
Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=tjov20

International Journal of Ventilation

ISSN: (Print) (Online) Journal homepage: https://www.tandfonline.com/loi/tjov20

A preliminary assessment of the health impacts
of indoor air contaminants determined using the
DALY metric

Giobertti Morantes, Benjamin Jones, Max Sherman & Constanza Molina

To cite this article: Giobertti Morantes, Benjamin Jones, Max Sherman & Constanza
Molina (2023): A preliminary assessment of the health impacts of indoor air contaminants
determined using the DALY metric, International Journal of Ventilation, DOI:
10.1080/14733315.2023.2198800

To link to this article:  https://doi.org/10.1080/14733315.2023.2198800

© 2023 The Author(s). Published by Informa
UK Limited, trading as Taylor & Francis
Group

Published online: 18 Apr 2023.

Submit your article to this journal 

Article views: 449

View related articles 

View Crossmark data

https://www.tandfonline.com/action/journalInformation?journalCode=tjov20
https://www.tandfonline.com/loi/tjov20
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/14733315.2023.2198800
https://doi.org/10.1080/14733315.2023.2198800
https://www.tandfonline.com/action/authorSubmission?journalCode=tjov20&show=instructions
https://www.tandfonline.com/action/authorSubmission?journalCode=tjov20&show=instructions
https://www.tandfonline.com/doi/mlt/10.1080/14733315.2023.2198800
https://www.tandfonline.com/doi/mlt/10.1080/14733315.2023.2198800
http://crossmark.crossref.org/dialog/?doi=10.1080/14733315.2023.2198800&domain=pdf&date_stamp=2023-04-18
http://crossmark.crossref.org/dialog/?doi=10.1080/14733315.2023.2198800&domain=pdf&date_stamp=2023-04-18


A preliminary assessment of the health impacts of indoor air
contaminants determined using the DALY metric

Giobertti Morantesa , Benjamin Jonesa, Max Shermana,b and Constanza Molinac

aDepartment of Architecture and Built Environment, University of Nottingham, UK; bLawrence Berkeley
National Laboratory, Berkeley, CA, USA; cSchool of Civil Construction, Faculty of Engineering, Pontificia
Universidad Cat�olica de Chile, Santiago, Chile

ABSTRACT
Common metrics used for assessing air quality are based on guidelines
and/or standards for regulating concentrations that should not be
exceeded over a period. Exceeding those values would represent prob-
lematic situations. A lack of agreement on appropriate norms or stand-
ards deems this approach sub-optimal. Moreover, this approach does
not relate a proportion of exceedance to specific health outcomes. A
need to develop health-centered IAQ metrics that can quantify burden
of disease in terms of epidemiological evidence of population morbidity
and mortality supported by the best knowledge of health effects, is
pressing. This work proposes an approach that harnesses the advan-
tages of using disability adjusted life years (DALYs) as a valuable metric
to quantify and rank the burden of household air pollution, as a global
perspective. Two methods were used to compute DALYs, one mainly
based on incidence data and another mainly based on effect factors (i.e.
DALYs per unit-intake of contaminant of interest). The methods are
based on the following parameters: risk estimates, baseline incidence
rates, damage factors, indoor air contaminant concentrations, human
toxicological & epidemiological effect factors, dose–response factors,
cancer-related variables and breathing rates. Systematic searches and
reviews of peer-reviewed literature (including systematic reviews and
meta-analyses) were performed to find information on said input
parameters. Meta-analysis was used to pooled and synthesise data from
different studies. A Monte Carlo approach was used to model results in
DALYs lost. Over 1000 articles were revised and overall �200 unique
sources were used as sources of data. Ten contaminants were
accounted for with specific risk estimates and damage factors data, for
which human epidemiological effect factors were derived.
Representative concentrations of 45 contaminants were calculated.
Thirty-nine contaminants were accounted for human toxicological effect
factors. Total pooled DALYs were estimated per 100,000 exposed popu-
lation with corresponding uncertainty intervals. Estimated population-
averaged annual cost, in DALYs lost, of chronic air contaminant inhal-
ation in dwellings indicate that the contaminants with highest median
DALY loss estimates are PM10 and PM2.5 (magnitudes of 103); PMcoarse,
formaldehyde and NO2 could be found with magnitudes of 102; con-
taminants with magnitudes of 101 include radon and ozone, finally SO2

