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ABSTRACT 17 

Recent changes in trend and variability of the main Southern Hemisphere climate modes 18 

are driven by a variety of factors, including increasing atmospheric greenhouse gases, 19 

changes in tropical sea-surface temperature and stratospheric ozone depletion and 20 

recovery. One of the most important implications for climatic change is its effect via climate 21 

teleconnections on natural ecosystems, water security and fire variability in proximity to 22 

populated areas, thus threatening human lives and properties. Only sparse and 23 



 
 

fragmentary knowledge of relationships between teleconnections, lightning strikes, and 24 

fire is available during the observed record within the Southern Hemisphere. This 25 

constitutes a major knowledge gap for undertaking suitable management and conservation 26 

plans. Our analysis of documentary fire records from Mediterranean and temperate regions 27 

across the Southern Hemisphere reveals a critical increased strength of climate-fire 28 

teleconnections during the onset of the 21st century including a tight coupling between 29 

lightning-ignited fire occurrences, the upward trend in the Southern Annular Mode and 30 

rising temperatures across the Southern Hemisphere. 31 

 32 

1. INTRODUCTION 33 

Fire is a key Earth system process determining global vegetation distribution [Bond et al., 34 

2005], modulating the carbon cycle [Liu et al., 2015], and influencing the climate system 35 

[ Bowman et al., 2009]. Documenting mechanisms behind climate-fire dynamics is critical 36 

for understanding the future of Earth’s ecosystems under projected climate and fire change 37 

scenarios [Abatzoglou and Williams, 2016; Jolly et al., 2015; Westerling et al., 2006]. 38 

Given the large variety of biomes and fire regimes around the Southern Hemisphere (SH) 39 

[Bond et al., 2005; Bowman et al., 2009; Enright and Hill, 1995; Murphy et al., 2013], it 40 

is crucial to understand how fire activity responds to climate variability within different 41 

vegetation contexts and climatic frameworks, and how such dynamics are being altered 42 

by climate change. Here we (1) present the first hemispheric-scale compilation of 43 

relationships between large-scale climate modes (e.g. El Niño Southern Oscillation, 44 

Southern Annual Mode and Indian Ocean Dipole) and documentary records of lightning- 45 

and human-ignited fires for the past 30-50 years and (2) present the first synthesis of 46 

climate change-mediated impacts on these climate-fire teleconnections across temperate 47 

and Mediterranean biomes of Chile, Argentina, South Africa and Australia (Figure 1a).  48 

 49 



 
 

Across the Earth, variability in fire occurrence and spread is determined by the confluence 50 

of sufficient and dry fuel, an ignition source, and suitable weather for burning [Bradstock, 51 

2010; Krawchuk et al., 2009]. In moist temperate forest areas, since there is abundant 52 

biomass to burn (Figure 1b), fire activity through time is controlled by fuel moisture 53 

content (i.e. climate) and ignitions (lightning and humans) [Bradstock, 2010; Cochrane, 54 

2003; McWethy et al., 2013; Pausas and Ribeiro, 2013]. In contrast, fires in drier 55 

temperate biomes (e.g. Mediterranean-type ecosystems) are both moisture-limited and 56 

biomass-limited (Figure 1b). Increased fire activity in Mediterranean-type ecosystems is 57 

sensitive to quasi-annual antecedent rainfall pulses, whereas concurrent droughts and/or 58 

hot-dry winds tend to be the key driver of fire activity in temperate forests [Moritz et al., 59 

2012]. Hence predicting future fire activity hinges partly on understanding the impact of 60 

climate conditions, mediated by large-scale climate drivers, on landscape flammability via 61 

vegetation type and inherent fuel traits [Krawchuk et al., 2009; Moritz et al., 2012] . The 62 

SH features extensive areas of both Mediterranean-type and temperate forest ecosystems, 63 

both hosting endemic and fire-sensitive Gondwanan plant species, embedded in fire-prone 64 

vegetation (e.g. eucalypt forests of southeast Australia; introduced pine plantations in 65 

Central Chile) [Hennessy et al., 2005]. In these settings human ignitions are known to 66 

increase with intermediate population densities, but most fires are aggressively fought 67 

except those uncontrollable due to extreme weather conditions  [ Bowman et al., 2017]. 68 

 69 

Despite the acknowledged importance of various climate modes in modulating fire weather 70 

across the SH, analyses of their influence on SH fire activity are few in number, focus on 71 

one or few climate modes and are spatially fragmented [ Cai et al., 2009; Holz and Veblen, 72 

2011; Holz et al., 2012; Mariani et al., 2016] – hence a hemispheric synthesis of climate-73 

fire teleconnections is overdue. Here we consider the three large-scale climate modes 74 

operating at inter-annual and decadal scales in the Southern Hemisphere – the Southern 75 

