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A B S T R A C T

As part of its strategic economic and social plan, Kazakhstan has a target of increasing the share of renewables
and alternative energy sources in power generation to 50% by 2050. This greatly contrasts with the current
situation, where around 90% of electricity is produced from fossil fuels. To achieve the target, the introduction of
between 600 and 2000MW of nuclear power is expected by 2030. This would impact water resources, already
under stress due to significant losses, heavy reliance on irrigation for agriculture, unevenly distributed surface
water, variations in transboundary inflows, amongst others. This study presents an integrated analysis of the
water-energy systems in Kazakhstan, to investigate the water resource availability to support such energy system
transition.

1. Introduction

Kazakhstan has vast reserves of oil, gas, coal and uranium [1],
which the country utilises to produce around 90% of its electricity [2].
Recently, as part of its strategic economic and social plan, the gov-
ernment set out an ambitious target of increasing the share of renew-
ables and alternative sources of energy in its power generation mix to
50% by 2050 [3]. While the transition to a green economy provides a
unique opportunity to improve the sustainability of the national energy
system, major natural resource challenges currently faced in the
country should be taken into account.

Given that Kazakhstan is one of the most water scarce countries on
the Eurasian continent [4], water resource management is of critical
importance. The current water resource system is already under stress
due to significant losses, heavy reliance on irrigation in the agricultural
sector, unevenly distributed surface water, vulnerability to climate
change and heavy dependence on transboundary inflows, amongst
other issues [5–7]. Agriculture is the major water resource user, ac-
counting for around 70% of the total withdrawal. However, due to
inefficient irrigation practices and losses in the water transportation
network [8], a significant part of the total use is losses. Industry, in-
cluding the energy sector, and public supply respectively account for
around 26% and 5% [9] of the remaining water withdrawal. The

availability of water resources in Kazakhstan is heavily reliant on
transboundary inflows, with 45% of the stored water resources in the
country formed outside of its boundaries [4] flowing into the Irtysh, Ili,
Chu, Talas, Ural and Syr Darya rivers. These inflows are projected to
decrease by 30% per year by 2030 [8]. Moreover, the reliance on
transboundary inflows from neighbouring countries has been a source
of geopolitical tensions in the past [10,11] and all of these issues could
be potentially exacerbated, given the vulnerability of the region to the
effects of climate change [12].

Even though the water resources are scarce and not efficiently
managed, the continuous provision of energy, which relies on avail-
ability of water resources, is important to the economy and the sector
will continue to expand as the country continues to pursue its targets
towards higher development standards. While several government po-
licies on water and energy resources have been proposed for each of the
sectors, the two systems are mostly treated separately. As a prominent
example, water resources have not been considered in the National
2050 Low Carbon Energy Strategy. This is a significant omission, given
the high amount of water required in the energy sector for extraction,
refining and cooling purposes [13,14].

The high share of fossil use in the power sector in Kazakhstan has
significant implications on water withdrawals, which are required
throughout the life cycle of thermoelectric power production. This
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includes fuel extraction, operation of cooling systems in power plants,
and infrastructure dismantling [15]. Currently, approximately 18% of
freshwater withdrawals in the country are used for cooling thermo-
electric power plants, where closed-loop systems are commonly used
[16]. Considering that energy consumption is predicted to increase by
over 50% in 2030 relative to 2005 [17] and given the existing stress on
water resources, the interactions between the energy and water systems
have become key challenges to sustainable development in Kazakhstan.

The key question we address in this work is whether water resource
availability in Kazakhstan would be adequate to support the transition
to a green economy, with a new energy system, without compromising
other important water uses and ecosystem services. Given the chal-
lenges mentioned above, it is clear that tackling this question requires
an integrated analysis of the water-energy systems. We seek to address
this question considering two main objectives: (1) Analyse current and
future water requirements for the energy system per basin; (2) Use the
output of the analysis in (1) to assess whether the changes in the energy
system and the associated water requirements will have impact on the
availability of water resources for other sectors.

This paper is structured as follows: Section 2 provides a review of
the current situation in the water and energy resources, government
projections and initiatives for both sectors and the details of the
methodology, including data sources, description of scenarios, and data
analysis methods; Section 3 presents the results of the analysis and a
discussion on the significance of the results; and Section 4 provides
conclusions and pointers to future research needs for a better under-
standing of the energy-water nexus in Kazakhstan.