and acrolein would have magnitudes of 10�; mould-related bioaerosols
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could be of interest as well. The updated strategies allowed for the
quantification of contaminants and health outcomes that were not
accounted for in previous works. Computed DALYs have lower uncer-
tainty intervals than those previously proposed. The updated method-
ology presented in this study may be used to assess cumulative health
impacts of indoor air contaminants.

1. Introduction

Air pollution is one of the most serious health risks (WHO, 2021), and there now is enough scien-
tific evidence to justify establishing and/or upgrading approaches for quantifying the health bur-
den of (indoor)-air contaminants using current epidemiological and toxicological research.
Common metrics used for assessing air quality are based on guidelines and/or standards for reg-
ulating concentrations that should not be exceeded over a period. Exceeding them would be
problematic but the magnitude of doing so is unclear (Jones, 2017). This is because the
approach does not relate a proportion of exceedance to specific health outcomes. Therefore,
there is a pressing need to develop health-centered IAQ metrics that can quantify burden of dis-
ease in terms of epidemiological evidence of population morbidity and mortality supported by
the best knowledge of health effects. Consequently, the disability adjusted life year (DALY) has
been adopted worldwide in air pollution global burden of disease studies (Cohen et al., 2017). It
was developed in the 1990s and is the sum of the years of life lost, and the time lived with a
disability, attributable to some cause (Homedes, 1996).

A methodology to estimate the population-average health effects attributable to the inhalation
of selected air contaminants in United States residences was proposed by Logue et al. (2012) using
disease incidence data and health-related effect factors, and accounting for output uncertainty. It
uses the DALY metric by defining an intake-incidence DALY (IND) method and an intake-DALY (ID)
method. Although the method proposed by Logue et al. (2012) is pioneering because it quantified
DALY losses based on two distinct methods, the approach has limitations. Here, we provide a way
of strengthening the method, harnessing the advantages of using DALYs as a valuable metric to
quantify and rank the burden of household air pollution, using a global perspective.

2. Methods

Two methods were used to compute DALYs, one based on incidence data [IND-method], and
another based on effect factors that use a DALY value per unit-of-mass-intake of the contamin-
ant of interest [ID-method] (Logue et al., 2012).

2.1. The IND method

The IND method [Eq. (1)] uses an epidemiologically-based concentration–response function to
quantify disease incidence, which, when combined with a damage factor (DF), yields an expected
DALY loss.

DALY losses ¼ oDALYs
oðincidenceÞcase � o incidenceð Þcase (1)

In the IND model, a damage factor is used to represent the life-years adversely impacted by
each disease event, in DALY.(incidence)case�1. The DFIND is expressed for a specific contaminant
h and disease k as

oDALYs
oðincidenceÞcase ¼ DFIND k, h ¼ Damage factor (2)

2 G. MORANTES ET AL.



The second term on the right of Eq. (1), the disease incidence, refers to the relationship
between contaminant concentration (IAP), risk of disease (b), and baseline incidence (c0); see Eq. (3).
This relationship is modeled using a log-linear concentration response function given by Eq. (3). As
mortality is expected to have a greater impact on the global disease burden than morbidity, it is
recommended that mortality data be used to represent disease incidence for most air pollution-
related diseases (Cohen et al., 2017).

o ncidenceð Þcase ¼ c0k, h � ð1� e� bk, h�IAPhð ÞÞ � population (3)

where, c0k, h is the baseline incidence of disease k of contaminant h, and IAPh is a statistic
describing the concentration of contaminant h. Beta bk,h is an empirical parameter representing
the estimated change in risk for a given change in contaminant concentration, DC, for disease k
and contaminant h. This is expressed as

bk, h ¼
LnðRisk EstimateÞ

DC
(4)