Annular Mode (SAM), the El Niño Southern Oscillation (ENSO), the Indian Ocean Dipole 76 

(IOD) (Figure 1c,d,e) – to a) identify the individual most important climate index 77 

influencing fire activity by vegetation types within Mediterranean-type and temperate 78 



 
 

forest ecosystems across the SH and b) quantify the past variability of teleconnections 79 

between climate modes and fire activity throughout the end of the 20th and the start of 80 

the 21st century.  81 

 82 

This work also aims to identify the effects of the above-mentioned climatic change on the 83 

teleconnections between climate modes and natural (lightning-ignited) fire occurrences 84 

across the Southern Hemisphere. Although lightning strikes constitute the most important 85 

natural ignition source for wildfires, they only account for a small proportion of total fire 86 

occurrence in many regions on Earth [ Bowman et al., 2009]. Nonetheless, under warmer 87 

conditions it is likely that the potential for lightning-ignited wildfires will increase in 88 

response to climate change [Abatzoglou et al., 2016; Williams, 2005]. There have been 89 

few attempts to understand the implications of increased flash rate on fire activity, 90 

principally area burnt from short-term coupled satellite data and climate models 91 

[Goldammer and Price, 1998; Krause et al., 2014; Price and Rind, 1994], and there is a 92 

dearth of information on the hemisphere-wide relationship between actual lightning-93 

ignited fires and climate trends. To address this important knowledge-gap, we compiled a 94 

hemispheric-scale documentary dataset of natural (lightning-ignited) wildfire occurrences, 95 

testing the connection between trends in lightning-ignited fires and (1) rising SH 96 

temperature and (2) variability in the leading climate modes throughout the late 20th and 97 

early 21st centuries. 98 

 99 

2. METHODS  100 

2.1 Fire and climate records and climate indices 101 

Fire occurrence data were obtained through local administrative databases from four 102 

countries within the Mediterranean-type and temperate forest regions of the Southern 103 

Hemisphere: Chile, Argentina, Australia and South Africa (Figure 1). Information on the 104 

datasets collected and the sources are presented in Supporting Information (SI) Appendix 105 

Table S1. We define a fire season year (extending from the austral spring– early 106 



 
 

September- through early fall – late March) by the year in which the fire season starts—107 

e.g., fire season 1951/1952 = 1951). Two (per fire season) fire-regime metrics were used 108 

to represent annual-scale fire activity: number of occurrences and area burnt per fire 109 

season, including both human-set and lightning-set fires (separately and merged). 110 

Prescribed burns and arson fires were excluded from all datasets prior to analyses, thus 111 

we used only accidental and unplanned fire events. To minimize the effect of errors in area 112 

burnt measurements and small human-set fires, only fire events larger than 5 hectares 113 

were included in the analyses. To account for differences in climate-fire mechanisms in 114 

each biome, fire data were separated by vegetation type: herb/grass-dominated versus 115 

tree-dominated vegetation within the broad climate study regions.  116 

 117 

2.2. Statistical analyses 118 

Simple and partial Pearson correlations, scatterplot analyses and linear regression models 119 

were conducted to examine the spatio-temporal relationships of past and future wildfire 120 

occurrences and area burnt to variability in climate modes. Time-series were tested for 121 

normality using the Shapiro-Wilk normality test [Shapiro and Wilk, 1965]. If skewed time-122 

series were identified, a log-transformation was performed prior to correlation analyses. 123 

A simple correlation matrix was created using all the fire activity data (occurrences and 124 

area burnt) to test whether fire activity was correlated with same-year climate conditions 125 

and climate modes/variables in each study region. A significance test using a 0.9 126 

confidence level was run in the corrplot package [Wei and Simko, 2016] in R [Team, 2013]. 127 

Interactions amongst climate modes involve complex feedbacks and variable interaction 128 

patterns in space and time [ Cai et al., 2011; Fogt et al., 2009; Meyers et al., 2007; Risbey 129 

et al., 2009]. To account for the possible co-dependence of climate indices in modulating 130 

fire activity across the studied regions, partial correlations were calculated using simple 131 

(Pearson) correlations of the residuals of pairs of linear regression models: fire metric (e.g. 132 

area burnt in woody vegetation in South Africa) ~ climate mode 1 (e.g. IOD) + climate 133 

mode 2 (e.g. ENSO) and climate mode 3 (e.g. SAM) ~ climate mode 1 (e.g. IOD) + climate 134 

mode 2 (e.g. ENSO). In this way, two climate modes (e.g. IOD and ENSO) were set as 135 



 
 

control variables for the relationship between fire activity and the remaining climate mode 136 

