processes with autocorrelation functions gi together with the
Poisson case for reference.

lengths. Figure 3 illustrates the asymptotic forms of the
variance of zero-crossing intervals for the two oscillatory
modifications of the square exponential process, g1. The
plots include the analytic variance predicted by McFad-
den’s work [13] for intervals from a Gaussian process,

σ2 = σ1σ2,

σ2

1 = 4π−1R̄−1

∫

∞

0

arcsin (ρ(τ))dτ,

σ2

2
= R̄−2

[

1 + 2

∫

∞

0

(

U(τ)− R̄
)

dτ

]

, (7)

where ρ(τ) is the process’s autocorrelation and U(τ) is
the same function as in (3), and simulation estimates
of the interval variance obtained as averages over 100
realisations for each value of a ∈

[

10−1, 102
]

. For the
broadband cosine-squared processes the variances scale
(approximately) as a−1 whereas for the narrowband co-
sine processes the scaling is the more rapid a−7/2.
Figure 4(a) shows Λ(r) for the processes with auto-

correlation gi(τ) cos (aτ) with a = 10 together with the
curve for xd(t) which is periodic. These periodicities
are displayed in the inset and occur because within any
normalized box length, var (n(r)) is the product of the
probabilities of a single crossing either appearing or not.
The main figure displays the peak-to-peak value of Λ for
R̄r>7/2 (the third maximum point after R̄r=1), which

decreases as
(

R̄r
)

−2
, and so γ = −2. The periodicities

are evident for the processes too, but the fluctuations
are small rather than vanish when the box-size coincides
with multiples of the mean interval length and the inset
shows the oscillations decohere. The curves are similar to
the Poisson with γ→−1 for R̄r≥10. Figure 4(b) shows Λ
for the gi(τ) cos

2 (aτ) autocorrelation functions with the
Poisson case shown for comparison. The periodicities are
now vestigial and the Λ have a greater resemblance to the
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FIG. 3. Plots of the interval variance as the periodicity pa-
rameter a increases for processes with autocorrelation func-
tions (a) g1(τ ) cos (aτ ) and (b) g1(τ ) cos

2
(

aτ/
√
2
)

. Dashed
red lines indicate reference scalings of the simulation variance
at large a.

lacunarity for the gi’s because the power spectrum has
a zero-frequency component that does not overlap sub-
stantially with the contribution due to the oscillations of
ρ. However there is a distinct change in the slope for all
the processes at R̄r =

√
2 before γ eventually saturates

at the Poisson asymptote when R̄r≫1.

Figure 5(a–d) shows Λ and γ curves that result when
a=100. Figure 5(a) is qualitatively similar to Fig. 4(a)
because most of the power is concentrated about ω ∼
a, with little power in the zero-frequency part of the
spectrum where differences between the sub-fractal and
smooth processes are most evident; the inset highlights
the oscillatory behaviour. The γ’s for these processes
are shown in Fig. 5(c) and detects the periodicities; for
R̄r > 7/2 the peak-to-peak slopes are shown, and these
are qualitatively different to those presented in Fig. 2,
becoming similar with the Poisson asymptote only for
R̄r > 1000. Figure 5(b) is for the gi(τ) cos

2 (aτ) auto-

correlation functions and shows a region 1≤ R̄r/
√
2≤10

where Λ does not change significantly, indicative of the
crossings being correlated over the scale-size associated
with the gi. Although this region exhibits periodicities,
as seen from the inset, these are weaker and have a more
complex structure than those of Fig. 5(a) as shown by
the corresponding curves for γ given in Fig. 5(d). Both
Λ and γ are essentially indistinguishable for the smooth
cases, but the sub-fractal case is quite different from these
at R̄r≫ 1, and for all cases the value of Λ is some 1 or
3 orders of magnitude greater than those for the non-
oscillatory and oscillatory autocorrelation functions re-
spectively. Another distinguishing feature between plots