A breathing rate (BR, in m3 yr�1) combined with the IAPh parameter (in unit-intake m�3)1 is
used to obtain an estimate of the human epidemiological effect factor (EFIND, in DALYs per unit-
intake of contaminant) via the IND method, as shown in Eq. (5)

Effect factor EFIND k, hð Þ ¼ DALY losses
intake

¼ DALY losses
BR � IAPh

(5)

2.2. The ID method

The ID method [Eq. (6)] quantifies DALYs as the product of effect factors (EFID), intakes, a cancer-
related parameter (ADAF) and breathing rates (BR), involving Eqs. (6)–(9). In this method, the EFID
is the product of a dose–response factor (DRF, in case kgintake

�1) and a damage factor (DFID, in
DALY.(cancer or non-cancer)case)�1.

DALY losses ¼ oDALYs
ointake

� ointake (6)

ointake ¼ IAPh � Breating Rate (7)
oDALYs
ointake

¼ Effect factor EFID j, hð Þ ¼ DRFj, h � DFIDðcancer or non�cancerÞj (8)

With DRFj, h ¼ 0:5
ED50j,h

� �
(8a)

And
oDALYs
ointake

¼ EFID combined j ¼ oDALYscancer
ointake

� ADAF

� �
þ oDALYsnon�cancer

ointake

� �
(8b)

or

oDALYs
ointake

¼ Effect factor EFIND k, hð Þ ¼ DRFk, h � DFIND k, h (9)

With DRFk, h ¼ CRFk, h
Breating Rate

� �
(9a)

2.3. The input data

Parameters described in Section 2, can have more than one available value or set of data; see
Datasets in Table 1. Thus, pooling independent data points is the recommended strategy for
data synthesis (Schmid et al., 2020).
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For the IND method, values of the parameters beta (b), baseline incidence (c0), representative
contaminant concentration ðIAPhÞ and damage factor (DFIND) are obtained by combining sys-
tematic reviews with supplementary references. Baseline disease incidences are derived from epi-
demiological studies.

For the ID method, damage factors, representing overall cancer or non-cancer effects should
be based on the latest available data from the World Health Organization (WHO) and/or the
Global Burden of Disease studies. The DRF takes as a point of departure either the ED50 (median
effective dose) benchmark measure [see Eq. (8a)] or concentration–response factors (CRF) [see
Eq. (9a)]. The ED50 is the human-equivalent lifetime daily dose per person, related to inhalation
(intake) of a substance that produces a specific effect (e.g. carcinogenic or non-carcinogenic
effects) in 50% of the population that takes that dose (Fantke et al., 2021) and CRFs are contam-
inant-associated mortality or morbidity rates per unit concentration of contaminant inhaled
(Gronlund et al., 2015). ED50 based-DRF (ED50-DRF) for the contaminants of interest are extracted
from Life Cycle Impact Assessment (LCIA) databases. CRF based-DRF (CRF-DRF) are computed
using the same epidemiological inputs as the IND method and can be derived following Fantke
et al. (2019). When EFs are based on the ED50, they are referred to as human toxicological effect
factors [Eq. (8)] whereas those based on CRFs are called human epidemiological effect factors
[Eq. (9)]. The ADAF parameter used for the estimation of cancer risks and the breathing rates
representing the volume of air breathed indoors each year, are determined from relevant sources
following a focused literature review.

2.4. The modelling

Since each method will derive an estimate of DALY and EF (one estimate via IND method and
two estimates via ID method, for a total of three theoretically possible independent DALY and
EF estimations), we pooled the results from each independent method via meta-analysis to
obtain pooled DALYs and pooled Effect Factors. To account for the uncertainty of the parame-
ters, the Monte Carlo (MC) method is applied. First, a bootstrapping technique is applied to
populate a synthetic database for each parameter and described using a probability distribution
function (PDF). The PDF is then combined with the bootstrapped results to generate random

Table 1. Summary descriptive of the IND model inputs and disease incidence output for selected contaminantsþ.