(e.g. SAM).  137 

To achieve a hemispheric synthesis of ignition patterns, fire occurrences from all the 138 

regions were summed as departures (in SD units, i.e. z-scores) and run through the same 139 

partial correlation procedure. A summary table of the highest significant partial correlation 140 

values (i.e. seasonal or annual) per region, biome, and dominant vegetation type is 141 

presented in Table 1. A table with the highest significant simple Pearson correlation values 142 

is also presented (SI Table S3). A spreadsheet listing all the simple and partial correlation 143 

coefficients for all the study regions and metrics is available in SI (additional external 144 

table). Correlation matrices by region are presented in SI Figure S2a and 2b. Barplots 145 

showing the comparison of Pearson correlation coefficients between simple and partial 146 

correlations are presented in Figure S6.  147 

To analyse changes in the patterns of ignition directly related to climate variability and 148 

change at a hemispheric scale between the 21st (2000-2014) and 20th (1958-1999) 149 

centuries, only the number of lightning-lit fires (i.e. as opposed to intra-region, 150 

idiosyncratic and complex socio-ecological ignition patterns), and not the area burnt, were 151 

considered in the statistical analyses. In this case, due to the low number of observations 152 

by year, herbaceous and woody vegetation types were combined. Simple Pearson 153 

correlation coefficients between climate indices and SH summed fire occurrences (all 154 

unplanned human fires and lightning-ignited fires) were measured on either the full and 155 

split time-series.  To quantify the relationship between observed warming on fire 156 

occurrence across the SH, summed fire occurrence records from all the analysed regions 157 

(and combined vegetation types) in the SH were compared against hemispheric-scale 158 

annual temperature. To minimise the issues deriving from an uneven distribution of data 159 

points in the 20th and 21st centuries, a randomised simple correlation method was 160 

employed using 14 years in the 20th century (n=21st century) that were chosen through 161 

100 random combinations (Supporting Information TableS3, Document S3).  162 



 
 

Lastly, to project the impact of SAM on fire occurrence under increasing greenhouse gases 163 

concentrations over the remaining of the 21st century, a simple linear model of SH fire 164 

occurrences against the summer SAM index projection (data from [McLandress et al., 165 

2011; Thompson et al., 2011]). 166 

 167 

3. RESULTS AND DISCUSSION 168 

3.1 Climate modes and variability in the occurrence and extent of fire across the 169 

Southern Hemisphere 170 

Our measure of same-year correlation coefficients between seasonal climate mode indexes 171 

and a) total annual wildfire activity (human- [i.e. unplanned burns only] plus lightning- lit 172 

fires) and b) lightning-lit fires only, provides insights on the leading modes of fire variability 173 

in each study region. The associations of the three climate modes with fire occurrence and 174 

area burnt, from all ignition sources and lightning alone, are described below, with 175 

subsequent sections considering the effects of ENSO, IOD and SAM separately. Differences 176 

between patterns of human- and lightning- ignited fires were not addressed in this work, 177 

as they are idiosyncratic to the different cultures and regions (e.g. motives and timing of 178 

intentional or accidental burning) and require a research design targeting human 179 

behaviour. 180 

 181 

ENSO (NIÑO 3.4 Index) is significantly positively correlated with wildfire activity in 182 

temperate Australia (SEAUS; i.e. number of fires and area burnt in both vegetation types), 183 

Mediterranean Chile (CHMEDI; i.e. area burnt in both vegetation types), western 184 

Mediterranean Australia (WMEDIAUS; i.e. number of fires and area burnt in woody 185 

vegetation) and temperate South America (TEMPSA; i.e. area burnt in woody vegetation). 186 

The highest partial correlation coefficient values between fire and ENSO were consistently 187 

found across regions in spring in the temperate regions, while they were found in the 188 

antecedent autumn in the Mediterranean regions (Figure S2). ENSO is also significantly 189 



 
 

associated to lightning-ignited fire occurrences in SEAUS and CHMEDI in summer (for both 190 

vegetation types combined [see Methods section]; Table 1b).  191 

 192 

The IOD shows significant partial correlations with the fire activity metrics in all vegetation 193 

types across all temperate regions during spring, summer and annually, and also in some 194 

Mediterranean regions with both herbaceous and woody vegetation (Table 1a). In CHMEDI 195 

and EMEDIAUS, the IOD displays negative partial correlation coefficients with the fire 196 

metrics, whereas positive values are observed in all the other regions. Significant positive 197 

correlations were also found with natural fire activity across Australia during spring. 198 

 199 

The SAM Index shows high significant positive correlations with fire activity from all ignition 200 

sources in all regions and vegetation types (Table 1a). High partial correlation coefficients 201 

were found in spring and summer in the temperate regions, whereas the highest 202 

correlation coefficients in the Mediterranean regions were found especially in winter and 203 

annually. SAM has a significant positive correlation with lightning-lit fires for all regions 204 

