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ABSTRACT: A strategy is presented to implement Gaussian process potentials in molecular simulations through parallel
programming. Attention is focused on the three-body nonadditive energy, though all algorithms extend straightforwardly to the
additive energy. The method to distribute pairs and triplets between processes is general to all potentials. Results are presented for a
simulation box of argon, including full box and atom displacement calculations, which are relevant to Monte Carlo simulation. Data
on speed-up are presented for up to 120 processes across four nodes. A 4-fold speed-up is observed over five processes, extending to
20-fold over 40 processes and 30-fold over 120 processes.

■ INTRODUCTION
First-principles predictions of macroscopic properties of fluids
have the potential to improve models in a wide range of
problems, from climate change1,2 to water desalination.3 Such
predictions require a potential energy surface (PES), which is
usually obtained by interpolating ab initio calculations of the
molecular interactions and a method to convert this PES into
macroscopic predictions. Though virial equations of state4 can
predict properties of gases, molecular simulation5,6 is required
for liquid and solid properties. For a simulation to achieve
quantitative accuracy, it requires a potential that makes
predictions of ab initio quality of the underlying microscopic
interactions.
There are many strategies to fit potentials to ab initio data

including parametric fits in which the parameters of the potential
are postulated a priori. Recent examples include ab initio
potentials,7−12 which are so-called as they employ functional
forms motivated by first principles. However, a parametric
model cannot capture completely the high-dimensional PES.
Furthermore, modeling mixtures with ab initio potentials is
cumbersome, requiring fitting of many potentials with varying
numbers of parameters to different data sets. These potentials
also often fail to capture accurately three-body nonadditive
effects, which are significant in predicting properties of liquids
and solids.
Machine-learned potentials (MLPs)13,14 offer a route to first-

principles predictions in simulations through nonparametric

interpolation of quantum-mechanical data. Nonparametric
interpolation permits high-accuracy approximations of even a
three-body PES without experimental data. MLPs therefore
have the capacity to facilitate quantitatively accurate simulations,
which could reduce the need for experiments when calculating
gas, liquid, and coexistence properties.
MLPs employ different methods of prediction, with Gaussian

processes15 (GPs) and neural networks (NNs) being common
choices. Recent developments in the training of NN potentials
have reduced the number of training points they require to be
comparable with that of GP potentials.16,17 However, to avoid
overfitting of a NN potential when the distribution or number of
training points varies (such as when fitting to a different PES)
may require alterations to the number of hidden layers or
neurons per layer.18 Overfitting is not a concern when training
GPs, meaning the exact same algorithm used to train a GP
potential on one system can be applied to other systems with no
alterations.19 Consequently, GP potentials are ideal for the
simulation of mixtures.
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GP potentials have been produced for various systems20−38

and achieve accuracies equivalent to NN potentials.18,24,39 GP
potentials have also been trained via transfer learning,40,41 in
which a training set is selected from a larger reference set of
relatively cheap ab initio calculations and upgraded to a higher
level of theory. Thus, a GP potential from coupled cluster
calculations can be produced with a few expensive calculations.
GP potentials are unique in offering high accuracy

interpolation with small training sets and flexible training
algorithms. However, prediction with GPs is computationally
intensive, scaling linearly with the training set size. As this can
reach ∼1000 points for nonadditive PES of even small systems,
effective parallelization algorithms for GP potentials are
important. A general parallelization algorithm is presented
here, with effective parallel speed-up demonstrated for non-
additive energy calculations of the type required in Monte Carlo
(MC) simulations. This algorithm extends straightforwardly to
additive energy calculations and comprises two parts: the
precalculation of the covariance function using shared memory
and the distribution of triplets over processes. Though the
precalculation is GP-specific, the distribution of the triplets is
not restricted to any potential. Moreover, it is effective in
ensuring that the triplets are disseminated equitably across
processes.
Efficient GP potentials would facilitate quantitatively accurate

molecular simulations, which have wide-ranging applications.
For example, the US government anticipates molecular
simulations will be instrumental in carbon capture, utilization,
and storage (CCUS).42 CCUS pipelines contain small
molecules such as N2, O2, Ar, and H2 in addition to CO2,

21

and GP potentials have modeled interactions between various
small molecules reliably.20,22,23 Thus, GP potentials are ideal for
simulations to determine, with quantitative accuracy, properties
of the mixtures in CCUS pipelines. This would be achieved
without experiment and would enable liquid-phase predictions,
which are impossible by current approaches.
The following sections discuss a method for efficient

implementation of GP potentials, starting with the background
theory in section 2. This is followed by an overview of the full
box and atom displacement calculations in section 3. Thereafter
a summary of the computational details is given in section 4,
before the results are presented in section 5.