5

-3 -2 -1 0 1 2 3
-7

-5

-3

-1

1

3

1 2 3 4 5 6 7 8 910
-2.4

-2

-1.6

-1.2

-0.8

-3 -2 -1 0 1 2 3
-4

-3

-2

-1

0

1

2

3

1 2 3 4 5 6 7 8 910
-1.1

-0.9

-0.7

-0.5

-0.3

(a) (b)

FIG. 4. Lacunarity curves for processes with oscillatory autocorrelation functions (a) gi(τ ) cos (aτ ) and the deterministic

signal with the same period, and (b) gi(τ ) cos
2
(

aτ/
√
2
)

with the non-oscillatory Poisson curve, when a=10. Insets show the

periodicities that occur when box-sizes match multiples of the mean interval length. Within the main plot in (a), for R̄r≥7/2
the peak-to-peak lacunarity values for the deterministic signal are plotted as a dashed grey line. The inset in (a) shows that
peaks of the full lacunaity curve occur when r is an odd multiple of R̄−1.

(c) and (d) in Fig. 5 is that γ declines rather than rises
towards the Poisson asymptote.
Figure 6(a) shows an extended sequence of normalized

interval lengths obtained from a realisation with ρ11 when
a=100, with a shorter range of the sample function in-
cluded in Fig. 6(b). The intervals exhibit few excursions
beyond 1.5 standard deviations from the mean, shown
by the horizontal lines. This is because var (T ) / 〈T 〉 ∼
a−5/2≪1 and the correlation coefficient between succes-

sive intervals T and T ′, κ =
(

〈TT ′〉 − 〈T 〉2
)

/var (T ) ≈
0.65, so the sequence of intervals forms an auto-regressive
process with brief extremal excursions away from the
mean. A realisation resembles a sinusoid of frequency
a/ (2π) with slowly varying amplitude and phase occur-
ring on the scale-size characterising gi(τ) that slightly
modulates the mean interval length. Contrast this with
Fig. 6(c) obtained from a realisation with the autocorre-
lation function ρ12 , for which var (T ) / 〈T 〉∼1. Now the
excursions are of persistent significant size, and κ is neg-
ative since long intervals tend to be followed by shorter
ones. The sequence of intervals therefore flips sequen-
tially between the two branches that are symmetrically
arranged about the normalized mode. A realisation re-
sembles a slowly changing random process described by
gi(τ) upon which is superimposed a rapid sinusoidal mod-

ulation of frequency a/(
√
2π). There are epochs when

the amplitude and phases of these two primary compo-
nents are such that no axis crossings occur as displayed
in Fig. 6(d), leading to the lacunae that enhanced values
of Λ measure.

V. SUMMARY AND DISCUSSION

The lacunarity of the zero-crossings of correlated Gaus-
sian random processes display multiple-scaling signatures
with box-size whose character depends on the smoothness
and degree of anti-correlation of the process. Sub-fractal
and smooth processes have Λ values that are respectively
greater and less than a Poisson process, but are asymp-
totic to the Poisson value for box sizes much less than
and much greater than the scale-size that characterizes
the correlation properties of the underlying process.

Processes with oscillatory autocorrelation functions
fall into two distinct classes depending on whether there
is significant anti correlation. This property is equiva-
lent to the energy spectrum E(ω) having two properties,
the first being that E(ω) is concentrated about the oscil-
lation frequency a and the second is that E(0) is small
compared with E(a). These processes will exhibit period-
icities in Λ similar to a deterministic sinusoid of the same
interval length, but with peak-to-peak value of γ →−1
rather than −2, which is the value a deterministic signal
adopts.