(except SEAUS) particularly during summer and annually (Table 1b). Accordingly, our 205 

results indicate that SAM in the same-year summer and spring seasons plays a key role in 206 

modulating unplanned fire activity (occurrences and area burnt) across all the studied 207 

regions (Figure 2), especially across temperate forests in the SH (Table 1). 208 

 209 

We assessed whether SAM, as the most influential climate mode across all study regions, 210 

had an impact on the combined record of all fire occurrences (number of fires) from all 211 

ignition sources in all vegetation types and across all regions that had separately shown 212 

positive correlation to the summer SAM Index (CHMEDI, WMEDIAUS, SAFR, TEMPSA, 213 

WTAS). SAM is positively correlated to fire occurrence of all regions, from all ignition 214 

sources and vegetation types combined (r=0.61; p-value<0.001; Figure 2a and SI Figure 215 

S4). These simple correlation coefficient values remain high and upward trends in 216 

teleconnections between SAM and fire occurrence over the SH are observed during the 217 

20th and early 21st centuries (r=0.58 and r=0.52 respectively), with higher dispersion from 218 



 
 

the mean during in the early 21st century (Figure 2b). These results are supported by our 219 

randomised correlation method results (Table S3). Based on the strong linear relationship 220 

between observed summer SAM index and SH fire occurrence (i.e. number of fires) (Figure 221 

2a), projected results on the relationship between both time-series show a persistent 222 

increasing trend throughout the 21st century, reaching up to 8-10 standard deviations from 223 

the historical mean occurrence in fire (Figure 2d). 224 

 225 

Results indicate an overall tight and positive association between SH temperature and fire 226 

occurrence, with a persistent upward trend over time (r=0.54; p-value<0.001; Figure 3a). 227 

The warming-fire occurrence relationship is substantially stronger during early 21st century 228 

than the 20th century (r=0.64 vs. r=0.12, p-value<0.05). Moreover, the SAM and IOD 229 

indexes (see all seasonal r-values in SI Figure S5) display a strong significant correlation 230 

with the number of lightning-lit fires combined across the SH, with tighter relationship and 231 

increased departure from the mean during the early part of the 21st than during the 20th 232 

centuries (Figure 3c, d). 233 

 234 

3.2. ENSO: the ‘Pacific’ mode  235 

Our results from the partial correlations analysis confirm existing literature supporting the 236 

importance of ENSO in driving fire activity in SEAUS, CHMEDI, WMEDIAUS and TEMPSA 237 

(Table 1), though we note an absence of a significant correlation (either positive or 238 

negative) between ENSO and the summed SH fire occurrences from all ignition sources 239 

(SI Figure S4 and S5) in all vegetation types. A significant relationship between ENSO and 240 

fire activity has been previously reported for some of the study regions used here based 241 

on both documentary records [ Holz and Veblen, 2012; Mariani et al., 2016; Nicholls and 242 

Lucas, 2007] and tree-ring fire-scar reconstructions [Veblen et al., 1999] and sedimentary 243 

(charcoal peaks) records [ Holz and Veblen, 2012]. 244 

 245 

Notwithstanding the lack of a significant correlation between fire occurrences and ENSO 246 

across the entire SH (i.e. summed records; SI Figure S4 and S5), the scatterplot presented 247 



 
 

in Figure 3 showing the split time-series (20th and 21st century separated) highlights the 248 

importance of ENSO in the current century. In this case, a more positive state of spring 249 

NIÑO3.4 (El Niño) corresponds to a large departure of fire occurrences above historical 250 

average, stepping up by about 4 standard deviations from the 20th century data point 251 

cloud (Figure 3c).  The projected amplifications of El Niño and La Niña activity due to 252 

anthropogenic climate change [ Cai et al., 2014; Cai et al., 2015; Power et al., 2013] 253 

herald a serious threat to both fire-sensitive ecosystems and the ever-expanding 254 

flammable bush- or wild-urban interface [Bowman et al., 2017; Sharples et al., 2016], 255 

presenting fire management agencies with even greater challenges than they face now. 256 

In this regard, the significant correlations of climate forcing and fire occurrence in heavily 257 

populated SEAUS and CHMEDI found in this study and elsewhere [ Holz et al., 2012; 258 

Mariani et al., 2016] are of concern.  259 

 260 

3.3  SAM: the leading mode of fire variability in the SH 261 

Critically, from our results it is evident that a strong departure in the positive polarity of 262 

the SAM Index above the historical mean may result in a large increase in fire occurrence 263 

by the end of the current century or earlier (Figure 2c, d). Given the importance of this 264 

climate mode in driving moisture patterns and fire activity across the mid-latitudes of the 265 

SH [ Holz and Veblen, 2011;  Holz et al., 2017; Mariani and Fletcher, 2016], the fact that 266 

the observed trend in the SAM Index is statistically distinct from estimates of natural 267 

variability [Abram et al., 2014; Fogt et al., 2009] and the projections of increased positive 268 

polarity under enhanced greenhouse gases concentrations [Thompson et al., 2011], it is 269 

crucial to take this climate mode into account when addressing future projections of fire 270 

activity across the entire SH extra-tropics (Figure 2d). In terms of lightning ignitions, we 271 

identified SAM as the leading climate mode in most of the analysed regions across the SH 272 