2. BACKGROUND THEORY
Gaussian Process Potentials. All GPs employ a kernel

function when making predictions, which maps the problem
being modeled to a feature space defined by the covariance
between points. The GP potentials herein use a symmetric
squared exponential kernel kSym,

20,22,23
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Here, kSE is the squared exponential kernel, x and x′ are vectors
of inputs,Nd is the number of dimensions in these vectors, and P
is the group of permutations of x′ under which the output is
invariant. The hyperparameters of the kernel shown in eq 1 are
the signal variance σf2 and the length scales lk.
Hyperparameter values are obtained by maximizing the log-

likelihood log(L) of the model on the training set, where

i
k
jjj y

{
zzz= + | +K I y K I y(2 ) exp

1
2

( )N /2
n

1/2 T
n
2 1t

(2)

Here,Nt is the number of training points, I is the identity matrix,
K is the covariance matrix obtained by evaluating kSym and y is a
vector of observations. In this work, the observations are
nonadditive energies for Ar3 triplets, obtained at the CCSD(T)
level with an aug-cc-pVTZ basis set. σn2 is the Gaussian noise
variance, which is an additional hyperparameter that is
optimized. The process of developing the training set and
obtaining the corresponding hyperparameters is referred to as
training. Following training, predictions are made using the
Woodbury vector λ,

= +K I y( )n
2 1 (3)

(The Woodbury vector is denoted here as λ despite being
typically represented as α, because α later denotes an atom in a
triplet.)
When modeling PES, inverse interatomic distances are

effective inputs for the kernel function.20 The symmetry-
equivalence of different intermolecular configurations is
incorporated into the model with the symmetric kernel kSym,
allowing training sets to be developed for the symmetry-distinct
region of the phase space only. As in previous work,20,22,23 all
data sets used to train the GP here were built with Latin
hypercube sampling.43−45

Using a GP that employs kSym, the nonadditive potential
UNA(x) of a molecular triplet is
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Here, i sums over training points, j sums over permutations, k
runs over dimensions of x, and (x′ik)j is the kth coordinate in the
ith training point, after the latter has been subjected to the jth
permutation in the group P.
A permutation is an interchange of two or more distances,

under which the energy is invariant. For example, in a triplet of
identical atoms the total number of permutations in P, Nperm, is
six. These permutations are stored in a permutation matrix P,
which for the three-atom example is
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(5)

Each element in P corresponds to the index of an inverse
interatomic distance. Though this matrix could become large for
more complex systems, its inclusion reduces the number of
expensive ab initio calculations. If a system was too complicated
to include symmetry in this way, it is possible to ignore certain
permutations to reduce the size of P, though the effect of this is
not explored herein.

Journal of Chemical Theory and Computation pubs.acs.org/JCTC Article

https://doi.org/10.1021/acs.jctc.3c00113
J. Chem. Theory Comput. XXXX, XXX, XXX−XXX

B

pubs.acs.org/JCTC?ref=pdf
https://doi.org/10.1021/acs.jctc.3c00113?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


3. PARALLEL CALCULATION OF POTENTIAL ENERGY
IN SIMULATION

Here, a method is derived to calculate in parallel the total energy
of a simulation box and the change therein following movement
of an atom using a GP potential. The method exploits the
functional form that describes the energy for such a potential, as
shown in eq 4. Efficient parallel calculation of the total potential
is achieved by distributing the molecular pairs across a number
of processes and calculating the exponentials in eq 4 with shared
memory. Though the exponential calculations are GP-specific,
the strategy to distribute pairs is general to other potentials.
Simulation Box Energy.The total nonadditive energy of an

entire simulation box of Na molecules, UNAtot , is obtained by
summing eq 4 over all triplets. The full range of triplets is
described generally with the molecular numbers αβγ, where 1 ≤
α < β < γ ≤ Na. Hence the sum over molecular triplets is
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where (xαβγ)k is the kth inverse intermolecular distance of the
triplet αβγ. Equation 6 therefore gives the total nonadditive
energy when all triplets are calculated directly, i.e., when no
cutoff distance is used.
Equation 6 does not assume any specific type for the

constituent molecules, but for simplicity, it is assumed
henceforth that all particles are identical atoms. Hence, Nd = 3
and the length scale lk is the same for all k. The smallest number
of exponentials required to evaluate eq 6 is identified, and their
values are stored in an array. The array
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where i = 1...Nt, k = 1...Nd and α,β runs over all possible pairs, is
sufficient. The loop over all training points i for all dimensions k
is necessary because, for three identical atoms, all permutations
of the dimensions are permitted (eq 5).
The use of a permutation matrix P allows one to write (x′ik)j =

x′iPdkj
by taking the kth element of the jth row in P as the index of

the relevant distance in the ith training point. Hence
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A mapping to identify which interatomic distance corre-
sponds to (xαβγ)k, that is, the kth distance in the triplet αβγ, is
required. For a triplet of atoms, xαβγ = (xαβ, xαγ, xβγ). As Nd is

small it is possible to write out the product in eq 6 explicitly and
substitute in eq 8 to obtain
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The algorithm in this work implements GP potentials
efficiently by precomputing the exponentials in the exponential
array and parallelizing the nested sum in eq 9 by distributing the
triplets across processes. The algorithm to distribute pairs of
atoms across processes for the sum over triplets is applicable to
other three-body potentials, not just GP PES.