2. Methodology

To determine the implications of Kazakhstan's current and future
energy system configuration for water resources, this study maps the
interactions between the water and energy systems, and estimates the
associated current (2014) and future (2040) water requirements. This
study specifically analysed water use in: the extraction of coal, oil,
natural gas and uranium; oil refining; and thermal power generation
(including proposed new nuclear plants). This is accomplished in three
stages: (1) Review of the current situation and mapping of the current
linkages between the energy sector and water resources; (2) estimation
of the current water requirements for the energy sector at the river
basin scale; and (3) estimation of future water resource requirement for
the sector in 2040 across each river basin based on government pro-
jections, and considering two scenarios of nuclear power plant location
– the energy pathways considered are based on information from the
literature, and not modelled specifically for this study. The results of the
analysis are then compared to the water availability in each of the
major river basins in the country to identify regions which could be
most impacted by the transition to a new energy system. The base year
of 2014 is chosen to make use of the most current publicly available
data on energy and water resources, while 2040 was chosen to coincide
with the timeframe commonly used in government projections for the
energy system transitions [2]. Potential impacts of climate change are
not taken into account in this study.

2.1. Current situation and linkages between water and energy in
Kazakhstan

The territory of Kazakhstan contains 8 main river basins: Aral-
Syrdarya, Balkhash-Alakol, Irtysh, Ishim, Nura-Sarysu, Shy-Talas,
Tobol-Turgai, and Ural-Caspian [18]. Tobol-Torgai and Nura-Sarysu
account for 21% of the country's total population and approximately
35% of the total arable land but have only 3% of the total water re-
sources in the country. The Irtysh, Aral-Syrdarya and Balkhash-Alakol
river basins account for almost 75% of the water resources generated
within the country. The western part of Kazakhstan (Ural-Caspian
basin), the oil and gas province of the country, depends significantly on

groundwater and water desalination, contributing around 30–35% of
the total water supply, as a source of drinking water and irrigation, with
the remaining 65–70% from surface water [9]. The availability of water
resources is particularly low in the river basin of Tobol-Turgai, which
often experiences water shortages, and Nura-Sarysu, where the low
water resources need to be complemented by a canal from the Irtysh
river.

The energy sector of Kazakhstan is largely dominated by fossil fuels,
with vast reserves of coal, gas, and oil. There are currently 76 power
plants with an installed capacity of 20.5 GW, including 18.1 GW from
thermal power plants, and 2.4 GW from hydroelectric power plants [2].
The majority of the thermal power plants are coal-fired, accounting for
68% of total electricity generation. Gas-fired plants account for around
20%, while the remaining generation is met by hydropower (around
10%) and a small contribution from renewables [2].

The industry sector accounts for the highest electricity demand in
the country (around 70% of total energy consumption in 2014) [19].
For this reason, the location of the majority of the power plants reflects
the geographical distribution of industry, with a high proportion being
located in the north and eastern parts of the country. The industry
sector is highly energy-intensive, and uses two to three times more
energy than the average for developed OECD countries [20]. Thus the
potential for energy savings in Kazakhstan's industrial sector is sig-
nificantly high [21].

The current use of water in the energy sector is mainly underlined
by the extraction of coal, oil, natural gas, and uranium, crude oil re-
fining and thermo-electric cooling. Water withdrawals for power sta-
tion cooling, in particular, present a major challenge because spatial
patterns of energy and water availability do not match those of resource
demand and economic and social development [22]. Around 80% of
total electricity is produced in the industrial north by power plants
located near coal mines in Irtysh and Nura-Sarysu river basins [23]
which leads to relatively high water withdrawals for cooling in these
basins.

Kazakhstan is aiming to reduce carbon emissions per unit of GDP in
2020 by 15% and 25% by 2050 compared to 1992 levels [19]. In order
to meet these goals and provide access to sustainable energy services,
the country is aiming to reduce the share of coal in its energy mix. The
National 2050 Low Carbon Energy Strategy (Directive No. 577 of
30.05.2013) seeks to raise the share of total energy consumption sup-
plied by renewable energy sources (50% of electricity must be supplied
by renewable energy sources by 2050) and natural gas. Nuclear energy
is also expected to play an important role in Kazakhstan's transition to a
low-carbon energy future, with plans to build a nuclear power plant
with a capacity between 600 and 2000MW by 2030. The period of
implementation for this project is expected to be between 2020 and
2030. This is likely to have a significant impact on water resources as
nuclear electricity generation requires large amounts of water for
cooling.