(Table 1b, Figure 3d; see below). Anomalously large positive states of SAM were found to 273 

be linked to a great increase in number of fires during the 21st century, stepping up by at 274 

least 2 standard deviations from the 20th century data point cloud (Figure 3d). While the 275 



 
 

overall trend of these findings is unequivocal, we acknowledge that the departures 276 

projected in climate and the SAM have uncertainties associated with the use of CMIP3 277 

models and SAM projections to 2100 (i.e. based on a GCM study; Thompson et al. 2011 278 

and McLandress et al. 2011). For instance, in the future it is highly likely that the non-279 

linearities of the climate dynamics (linked to changes in ozone-depleting substances and 280 

concentration of greenhouse gases) will manifest more strongly, in turn affecting the 281 

reliability of projections in SAM and SAM-fire relationships.  282 

  283 

3.4 IOD and SH fire activity: not only an Indian Ocean mode 284 

Our results suggest the existence of a relatively strong correlation between IOD and 285 

variation in fire ignited from all sources and lightning across Australia (SEAUS, WTAS and 286 

WMEDIAUS) and SAFR. Positive IOD events are linked to negative precipitation anomalies 287 

across the Australian continent occasionally up to its Pacific coast [ Cai et al., 2009], 288 

especially when occurring in combination with El Niño events [Meyers et al., 2007; Risbey 289 

et al., 2009]. Our results also report for the first time, teleconnections between IOD and 290 

fires in South America (CHMEDI, SATEMP), a region that is not located within the ‘classical’ 291 

IOD zone of influence [Saji et al., 1999] (Figure 1). Although climate mechanism and 292 

relationship between the IOD and South American rainfall have been described in the past 293 

[Chan et al., 2008; Taschetto and Ambrizzi, 2012], we believe our findings are probably 294 

mostly related to the complex spatio-temporal ENSO-SAM-IOD teleconnections [ Cai et 295 

al., 2011], but further studies are needed. In spite of the fact that the IOD does not have 296 

a significant correlation with lightning-lit fire occurrences during the 20th century, the 297 

strong association found during the 21st century (Figure 3d) highlights the possible 298 

implication of recent climatic change and warming of the SH and the Indian Ocean (IO) 299 

[Vecchi and Soden, 2007].  300 

 301 

3.5.  A warmer and fiery future? 302 



 
 

Our correlative analyses suggest a strong link between lightning-lit fires, rising 303 

hemispheric temperatures and the increasingly positive polarity of the SAM, NIÑO3.4, and 304 

IOD indexes over the 21st century (Figure 3). Climate change is projected to increase 305 

lightning strikes (cloud to ground) frequency, an important source of ignition for wildfires 306 

[Abatzoglou et al., 2016; Romps et al., 2014], with an estimated warming-induced 307 

increase of roughly 5–12% for every degree (°C) [Michalon et al., 1999; Price and Rind, 308 

1994; Romps et al., 2014] and up to 21.3% for the RCP85 projection (IPCC, 2014) at the 309 

end of the 21st century [Krause et al., 2014]. Evidence of the warming pressure on natural 310 

fire variability is the high positive correlation coefficient between SH temperature and 311 

lightning-lit fire occurrences and the increased strength of this correlation stepping from 312 

the 20th to the 21st century under the persistent warming trend (Figure 3a,b). Importantly, 313 

lightning strikes were the cause of recent large-fire activity and carbon loss in the boreal 314 

forests of North America, suggestive of a potential positive feedback between increased 315 

lightning incidence, subsequent fire activity and the global carbon cycle [Balch et al., 2017; 316 

Veraverbeke et al., 2017]. In addition, increased greenhouse gases along with the effects 317 

of ozone recovery, are expected to continue to drive the SAM, the most important fire-318 

teleconnected climate mode identified in this study. During summers the effects of ozone 319 

recovery might cancel out greenhouse forcing, whereas during the rest of the year and on 320 

an annual basis the SAM is expected to continue on its high index polarity even under 321 

ozone recovery [Thompson et al., 2011]. 322 

 323 

Our results indicate a strong positive relationship between fire occurrence and positive 324 

trends in SAM, NIÑO3.4 and IOD, especially in the early 21st century (Figure 3c,d,e), and 325 

highlight a potential further increase in fire occurrence into the future related to these 326 

climate modes. Due to the tight linkages with both unplanned and natural fire occurrence 327 

and extent across the entire SH, future SAM projections under increasing greenhouse 328 

gases concentrations and global warming are alarming (Figure 2c,d and Figure 3d) 329 