Contaminant
Health
outcome

Beta
parameter

(b)

Baseline
incidence
rate (c0)

Damage
factor
(DFIND)

Annual disease
incidences,
per 105 pop.

Parameter values [Datasets] fMain referenceg
Acrolein Asthma 0.141 (95% CI –0.082

to 0.200) [2]
fAnnesi-Maesano
et al. (2012)g

0.001 fAnnesi-
Maesano et al.
(2012)g

0.588 (95% CI
0.059–5.875) [1]
fGBD (2019)g

8.287 (95% CI
3.577–18.729)

HCHO Added
effects�

–� 9.789 (95% CI
4.249–54.005)

46.478 (95% CI
9.607–1015.678)

O3 ACM 0.001 (95% CI 0.000–
0.002) [7] fWHO
(2021)g

0.008 (95% CI 0.004–
0.016) fCrouse
et al. (2015)g

15.346 (95% CI
6.856–34.348) [3]
fOS/RD)g

1.305 (95% CI
0.031–55.739)

PM10 ACM 0.004 (95% CI 0.003–
0.006) [17] fWHO
(2021)g

0.013 (95% CI 0.007–
0.026) fFischer
et al. (2015)g

9.554 (95% CI
2.528–36.101) [3]
fOS/RD)g

349.077 (95% CI
190.536–603.739)

PM2.5 ACM 0.008 (95% CI 0.000–
0.002) [25] fWHO
(2021)g

0.007 (95% CI 0.003–
0.018) fCrouse
et al. (2015)g

15.303 (95% CI
11.798–19.850) [40]
fOS/RD)g

102.893 (95% CI
24.256–433.625)

ACM, all-cause mortality; LCM, lung cancer mortality; HCHO, formaldehyde; OD/SR, own data/systematic review.�Added effects of epidemiological data from LCM, leukaemia and asthma.
þOther contaminants not shown due to spacing issues and are available upon request.
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samples of the inputs, which in turn are used to compute the three outputs: (i) disease inci-
dence, (ii) effect factors and (iii) DALYs. We repeated this process until the means of the results
were normally distributed. All outputs are reported by their median and 95% confidence interval
of its distribution, representing the range that contains 95% of the population values.

Preliminary analysis of the input data showed that they can be well described by a lognormal
distribution around its median. This type of distribution is widely used and accepted to
adequately adjust for right-skewed data (Crow & Shimizu 1987). A MATLAB code was used to
run the Monte Carlo simulations. All pooled estimates (meta-analysis) were computed with
STATA 16.0’s ‘metan’ commands, using the DerSimonian and Laird (random effects) estimators
(Harris et al., 2008).

3. Results

Systematic searches and reviews of peer-reviewed literature (including systematic reviews and
meta-analyses) were performed to extract information on the input parameters. Over 1000
articles were identified and �200 unique sources were used as sources of data. Tables 1 and 2
provide descriptive statistics and recommended values for each input parameter for IND and ID
model, respectively. Ten contaminants were accounted for with specific risk estimates and dam-
age factors data: Acrolein, Benzene, Mould-related bioaerosols, Formaldehyde, NO2, O3, PM10,
PM2.5, Radon and SO2 (see Table 1). The methodology allowed for the identification, using the
literature, of a single representative health outcome for each of the ten contaminants (see
Table 1). The health outcome chosen to represent each contaminant is the most reported health
impact associated with it, either for mortality or morbidity endpoints.

Representative concentrations of 45 contaminants were calculated. They are all included
because they have previously been identified as contaminants of interest in dwellings (Logue
et al., 2011). Figure 1 shows the representative mid-range concentrations, including a 95% CI
and the magnitude of individual values (data sets) used to obtain them. Mid-range indoor con-
centrations for the contaminants are, in general, within the values reported by others (Logue
et al., 2011; Vardoulakis et al., 2020). With over 50 data sets, PM2.5, formaldehyde, Toluene,
Benzene and NO2 would be the contaminants with the most reported values.