2.2. Estimation of current water requirements for the energy sector

The approach used in this study for the estimation of water re-
quirements for the energy sector is in line with the methodology used in
various water-energy nexus studies [16,24–26], in which the authors
estimated water requirements based on the primary fuel type, mode of
extraction, refining processes and conversion and cooling technology
used. The energy sector technologies are therefore mapped and dis-
aggregated under these key categories at the national level. However,
whilst key energy sector policies and plans are usually taken at the
national/regional level, water resource required for implementing such
plans and the potential associated impacts are best analysed at the river
basin level where actual withdrawals take place [24]. Additionally, due
to the disproportionate spatial distribution of water resources, national
level analysis may not reveal key potential stresses posed by the energy
sector in water-poor basins of the country. Thus, in this study data for
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energy and water was collected and analysed at the basin scale, and
involves the eight main river basins of the country.

The current water required for the extraction of both underground
and surface-mined coal, for onshore oil and gas, and for extraction of
uranium via in-situ leaching (ISL), were estimated based on annual
production data from a combination of national statistics [2] and other
energy extraction industry and organizations [27–29] and water use
coefficients per unit of extracted resource [30]. Similarly, water re-
quirements for refining were estimated for the production of petroleum
products and coal washing processes using the above methodology.
Water requirements for power generation were estimated by combining
data for individual power plants including the technology type, primary
fuel use and cooling technology, with the annual electricity production
data and the water use coefficients associated with these technologies.
The sources for these data include national and information from
websites of Kazakhstan utility companies [31–36]. The cooling tech-
nologies for each power station were identified using data published by
the individual plants and satellite imagery from Google Earth and Bing
Maps. As there is currently no publicly available data on specific water
used by cooling technology types in Kazakhstan, this study employs
water use coefficients for different technologies published in various
studies for power generation in China [30], which is assumed to offer
the best available estimates in terms of age of power plants, geography
and climatology.

2.3. Estimation of future water requirement for the energy sector

The estimation of future water requirements for the energy provi-
sion across the key river basins in Kazakhstan follows the same ap-
proach used in estimating current water resources, but incorporates key
assumptions of the evolution of the energy sector based on government
projections, plans and projected population growth and associated de-
mand increases, as presented in the report “The National Energy Report
2015″ produced by KazEnergy [2]. According to this report onshore oil
and coal extraction is projected to decrease by 12% and 20%, respec-
tively, by 2040 while uranium production is assumed to remain the
same as in 2014. In the petroleum-refining sector, the three main oil
refineries in Kazakhstan are assumed to continue operating in 2040,
with a capacity increase of 20%.

In the electricity generation sector, the total thermal generation
capacity fuelled by fossil resources is projected to remain approxi-
mately the same as in 2014. However, the share of gas generation is
projected to increase to 31% and coal decreased to 50% of total gen-
eration. This assumption is predicated on the Kazakh government's
ambitious plans to significantly reduce carbon emissions per unit of
GDP of the energy sector by 25% in 2050. The additional capacity re-
quired to meeting future demands is projected to be provided by the
introduction of 1.2GWe nuclear generation and a small share of wind
(the business as usual scenario for 2040 includes 3 GW of new wind
capacity). The hydro generation is projected to increase by less than
10% from 2014 to 2040, with this increase in capacity occurring along
the same basins as the existing capacity in 2014. Fig. 1 shows the
electricity mix for 2014 and 2040 considered in this study.

Future power stations are generally assumed to be located in the
same river basins as today, except the planned new nuclear power
plants, for which two location scenarios are considered: Ulken in the
South (Balkash-Alakol basin) and Kurchatov in the Northeast (Irthysh
basin) and some of the new gas and coal power stations whose locations
are dependent on the location of the new nuclear power plant, in ac-
cordance with the “The National Energy Report 2015" [2]. This has
been used as the basis to define two future energy scenarios that co-
incide with the potential locations currently under consideration by the
government: 2040a, with the nuclear power station located in Ulken
and 2040b, with the nuclear power plant located in Kurchatov. In terms
of cooling technologies, the study considers a business as usual scenario
that assumes the deployment of the same types of current technology in

future. The distribution of cooling technologies used in power plants
per primary source within each basin is presented in table A1 in the
supplementary information. Since our business as usual scenario as-
sumes no change in technologies, the cooling technologies used in
thermal power plants of each type in 2040 are assumed to be the same
as in 2014 To estimate the water stress imposed by the energy sector on
water resource at the basin level, this study estimated the percentage of
available resource that is deployed for energy provision.

3. Results and discussion

The results are presented in three main parts. The first part presents
the resource extraction and refining and electricity generation per basin
in 2014 and 2040. This is followed by the results of the analysis of the
current and 2040 water requirements for the energy system per basin.
Finally, the output of the comparison of the water requirements for the
energy system with the total renewable water resources per basin are
presented.