[Thompson et al., 2011]. In the tropical Pacific, extreme El Niño events are projected to 330 

become more frequent due to increased ocean surface warming under a rising global 331 



 
 

temperature scenario [Cai et al., 2014]. This cascade of events will likely have 332 

consequences on anthropogenic and natural fire occurrences across temperate and 333 

Mediterranean regions across the Southern Hemisphere. Moreover, in the tropical Indian 334 

Ocean (IO), climate models project a future warming pattern that features a slower 335 

warming rate in the eastern IO than in the western IO [Vecchi and Soden, 2007]. This 336 

warming pattern matches sea surface temperature conditions similar to those occurring 337 

during a positive IOD event [Saji et al., 1999], that are becoming more frequent and 338 

achieving unprecedented levels in the past 30 years [ Cai et al., 2009]. Given the high 339 

correlations of the IOD with Australian drought and fire records, the predicted warming 340 

pattern of the IO is most likely to increasingly impact water security and fire danger across 341 

southern Australia and may impact, at a minor magnitude, the rest of the Southern 342 

Hemisphere. 343 

 344 

Regardless of the potential feedback between several bottom-up factors such as fire-driven 345 

vegetation change, technological advances to detect and suppress fires and the increases 346 

in human ignitions, our results indicate an underlying, marked positive trend in the 347 

lightning-ignited fires. This trend is likely to continue due to projected temperature 348 

increase and the climate modes’ trajectories. These findings imply the existence of a 349 

significant threat for natural ecosystems and wildland urban interfaces across the SH. For 350 

instance, landscape-scale loss of fire-sensitive ecosystems has already occurred in 351 

response to changes in fire frequency and fire–vegetation feedbacks in parts of southeast 352 

Australia [ Holz et al., 2014], New Zealand [Tepley et al., 2017] and southern South 353 

America [Paritsis et al., 2015], with concern about a future where fires become more 354 

frequent and/or extensive. Indeed, the threat posed by increasing fire occurrence is 355 

magnified by the compounding effects of direct climate change impacts on ecosystem 356 

functioning, such as post-fire growth and recovery rates (i.e. under drier and more 357 

flammable environments) [Enright et al., 2015; Tepley et al., 2018]. Enormously 358 

economical and socially disastrous fires are increasingly reported around the SH (Australia, 359 

Tasmania, New Zealand, Chile) [ Bowman et al., 2017]. We acknowledge our analysis is 360 



 
 

limited because we have been unable to incorporate the full array of factors and the 361 

interactions that are likely to influence trends in the multifaceted climate-fire dynamic. 362 

Nonetheless, our findings highlight the capacity of climate change particularly via 363 

lightning-ignited fires and inter-annual climate modes (i.e. fire-prone phases in SAM, IOD, 364 

and ENSO) to strongly affect the Earth System. 365 

 366 
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FIGURES and TABLES CAPTIONS 385 

Figure 1 a) Geography of the dominant inter-annual climate modes and study regions: 386 

1- Australia, 2- South Africa and 3- South America. b) Conceptual model of coarse-scale 387 

controls on fire activity: fuel-limited areas tend to experience more fire due to inter-annual 388 

pulses in precipitation. In contrast, areas with more abundant fuel tend to experience more 389 

fire due to pulses of ignitions and/or fire-conducive weather conditions (modified from 390 

Moritz et al., 2012). c) Time series of SAM Index (Annual); d) NIÑO 3.4 Index (Annual); 391 

e) IOD Index (Annual). See methods for sources. 392 

 393 

Table 1 Pearson correlation coefficients (r) for partial correlations (p-values are indicated 394 

in parentheses) between seasonal climate modes and documentary records of fire activity: 395 

unplanned— human- and lightning-ignited fires in a) and lightning-lit only events in b), by 396 

region. Table in c) shows partial correlations for the summed fire occurrences in the 397 

Southern Hemisphere. Only highest significant same-year correlation coefficients are 398 

reported (by season). Full correlation matrices between interannual climate modes and 399 

fire activity by vegetation type for each region are presented in Supporting Information 400 

(Figure S2a,b). Letters in parentheses in a) indicate the most significant fire metric (N= 401 

number of fires; A= area burnt). Region codes: CHMEDI= Mediterranean Chile, 402 

WMEDIAUS= western Mediterranean Australia, EMEDIAUS= eastern Mediterranean 403 

Australia, SAFR= Mediterranean South Africa, SEAUS= temperate southeast Australia, 404 