The annual incidence of disease for the ten indoor contaminants and selected typical health
outcomes was calculated using Eq. (3) and data inputs are presented in Table 1. The highest dis-
ease incidences are found in PM10, PM2.5 and mould, with estimates exceeding magnitudes of
102. Because particle contaminants are based on all-cause mortality risk estimations, this is to be
expected. Mould-bioaerosols have a high value because asthma morbidity in children accounts
for a large portion of the illness burden.

Table 1 presents the damage factors for the contaminants in the IND model and their corre-
sponding number of datasets found. Our method for calculating this parameter yielded novel
damage factors for a broader range of contaminants not presented before in related works (Fazli
& Stephens, 2018). Results are based on contaminant and health outcome-specific effects, which
allows the information gaps on contaminant-related damage factors to be reduced.

To account for updated information and variability of data for standard breathing rates
(Phillips & Moya, 2013), we pool recommended values for long-term inhalation rates for adults
aged 16–81þ years (USEPA, 2011). For the ADAF parameter, the review of pertinent references
indicates that the USEPA (2005) recommendations are still in use; see CalEPA (2009). The recom-
mended estimate for the standard breathing rate is 14.80m3.(pop d)�1 (95% CI 13.50–16.20) and
for the ADAF parameter is 1.6 (95% CI 1–10). The USEtox database was used to extract ED50-
DRFs (Fantke et al., 2017). The USEtox model is chosen because it is a widely used global scien-
tific consensus model for characterising human toxicological consequences in LCIA. CRF-DRFs
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were calculated following Fantke et al. (2019). Regarding the DFID parameter, we use the latest
results from the 2019 GBD study. Table 2 shows descriptive for ID model.

Combined carcinogenic and non-carcinogenic (toxicological)-effect factors were computed for
39 contaminants using Eq. (8b) whilst (epidemiological)-effect factors were computed for ten
contaminants using Eqs. (5) and (9). The results are pooled, giving 45 contaminants with effect
factors. Results are shown in Figure 2. PM2.5 has the highest pooled effect factor [1.1 � 102

(95% CI 3.6 � 101–3.3�102)] (an order of magnitude higher than the other contaminants) indi-
cating that this would be the contaminant with the highest chronic health impacts per kg

Figure 1. Recommended representative concentrations for the 45 contaminants included in the analysis. In alphabetical order.
Central estimate and 95% CI of distribution in black. Datasets in parenthesis. �Radon in Bq m�3. ��Bioaerosols in CFU m�3.

Table 2. Summary descriptive of the ID model inputs, for selected contaminantsþ.

Contaminant

ED50-DRFc ED50-DRFnonc CRF-DRF DFIDc DFIDnonc

From USEtox Database Own computation From GBD (2019)