3.1. Resource extraction, refining and electricity generation per basin

Given the characteristics of the Kazakhstan energy system in 2014
and 2040, the main uses of water resources in the energy system con-
sidered in this study are those used in the extraction of coal, uranium,
oil and gas, crude oil refining and thermal electricity generation. In
order to estimate the total water withdrawals per basin, the production
of energy resources, oil products in refineries and generated thermal
electricity per basin, were estimated in the first step of this study. As
most of the energy extraction data from the main bibliographic sources
were categorized by oblast, the available data were used in combination
with a GIS analysis of the geographical limits of the basins to allocate
coal and uranium mines, oil and natural gas extraction sites, refineries
and power plants and associated production to specific basins. The re-
sults of this allocation for 2014 and 2040 for extraction of the different
energy resources and crude oil refining are presented in Table 1 to
Table 4. The results for the allocation of the thermal electricity gen-
eration by primary resource and by basin in 2014 and 2040 are shown
in Fig. 2, considering the two scenarios that arise from the alternative
locations of the nuclear power plant, 2040a (Ulken) and 2040b
(Kurchatov). Overall the results show that energy resource extraction,
refineries and power plants are unevenly distributed throughout the
basins, which leads to different levels of impact on water resources, as
these are also not uniformly distributed.

The results in Table 1 show that coal extraction is concentrated
around the Irtysh and Nura-Sarysu basins (corresponding to the

Fig. 1. Current and future electricity generation in Kazakhstan. Source: “The
National Energy Report 2015” [2].
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exploration of reserves in the Karaganda and Pavlodar oblasts), mainly
from open-pit mines, with the only underground mine considered in
this study located in the Nura-Sarysu basin [2]. Total coal extraction is
projected to fall between 2014 and 2040 for all basins, except for the
Tobol-Turgay basin. Similarly, uranium reserves are also aggregated in

Table 1
Coal extraction (in TWh) in 2014 and 2040.

Water basin Type 2014 2040

Ishim Open-pit 11.2 7.9
Aral-Syrdarya Open-pit 35.8 25.3
Nura-Sarysu Open-pit 147.5 104.4
Nura-Sarysu Underground 50.3 35.6
Tobol-Turgay Open-pit 0.0 47.2
Irtysh Open-pit 314.8 222.7

Fig. 2. Current and future thermal electricity generation (in TWh) by basin, considering two alternative locations for the nuclear power plant: Ulken (2040a) and
Kurchatov (2040b).

Table 2
Uranium Extraction (in tonnes of Uranium) in 2014 and 2040.

Water Basin 2014 2040

Irtysh 3155.06 3155.06
Shu-Talas 10913.06 10913.06
Aral-Syrdarya 8188 8188
Ishim 698 698

Table 3
Oil extraction (in TWh) in 2014 and 2040.

Water Basin 2014 2040

Ural-Caspii 825.2 864.8
Aral-Syrdarya 115.2 69.8
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a small number of sites, located along the Shu-Talas, Aral-Syrdarya and
Irtysh basins (Table 2). Yearly uranium production is assumed constant
between 2014 and 2040. Oil extraction, and accompanying natural gas,
is mainly concentrated in the Ural-Caspii basin, with a smaller share of
extraction occurring in the Aral-Syrdarya basin (Table 3). Levels of
crude oil production are expected to increase slightly in the Ural-Caspii
basin while decreasing significantly in the Aral-Syrdarya basin. Crude
oil refining occurs in three main refineries located respectively on the
Shu-Talas, Isthysh and Ural-Caspii basins (Table 4), with levels of
production of oil products projected to increase significantly from 2014
to 2040 in the Irtysh and Ural-Caspii basins, while remaining relatively
unchanged in the Shu-Talas basin.

Fig. 2 shows total thermal electricity generated by primary source
and by basin, for the base year and the two alternative 2040 energy
system configurations. The results show that most of the electricity
thermal coal generation, in the base year and future, is located in the
Irtysh basin. This basin is home to a major industrial centre that re-
presents a significant share of the overall electricity demand. Most of
the remaining coal capacity located in the Nura-Sarysu, Ishim and
Balkash-Alakol basins. Nuclear electricity generation could also play a
significant role in the Irtysh basin, in case the Kurchatov site if chosen
for the nuclear power plant. The alternative location for the nuclear
power station in Ulken would lead to a very significant increase in the
levels of electricity generation in the Balkash-Alakol basin. The pro-
jected increase of capacity in this region is mainly aimed at providing
for increased demand from the domestic sector. Natural gas generation
is mainly located in the Ural-Caspii and Balkash-Alakol basins, with a
projected increase in electricity generation in both basins and for both
future energy scenarios.