WTAS= western Tasmania, TEMPSA= temperate South America (Chile and Argentina). The 405 

letter n in parentheses indicates the number of years used to run Pearson correlation 406 

coefficients. N/A stands for information Not Available due to lack of data. Control variables 407 

refers to the climate modes kept constant to account for co-dependencies in their 408 

respective effect on fire activity. 409 

 410 

Figure 2 a) Stacked plots of the SAM Index (summer) and the total number of wildfires 411 

in the Southern Hemisphere (black solid line; only regions with a positive correlation with 412 

the SAM Index are included in the summed record) from all ignition sources and vegetation 413 

types combined; b) Scatterplot of the two time-series shown in a). Colour and symbol 414 

coding refers to the 20th (blue dots) and the 21st (red triangle) centuries; c) Summer SAM 415 

Index projection under increasing greenhouse gases concentrations (data from Thompson 416 

et al., 2011 and McLandress et al., 2011); d) Linear model projecting the total (human 417 

and lightning-lit) wildfire occurrences in the SH extending to the year 2100 based on the 418 

SAM Index projection presented in c). Pearson correlation coefficients are reported in a) 419 

and b). 420 
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Figure 3 a) Stacked plots of the SH annual temperatures (z-scores; data from ERA-422 

Interim Reanalysis) and the total number of lightning-lit fires recorded in the Southern 423 

Hemisphere. b) Scatterplot of the SH annual temperatures (z-scores; data from ERA-424 

Interim Reanalysis) and the total number of lightning-lit fires recorded in the Southern 425 

Hemisphere; Black solid line in a) represents the summed SH number of lightning-ignited 426 

fires. Colour and symbol coding in b,c,d,e refers to the 20th (blue dots) and the 21st (red 427 

triangle) centuries. c) Scatterplot of the NIÑO3.4 Index (spring) and the number of 428 

lightning-lit fires across the SH; d) Scatterplot of the SAM Index (summer) and the number 429 

of lightning-lit fires across the SH; e) Scatterplot of the IOD Index (spring) and the number 430 

of lightning-lit fires across the SH. 431 
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 434 

 435 

Figure 1 a) Geography of the dominant climate modes and study regions: 1- Australia, 436 

2- South Africa and 3- South America. b) Conceptual model of coarse-scale controls on 437 

fire activity: fuel-limited areas tend to experience more fire due to inter-annual pulses in 438 

precipitation. In contrast, areas with more abundant fuel tend to experience more fire due 439 

to pulses of ignitions and/or fire-conducive weather conditions (modified from Moritz et 440 

al., 2012). c) Time series of SAM Index (Annual); d) NIÑO 3.4 Index (Annual); e) IOD 441 

Index (Annual). See methods for sources. 442 

 443 
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Table 1 445 

 Pearson correlation coefficients (r) for partial correlations (p-values are indicated in 446 

parentheses) between seasonal climate modes and documentary records of fire activity: 447 

unplanned— human- and lightning-ignited fires in a) and lightning-lit only events in b), by 448 

region. Table in c) shows partial correlations for the summed fire occurrences in the 449 

Southern Hemisphere. Only highest significant same-year correlation coefficients are 450 

reported (by season). Full correlation matrices between interannual climate modes and 451 

fire activity by vegetation type for each region are presented in Supporting Information 452 

(Figure S2a,b). Letters in parentheses in a) indicate the most significant fire metric (N= 453 

number of fires; A= area burnt). Region codes: CHMEDI= Mediterranean Chile, 454 

WMEDIAUS= western Mediterranean Australia, EMEDIAUS= eastern Mediterranean 455 

Australia, SAFR= Mediterranean South Africa, SEAUS= temperate southeast Australia, 456 

WTAS= western Tasmania, TEMPSA= temperate South America (Chile and Argentina). The 457 

letter n in parentheses indicates the number of years used to run Pearson correlation 458 

coefficients. N/A stands for information Not Available due to lack of data. Control variables 459 

refers to the climate modes kept constant to account for co-dependencies in their 460 

respective effect on fire activity. 461 
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a) UNPLANNED FIRES (total of human- and lightning- ignited)

SAM SAM SEASON NIÑO3.4 NIÑO3.4 SEASON IOD IOD SEASON 
herbaceous 0.559 (0.005) WINTER (A) 0.5722 (0.004) ANNUAL (A) -0.4860 (0.018) WINTER (A)

woody 0.4497 (0.024) WINTER (A) 0.385 (0.069) AUTUMN (A) -0.3901 (0.065) WINTER (A)

herbaceous 0.4116 (0.0019) SUMMER (N) -0.2676 (0.05) SPRING (N) 0.364 (0.006) SPRING (N)

woody 0.3017 (0.026) ANNUAL (N) 0.2759 (0.043) AUTUMN (A) 0.291 (0.03) SPRING (N)

herbaceous -0.333 (0.013) SPRING (A) / / / /

woody / / / / -0.2596 (0.057) SUMMER (A)