Oscillatory autocorrelation functions that are never-
theless positively correlated always have a significant
value of E(0) that may be comparable or exceed the value
of E(a). Whilst the lacunarity for these processes ex-
hibits vestigial periodicities for R̄r ∼ 1, the energy in the
non-oscillatory part of the spectrum is dominant, lead-
ing to an intermediate plateau scaling regime where the
lacunarity is approximately constant. This is a manifes-
tation of the behaviour featuring in Figure 6(d), where
the envelope of the process, whose scale-size is charac-
terised by gi(τ), does not cross the axis. This leads to a
very long interval punctuating the regular short-intervals.
These short-intervals resume once the envelope re-crosses
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FIG. 5. Lacunarity and dimensionless slope curves for processes with oscillatory autocorrelation functions gi(τ ) cos (aτ ) (a &

c), and gi(τ ) cos
2
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aτ/
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(b & d), when a=100, compared with the deterministic signal with the same period and the non-

oscillatory Poisson process. Within the main plot in (a), for R̄r>7/2 the peak-to-peak lacunarity values for the deterministic
signal are plotted as a dashed grey line, and in (c) the corresponding lacunarity slope as a solid grey line. The inset in (a)
shows that peaks of the full lacunaity curve occur when r is an odd multiple of R̄−1.
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the axis. Another manifestation of this behaviour is the
quantitative differences between the processes formed by
the sequence of zero-crossings that are derived from un-
derlying processes that are positively correlated or have
regions of anti correlation, as shown by Figure 6(a & c).

In accord with the case with non-oscillatory autocorre-
lation functions, the lacunarity slope eventually saturates
with γ→−1 at large normalized box sizes, although the
values of R̄r at which this occurs are much larger. This
shows the significant effect that oscillations in the auto-
correlation function imbue.
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VII. APPENDIX

This appendix contains the derivation of the autocor-
relation function, g4(τ) defined in (6), for a Gaussian pro-
cess with approximately exponentially distributed zero-
crossing intervals.

The probability density function for intervals, T , dis-
tributed exponentially with mean 〈T 〉 is

P (t) =
1

〈T 〉 exp
(

− t

〈T 〉

)

.

This has Laplace transform

L [P (t)] = p(s) =
1

1 + 〈T 〉 s =
h(s)

1− h(s)
,

say, if the intervals are assumed to be approximately in-

dependent, where [13]

h(s) =
1

2
+

s 〈T 〉
2π

∫

∞

0

exp(−sτ)
g′4(τ)

√

1− g4(τ)2
dτ,

=
1

2
+

s 〈T 〉
2π

∫

∞

0

exp(−sτ)
d

dτ
sin−1(g4(τ))dτ.

For exponential intervals

h(s) =
p(s)

1 + p(s)
=

1

2 + 〈T 〉 s .

Hence
∫

∞

0

exp(−sτ)
d

dτ
sin−1 (g4(τ))dτ =

−π

2 + 〈T 〉 s ,

and taking the inverse Laplace transform obtains

d

dτ
sin−1 (g4(τ)) = − π

〈T 〉 exp
(

− 2τ

〈T 〉

)

.

Integrating,
∫ τ

0

d

dt
sin−1 (g4(t))dt = − π

〈T 〉

∫ τ

0

exp

(

− 2t

〈T 〉

)

dt,

sin−1 (g4(τ)) − sin−1 (1) = −π

2

(

1− exp

(

− 2τ

〈T 〉

))

,

then rearranging for g4(τ), prescribing that 〈T 〉 = π, and
replacing τ with |τ | /ℓ gives (6), as required.
Note that g4(τ) has a term O(|τ3|), so corresponds to

a sub-fractal process. It can be approximated with good
accuracy as

π

2
exp

(

−2τ

π

)

−
(π

2
− 1
)

exp

(

− τ

(π/2− 1)

)

,

a form that can be used to evaluate an analytical ap-
proximation for the power spectrum of the process with
oscillatory autocorrelation function g4(τ) cos (aτ) as

E(ω) =
π
(

4 + π2
(

a2 + ω2
))

(aω)
4
+ (4 + (aω)2)

2
+ a2 (8π2 − 2π4ω2)

− (π − 2)2
(

4 + a2(π − 2)2 + (π − 2)2ω2
)

π
(

a4(π − 2)4 + 2a2(π − 2)2 (4− ω2(π − 2)2) + (4− ω2(π − 2)2)
2
) .
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