3.2. Analysis of the water requirements for the energy system per basin

The water requirements for the energy system in 2014 and 2040,
taking into account the allocation of energy resource extraction, re-
fining and electricity production to the different basins are presented as
Sankey diagrams in Fig. 3 and Fig. 4, representing the two alternative
future energy system configurations. Further details of the cooling
technologies by fuel source and basin can be found in Table A2 (sup-
plementary material). The Sankey diagrams show the total water
withdrawals for the energy system disaggregated into extraction, power
generation and refining, by basin in 2014 and in each of the future
energy scenarios. Generally, electricity generation is responsible for
over 90% of the water requirements for the energy system and the Ir-
tysh basin has the highest overall water withdrawals. The results show
an increase in total water withdrawals for both future energy scenarios,
with the bulk of the increase taking pace in the power generation
sector, although this increase is not uniformly distributed amongst the
basins (see Fig. 5).

The results for the 2040 energy system configuration that stems
from a preference for the Ulken nuclear location (2040a) is shown in
Fig. 3. The most significant change in water withdrawals occurs in the
Balkash-Alakol basin, where the water requirements increase approxi-
mately by a factor of 14 relative to the base year. This is mainly due to
the nuclear power plant siting in this basin and the assumption that the
cooling technology is a once-through system.

Fig. 4 shows the results for the 2040 energy system configuration
that stems from a preference for the Kurchatov nuclear location (2040b)

in the Irtysh basin. The most significant change in water withdrawals
occurs in the Irtysh basin, where the water requirements increase by
approximately 60%. Similarly to the other future energy scenario, this
is mainly due to the nuclear power plant siting in this basin and the
assumption that the cooling technology is a once-through system.

3.3. Comparison of the water requirements with the total renewable
resource available per basin

Finally, in order to determine whether the energy system water
requirements in the base year and 2040 represent a significant stress on
the water resources, the overall level of water withdrawals were ex-
pressed as percentages of the total renewable water resources available
in each basin. The results are presented in Fig. 4, where only require-
ments that represent a share above 5% of the total renewable water
resources are shown. Overall, the results show that water withdrawals
for the energy system are very significant in Nura-Sarysu, representing
approximately 60% of the total renewable resources in the basin. The
results show that this impact is decreased if the Kurchatov site is chosen
for the new nuclear generation. However in both scenarios the with-
drawals for the energy system constitute a significant share of the
available water resources in the basin. The energy system also re-
presents around 10% of the total renewable water resource in the Irtysh
basin in 2014, with the nuclear power plant leading to an increase of
this share to approximately 16%. This is particularly significant as the
Irtysh river has a significant share of international transboundary flows.
The impact of the nuclear power plant in the Ulken site is also shown
through the significant increase of the share of water resources that is
allocated to the energy system in Balkash-Alakol basin when this site is
chosen.

4. Conclusions

The study had two key objectives, first, to analyse the current and
future water requirements for the energy system per basin, and second,
to assess whether the changes in the energy system and the associated
water requirements will have impact on the availability of water re-
sources for other sectors. From the output of the analysis presented it
can be concluded that the current energy system of Kazakhstan requires
a significant amount of water resources for the operation, especially for
power plant cooling, and future changes would further increase these
demands. However, the overall impacts on renewable resource avail-
ability differs from basin to basin and therefore by extension the impact
on other sectors depends on the basin under consideration.

It has been shown that the development of the energy system in
Kazakhstan can greatly reduce the water available for other sectors at
the basin level (case in point Nura-Sarysu). This presents an opportu-
nity to plan long term changes in the energy system with the specific
aim of reducing the impact on the water stressed basins. This could be
achieved by: (1) allocating less water intensive power generation ca-
pacity to the basin; or, (2) by choosing power plant cooling technolo-
gies that require less water – e.g. air or hybrid cooling.

This study has also shown that the future changes in the energy
system of Kazakhstan are likely to have a significant impact on regions
that are highly dependent on transboundary water resources. As men-
tioned in Section 1, around 45% of available water resource originates
from transboundary inflows, which are projected to decrease by as
much as 30% by 2030. Considering that the proposed locations of the
new nuclear capacity are within transboundary basins, namely Ulken in
the Balkash-Alakol and Kurchatov in the Irtysh, changes in future in-
flows could significantly affect the operation of these power plant units.
For instance, with the energy scenario considering Ulken as the future
location of the new nuclear capacity, water withdrawals in the Balkash-
Alakol basin would increase by a factor of 14, relative to base year. On
the other hand, opting for the Kurchatov site would lead to a 60% in-
crease in water withdrawals in the Irtysh basin. Thus, this study shows

Table 4
Crude oil refining (in TWh) in 2014 and 2040.