SAFR (n=66) woody 0.42 (0.001) ANNUAL (N) / / 0.354 (0.008) SPRING (N)

herbaceous -0.293 (0.031) SPRING (A) 0.299 (0.027) SPRING (A) 0.265 (0.05) ANNUAL (N)

woody -0.3778 (0.004) SPRING (A) 0.4217 (0.001) SUMMER (A) 0.29 (0.03) ANNUAL (N)

herbaceous 0.4843 (0.0036) SUMMER (N) / / / /

woody 0.5601 (0.0005) SUMMER (N) 0.3218 (0.063) SUMMER (N) 0.3424 (0.04) AUTUMN (N)

herbaceous 0.4320 (0.001) SUMMER (A) / / 0.309 (0.022) SPRING (N)

woody 0.4848 (0.0002) SUMMER (N) -0.2362 (0.085) SPRING (A) 0.315 (0.03) SPRING (A)

b) NUMBER OF LIGHTNING-LIT FIRES (summed occurrences; woody and herbaceous vegetation types combined)

SAM SAM SEASON NIÑO3.4 NIÑO3.4 SEASON IOD IOD SEASON 

0.3298 (0.019) ANNUAL -0.237 (0.093) WINTER 0.2767 (0.051) SPRING

c) SOUTHERN HEMISPHERE SUMMED OCCURRENCES

SAM SAM SEASON NIÑO3.4 NIÑO3.4 SEASON IOD IOD SEASON 

M
e

d
it

e
rr

an
e

an CHMEDI (n=26)

WMEDIAUS (n=67)

EMEDIAUS (n=67) 

CONTROL VARIABLES: IOD + NINO3.4 CONTROL VARIABLES: IOD + SAM CONTROL VARIABLES: SAM + NINO3.4

0.3774 (0.075) WINTER -0.586 (0.0032) SUMMER /

Te
m

p
e

ra
te SEAUS (n=64)

WTAS (n=35)

TEMPSA (n=67)

M
e

d
it

e
rr

an
e

an CHMEDI (n=26)

WMEDIAUS (n=40)

EMEDIAUS

SAFR (n=61)

Te
m

p
e

ra
te SEAUS (n=54) 0.2912 (0.044) SUMMER 0.2666 (0.0669)

TEMPSA (n=67) 0.2871 (0.035) AUTUMN -0.3329 (0.013)

WTAS (n=35) 0.2873 (0.099) ANNUAL / /

SPRING 0.2508 (0.0672) SPRING

CONTROL VARIABLES: IOD + NINO3.4 CONTROL VARIABLES: IOD + SAM CONTROL VARIABLES: SAM + NINO3.4

0.30879 (0.023) SPRING

0.3680 (0.032) SPRING

SUMMER

N/A N/A N/A N/A N/A

0.3679 (0.006) SUMMER

/

/ / 0.3225 (0.0173) SPRING

N/A

0.3823 (0.0043) SPRINGAll lightning-ignited wildfires (n=66) 0.3295 (0.0147) ANNUAL / /

CONTROL VARIABLES: IOD + NINO3.4 CONTROL VARIABLES: IOD + SAM CONTROL VARIABLES: SAM + NINO3.4

1958-2014

All unplanned wildfires (n=66) 0.4225 (0.00145) SUMMER / / 0.3264 (0.016) SPRING



 
 

 467 

 468 

Figure 2 a) Stacked plots of the SAM Index (summer) and the total number of wildfires 469 

in the Southern Hemisphere (black solid line; only regions with a positive correlation with 470 

the SAM Index are included in the summed record) from all ignition sources and vegetation 471 

types combined; b) Scatterplot of the two time-series shown in a). Colour and symbol 472 

coding refers to the 20th (blue dots) and the 21st (red triangle) centuries; c) Summer SAM 473 

Index projection under increasing greenhouse gases concentrations (data from Thompson 474 

et al., 2011 and McLandress et al., 2011); d) Linear model projecting the total (human 475 

and lightning-lit) wildfire occurrences in the SH extending to the year 2100 based on the 476 

SAM Index projection presented in c). Pearson correlation coefficients are reported in a) 477 

and b). 478 

 479 
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 481 

Figure 3 a) Stacked plots of the SH annual temperatures (z-scores; data from ERA-482 

Interim Reanalysis) and the total number of lightning-lit fires recorded in the Southern 483 

Hemisphere. b) Scatterplot of the SH annual temperatures (z-scores; data from ERA-484 

Interim Reanalysis) and the total number of lightning-lit fires recorded in the Southern 485 

Hemisphere; Black solid line in a) represents the summed SH number of lightning-ignited 486 

fires. Colour and symbol coding in b,c,d,e refers to the 20th (blue dots) and the 21st (red 487 

triangle) centuries. c) Scatterplot of the NIÑO3.4 Index (spring) and the number of 488 



 
 

lightning-lit fires across the SH; d) Scatterplot of the SAM Index (summer) and the number 489 

of lightning-lit fires across the SH; e) Scatterplot of the IOD Index (spring) and the number 490 

of lightning-lit fires across the SH. 491 
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