Acrolein NA 59.74 (95% CI 1.82–
1963.49) fnon-
carcinogenic
effectsg

25.15 (95% CI 7.34–
83.37) fAsthmag

NA 0.59 (95% CI 0.44–
0.77) fAsthmag

HCHO 1.06 (95% CI 0.27–
4.25)
fcarcinogenic
effectsg

0.01 (95% CI 0.00–
0.15) fnon-
carcinogenic
effectsg

2.92 (95% CI 0.52–
63.65) fAdded
effectsg

41.77 (95% CI 38.60–
45.15) fadded
Leukaemia and
lung cancerg

0.59 (95% CI 0.44–
0.77) fAsthmag

O3 1.09 (95% C.I. 0.16–
7.60)
fcarcinogenic
effectsg

NA 0.29 (95% CI 0.00–
18.70) fACMg

21.18 (95% CI 20.06–
22.36) fLung
Cancerg

NA

PM10 NA 7.98 (95% CI 3.21–
18.91) fACMg

NA

PM2.5 7.33 (95% CI 1.58–
33.75) fACMg

Note. Curly brackets represent fhealth outcomeg. ACM, all-cause mortality; ED50-DRFc, carcinogenic dose–response factor;
ED50-DRFnonc, non-carcinogenic dose–response factor; CRF-DRF, concentration–response based dose-response factor;
DFIDc, ID model carcinogenic damage factor; DFIDnonc, ID model non-carcinogenic Damage Factor. HCHO¼ Formaldehyde.
Added effects from LCM, leukaemia and asthma. OD/SR: Own data/systematic review. NA¼ not applicable. GBD
(2019):https://ghdx.healthdata.org/gbd-results-tool.

þOther contaminants not shown due to spacing issues and are available upon request.
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inhaled in the exposed population, in dwellings. Other PMs are among the contaminants with
the highest EFs, with chromium, NO2 and formaldehyde having all >101 effect factors. These
results represent an update to the preeminent work on human–toxicological & epidemiological
effect and damage factors of carcinogenic and noncarcinogenic chemicals for life cycle impact
assessment presented by Fantke et al. (2019) and Huijbregts et al. (2005). The results given in
Figure 2 have narrower confidence intervals when compared with those of Huijbregts et al. (2005).

Total pooled DALYs were estimated per 100,000 population with corresponding uncertainty
intervals; see Figure 3. Estimated population-averaged annual cost, in units of DALYs lost, of

Figure 2. Pooled effect factors. Highest to lowest DALY median. Central estimate and 95% CI of distribution in black. �Radon
in DALY.(10�9Bq-intake)�1. ��Bioaerosols in DALY.(10�9CFU-intake)�1

Figure 3. Pooled DALYs. Highest to lowest median. Central estimate and 95% C.I. of distribution in black.
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chronic air contaminant inhalation in dwellings, indicate that the contaminants with the highest
median pooled DALY loss estimates are PM10 [1.9 � 103 (95% CI 4.4 � 102–8.7 � 103)] and
PM2.5 [1.5 � 103 (95% CI 5.3 � 102–4.4 � 103)]. PMcoarse, formaldehyde, NO2, radon and
ozone have medians among 102–101. Acrolein and SO2 are within 100. Mould-related bioaerosols
could still be of interest having >0.5 DALYs per 100,000 exposed population. The confidence
intervals of the results indicate a lower uncertainty range than those presented by Logue et al.
(2012).

Contaminant with highest median DALYs include the so called criteria pollutants, which are
defined as the indoor contaminants with the highest health impacts based on the DALY metric.
There is sufficient epidemiological evidence that indicates PM10, PM2.5, NO2, O3 and SO2 have the
potential to be associated with harm in humans, using other health based-metrics such as rela-
tive risks (WHO, 2021). Other airborne contaminants where health based-evidence exists to indi-
cate that they are contaminants of interest in the indoor environment, having also elevated
DALY values, include Formaldehyde (Golden, 2011), Radon (Pawel & Puskin, 2004), Acrolein
(Ghilarducci & Tjeerdema, 1995) and mould (Heseltine and Rosen, 2009).

4. Conclusions

PM2.5 have the highest median DALYs per unit intake (1.1 � 102 (95% CI 3.6 � 101–3.3 � 102)),
being one order of magnitude above the rest of contaminants included in the analysis, indicat-
ing that higher harm is associated with fine PM. The highest absolute DALY medians were found
for PM10 with 1.8 � 103 (95% CI 4 � 102�9 � 103) and PM2.5 with 1.9 � 103 (95% CI 4.4
� 102–8.7 � 103). PM10 is higher because it includes the burden associated with the PM2.5 frac-
tion. Reporting representative indoor concentrations or disease incidence as the sole metrics to
assign harm from exposure to contaminants is rendered suboptimal. Computed DALYs have
lower uncertainty intervals than those previously proposed. The updated methodology presented
in this study may be used to assess cumulative health impacts of indoor air contaminants and
contribute to the development of standards.
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