Basin 2014 2040

Shu-Talas 61.7 62.9
Irtysh 57.0 71.0
Ural-Caspii 57.0 76.8
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that the choice of location of future nuclear power stations is crucial
because competition for water in the proposed catchments may be
significant and this could limit the amount of resources available for the
efficient operation of the energy system.

The key problems highlighted by this study regarding future water
requirements for the energy sector of Kazakhstan, coupled with the
uneven spatial and temporal distribution of natural resources suggest
the need for further studies that incorporate of the following:

(1) Scenarios of seasonal availability of water or irregular patterns of
precipitation, both spatial and temporal (e.g. perform studies with
different scenarios of water availability). This would provide in-
sight on potential future water availability for all sectors and how
withdrawal from the energy sector may contribute to water stress
levels across different regions of the country. Additionally, this
would highlight the impacts of climate change on energy system

operation;
(2) Water and energy resource availability and demand should be

analysed at higher temporal and spatial scale (bottom-up GIS ana-
lysis). This would allow for a more detailed analysis of any potential
plant level water demand and supply dynamics as energy systems
operate at high temporal resolution.

(3) The analysis of water and energy issues in Kazakhstan should be
carried out within the context of water and energy policies of all the
other countries in the region that share the water resources. This
would allow the harmonization of water dependent energy and
industrial policies in the region, thus avoiding potential conflicts
and operational problems between countries sharing common re-
sources.

(4) Expand the analysis to include water withdrawals by other sectors.
This would reveal the key trade-offs between transitioning to a low-
carbon energy systems that relies significantly on water intensive

Fig. 3. Water requirements for the energy system in 2014 and 2040, for the Ulken nuclear power plant location.

Fig. 4. Water requirements for the energy system in 2014 and 2040, for the Kurchatov nuclear power plant location.
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energy technologies and other industrial, domestic and ecosystem
services.

Acknowledgements

The research of DK, ZSM, PR and NS was funded by ESPRC through
the Whole System Energy Modelling (wholeSEM) consortium, EPSRC
Grant number EP/K039326/1. Additionally, ZSM gratefully acknowl-
edges the funding of Project NORTE-01-0145-FEDER-000010 – Health,
Comfort and Energy in the Built Environment (HEBE), co-financed by
Programa Operacional Regional do Norte (NORTE2020), through
Fundo Europeu de Desenvolvimento Regional. The research of MK and
MC was supported by the British Council Newton-Al-Farabi Partnership
Programme award ‘The potential application of renewable energy for
rural energy services and electrification in Kazakhstan’. MK would also
like to thank the Austrian Agency for International Cooperation in
Education and Research for the award of Ernst Mach Grant.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://
doi.org/10.1016/j.esr.2019.04.009.

References

[1] M. Karatayev, M.L. Clarke, A review of current energy systems and green energy
potential in Kazakhstan, Renew. Sustain. Energy Rev. 55 (2016) 491–504.

[2] KazEnergy, The National Energy Report, (2015).
[3] Government of Kazakhstan, Concept for Transition of the Republic of Kazakhstan to

Green Economy (Directive № 577 of 30.05, (2013), p. 2013.
[4] Food and Agriculture Organization of the United Nations, AQUASTAT – FAO's

Information System on Water and Agriculture, (2016) [cited 2017 20 May];
Available from: www.fao.org/faostat/en/.

[5] Ministry of Agriculture of the Republic of Kazakhstan, State Water Management
Program Implementation Report, (2015).

[6] Interstate Commission on Sustainable Development, National Report on the State of
the Environment and Resource Use of Kazakhstan, (2016) [cited 2017 20 May];
Available from: https://www.mkurca.org/.

[7] Ministry of Agriculture of the Republic of Kazakhstan, Report On State Support of
the Kazakhstani Agro-industrial Complex and Prospects for Improving the
Competitiveness of Domestic Agribusiness, (2017).

[8] National Agro Business 2020 Programme, (2013) [cited 2017 20 May]; Available
from: http://mgov.kz/.

[9] National Statistic Agency, Statistics of Water, Agriculture, Forestry, Hunting and
Fisheries, (2017) [cited 2017 20 May]; Available from: https://www.stat.gov.kz/.

[10] B. Mosello, Water in Central Asia: a prospect of conflict or cooperation? J. Public
Int. Aff. 19 (2008).

[11] R. Qobil, Will Central Asia Fight over Water? (2016) http://www.bbc.com/news/

magazine-37755985.
[12] T. Siegfried, et al., Will climate change exacerbate water stress in Central Asia?

Clim. Change 112 (3–4) (2012) 881–899.
[13] M. Flörke, et al., Domestic and industrial water uses of the past 60 years as a mirror

of socio-economic development: a global simulation study, Glob. Environ. Chang.
23 (1) (2013) 144–156.

[14] E. Mielke, L.D. Anadon, V. Narayanamurti, Water Consumption of Energy Resource
Extraction, Processing, and Conversion, Belfer Center for Science and International
Affairs, 2010.

[15] World Energy Council, Water for Energy, (2010).
[16] M. Karatayev, et al., The water-energy-food nexus in Kazakhstan: challenges and

opportunities, Energy Procedia 125 (2017) 63–70.
[17] D. Naoko, Kazakhstan's Energy Outlook, (2010).
[18] UNDP, Water Resources of Kazakhstan in the New Millennium, (2004).
[19] Asian Development Bank, Country Partnership Strategy: Kazakhstan 2012–2016.

Sector Assessment (Summary): Energy, (2016) [cited 2017 5 June]; Available from:
https://www.adb.org/ru/kazakhstan/main.

[20] International Energy Agency, Kazakhstan: Energy Balances for 2000 and 2014,
(2017) [cited 2017 10 July]; Available from: https://www.iea.org/statistics/.

[21] Y. Sarbassov, et al., Electricity and heating system in Kazakhstan: exploring energy
efficiency improvement paths, Energy Policy 60 (2013) 431–444.

[22] M. Kazmaganbetova, et al., Sectoral Structure and Energy Use in Kazakhstan's
Regions, (2016).

[23] A. Kerimray, et al., Coal use for residential heating: patterns, health implications
and lessons learned, Energy for Sustainable Development 40 (2017) 19–30.

[24] D.D. Konadu, R.A. Fenner, Catchment Level Water Resource Constraints on UK
Policies for Low‐Carbon Energy System Transitions by 2030, Global Challenges,
2017.

[25] D.D. Konadu, et al., Land use implications of future energy system trajectories—the
case of the UK 2050 Carbon Plan, Energy Policy 86 (2015) 328–337.

[26] X. Liao, J.W. Hall, N. Eyre, Water use in China's thermoelectric power sector, Glob.
Environ. Chang. 41 (2016) 142–152.

[27] Bloomberg, Company Overview of Maikuben West Holding JSC, (2017) [cited 2017
1 November]; Available from: http://www.bloomberg.com/research/stocks/
private/snapshot.asp?privcapId=41074148.

[28] Atlas Copco, Coal & Gold Mining in Kazakhstan, (2017) www.atlascopco.com.
[29] Mining Atlas, Mining Atlas Kazakhstan, 2017, https://mining-atlas.com/country/

Kazakhstan.php.
[30] Y. Qin, et al., China's energy-water nexus–assessment of the energy sector's com-

pliance with the “3 Red Lines” industrial water policy, Energy Policy 82 (2015)
131–143.

[31] Eurasian Energy Corporation JSC, (2017) [cited 2017 July]; Available from: www.
erg.kz/en/content/deyatel-nost/predpriyatiya-v-sostave-erg#5.

[32] European Bank for Reconstruction and Development, Karaganda Power, 2017
[cited 2017 July]; Available from: http://www.ebrd.com/work-with-us/projects/
psd/karaganda-power.html.

[33] KEGOC, KEGOC Info on Electricity Balance for, (2014) [cited 2017 July]; Available
from: www.kegoc.kz/report2014/eng/energy-balans.php.

[34] Kazatomprom, KazAtomProm Energy Company, Data for the MAEK Power Station,
(2017) [cited 2017 July]; Available from: http://www.kazatomprom.kz/en/
content/company/activity/energetics/traditional-energy.

[35] Kazakhstan Utility Systems, Annual Report 2015, (2015).
[36] World Nuclear Association, (2017) [cited 2017 July]; Available from: www.world-

nuclear.org/information-library/country-profiles/countries-g-n/kazakhstan.aspx.

Fig. 5. Total water withdrawal as a percentage of renewable water resources per basin.

P. Rivotti, et al. Energy Strategy Reviews 24 (2019) 261–267

267

https://doi.org/10.1016/j.esr.2019.04.009
https://doi.org/10.1016/j.esr.2019.04.009
http://refhub.elsevier.com/S2211-467X(19)30036-7/sref1
http://refhub.elsevier.com/S2211-467X(19)30036-7/sref1
http://refhub.elsevier.com/S2211-467X(19)30036-7/sref2
http://refhub.elsevier.com/S2211-467X(19)30036-7/sref3
http://refhub.elsevier.com/S2211-467X(19)30036-7/sref3
http://www.fao.org/faostat/en/
http://refhub.elsevier.com/S2211-467X(19)30036-7/sref5
http://refhub.elsevier.com/S2211-467X(19)30036-7/sref5
https://www.mkurca.org/
http://refhub.elsevier.com/S2211-467X(19)30036-7/sref7
http://refhub.elsevier.com/S2211-467X(19)30036-7/sref7
http://refhub.elsevier.com/S2211-467X(19)30036-7/sref7
http://mgov.kz/
https://www.stat.gov.kz/
http://refhub.elsevier.com/S2211-467X(19)30036-7/sref10
http://refhub.elsevier.com/S2211-467X(19)30036-7/sref10
http://www.bbc.com/news/magazine-37755985
http://www.bbc.com/news/magazine-37755985
http://refhub.elsevier.com/S2211-467X(19)30036-7/sref12
http://refhub.elsevier.com/S2211-467X(19)30036-7/sref12
http://refhub.elsevier.com/S2211-467X(19)30036-7/sref13
http://refhub.elsevier.com/S2211-467X(19)30036-7/sref13
http://refhub.elsevier.com/S2211-467X(19)30036-7/sref13
http://refhub.elsevier.com/S2211-467X(19)30036-7/sref14
http://refhub.elsevier.com/S2211-467X(19)30036-7/sref14
http://refhub.elsevier.com/S2211-467X(19)30036-7/sref14
http://refhub.elsevier.com/S2211-467X(19)30036-7/sref15
http://refhub.elsevier.com/S2211-467X(19)30036-7/sref16
http://refhub.elsevier.com/S2211-467X(19)30036-7/sref16
http://refhub.elsevier.com/S2211-467X(19)30036-7/sref17
http://refhub.elsevier.com/S2211-467X(19)30036-7/sref18
https://www.adb.org/ru/kazakhstan/main
https://www.iea.org/statistics/
http://refhub.elsevier.com/S2211-467X(19)30036-7/sref21
http://refhub.elsevier.com/S2211-467X(19)30036-7/sref21
http://refhub.elsevier.com/S2211-467X(19)30036-7/sref22
http://refhub.elsevier.com/S2211-467X(19)30036-7/sref22
http://refhub.elsevier.com/S2211-467X(19)30036-7/sref23
http://refhub.elsevier.com/S2211-467X(19)30036-7/sref23
http://refhub.elsevier.com/S2211-467X(19)30036-7/sref24
http://refhub.elsevier.com/S2211-467X(19)30036-7/sref24
http://refhub.elsevier.com/S2211-467X(19)30036-7/sref24
http://refhub.elsevier.com/S2211-467X(19)30036-7/sref25
http://refhub.elsevier.com/S2211-467X(19)30036-7/sref25
http://refhub.elsevier.com/S2211-467X(19)30036-7/sref26
http://refhub.elsevier.com/S2211-467X(19)30036-7/sref26
http://www.bloomberg.com/research/stocks/private/snapshot.asp?privcapId=41074148
http://www.bloomberg.com/research/stocks/private/snapshot.asp?privcapId=41074148
http://www.atlascopco.com
https://mining-atlas.com/country/Kazakhstan.php
https://mining-atlas.com/country/Kazakhstan.php
http://refhub.elsevier.com/S2211-467X(19)30036-7/sref30
http://refhub.elsevier.com/S2211-467X(19)30036-7/sref30
http://refhub.elsevier.com/S2211-467X(19)30036-7/sref30
http://www.erg.kz/en/content/deyatel-nost/predpriyatiya-v-sostave-erg#5
http://www.erg.kz/en/content/deyatel-nost/predpriyatiya-v-sostave-erg#5
http://www.ebrd.com/work-with-us/projects/psd/karaganda-power.html
http://www.ebrd.com/work-with-us/projects/psd/karaganda-power.html
http://www.kegoc.kz/report2014/eng/energy-balans.php
http://www.kazatomprom.kz/en/content/company/activity/energetics/traditional-energy
http://www.kazatomprom.kz/en/content/company/activity/energetics/traditional-energy
http://refhub.elsevier.com/S2211-467X(19)30036-7/sref35
http://www.world-nuclear.org/information-library/country-profiles/countries-g-n/kazakhstan.aspx
http://www.world-nuclear.org/information-library/country-profiles/countries-g-n/kazakhstan.aspx

	Impact of future energy policy on water resources in Kazakhstan
	Introduction
	Methodology
	Current situation and linkages between water and energy in Kazakhstan
	Estimation of current water requirements for the energy sector
	Estimation of future water requirement for the energy sector

	Results and discussion
	Resource extraction, refining and electricity generation per basin
	Analysis of the water requirements for the energy system per basin
	Comparison of the water requirements with the total renewable resource available per basin

	Conclusions
	Acknowledgements
	Supplementary data
	References