■ NONADDITIVE ENERGY CALCULATION FOR A
SIMULATION BOX

Calculation of the total nonadditive energy of a simulation box
UNAtot is necessary at the outset of aMonteCarlo (MC) simulation
and during any move that affects all particles, such as a volume
change. To calculate UNA

tot necessitates evaluating
+N N N N( 3 2 ) /61

6 a
3

a
2

a a
3 separate triplets. Though the

method extends to mixtures of molecules, the subsequent
discussion centers on atomic triplets of the same species such as
Ar3, for which results are presented later. Direct evaluation of eq
4 to calculate the nonadditive energy of an atomic triplet would
involve NtNpermNdNa3/6 exponentials, an expensive potential
that scales unfavorably with Na. However, each inverse distance
is common to many triplets so it is useful to precalculate
exponentials once. Afterward the exponentials are assembled to
calculate UNA for any triplet.
Under periodic boundary conditions (PBCs) and a minimum

image convention (MIC), xαβ is the inverse minimum image
(MI) distance between atoms α and β. For a simulation box of
side length L, a cutoff rc = L/2 is applied, such that if any distance
in a triplet exceeds rc then the nonadditive energy of the triplet is
set to zero. The inverse MI distances are stored in array X.
Precalculation of the exponentials is undertaken in parallel

over a total of Np processes, each with its own rank R, R ∈ [1,
Np]. The process with R = 1 is known as the root process. All
processes may be on a single node or may be split across several
nodes. Using the exponential array in parallel requires sharing
large amounts of information, as all processes will likely need
access to all exponentials. As the connections between nodes are
not fast, the exponential array is calculated using shared
memory, and each node has its own copy. Letting Eαβ be the
segment of the exponential array pertaining to the αβ distance,
the calculation of the exponentials on a single process proceeds
by Algorithm 1. During this calculation, exponentials are
calculated between pairs of atoms separated by less than rc only.
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Consequently, a speed-up of a factor of up to Np is possible if
all processes are on a single node. For processes split over several
nodes, the speed-up is limited to a factor ofNR on the node with
the fewest processes.
The calculation ofUNAtot is split overNp processes, reducing the

number of triplet evaluations on each process by up to a factor of
Np. As each process needs to only send back the total
nonadditive energy of all assigned triplets (i.e., a single number)
the information sharing between processes is not a limiting
factor. Consequently shared memory was not required, so there
is no need to consider whether processes are on the same node

when evaluating the triplet nonadditive energies. The work in
this section is general and is not restricted to GPs.
To allocate triplets to processes, all atom pairs in the

simulation box are first divided between the processes. The pairs
assigned to each process are consistent throughout the
calculation. The pairs cannot be assigned in the same manner
as steps 1−3 of Algorithm 1 because all pairs containing a given
atom must be distributed evenly; otherwise, moving that atom
would leave a process to undertake an excessive share of the
calculation. An even distribution is achieved by dividing the pairs
via Algorithm 2.

This approach for distributing the pairs over processes is
general to all potentials. Furthermore, it is well-suited to the
evaluation of the pair energy, as each process must calculate the
energies of its assigned pairs only. Pairs are assigned in ascending
order and then descending order so that when a single atom is

moved, the triplets that must be re-evaluated are more equitably
distributed. For every triplet, Algorithm 3 is used to verify that all
MI distances in the triplet do not exceed the cutoff rc before any
calculation is undertaken.
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Following assignment of the atom pairs, each process
calculates the nonadditive energies of all triplets α < β < γ for
which it owns the αβ pairs. The individual nonadditive triplet
energies on process R are stored in a vector u(R), which has
length equal to the number of triplets, Ntri(R), assigned to the

process. The steps undertaken for the parallel calculation ofUNAtot
are given in Algorithm 4, in whichUNA(R) is the contribution toUNAtot
from process R. Because the pairs assigned to a process are the
same throughout the simulation, so are the triplets that it will
evaluate.

Energy Change after Atom Displacement. Finding the
new nonadditive energy of all triplets affected by moving an
atom δ requires recalculation of the triplets that contain δ only,
which renders it faster than the full box calculation. However,
recalculation of the energy after an atom moves is undertaken
more frequently during simulation. The nonadditive energy of
triplets containing δ, UNA(δ), are found by modifying eq 9 to give
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The change in nonadditive energy ΔUNA is found by taking the
difference between UNA(δ) before and after the move.
Displacement of δ alters the exponentials for all pairs in which

it appears. Hence, calculating ΔUNA for a displacement requires
recalculation of the exponentials corresponding to Na − 1
affected distances, where Na is the number of atoms. Similarly, a
Monte Carlo addition introduces Na new pairs, necessitating a
set of Na new exponential calculations.
As Monte Carlo moves may be rejected, all old exponentials

involving δ are stored. This is done separately on each process, as
each process needs only save its own share of the exponentials
before updating the exponential array. The exponentials on a
single process are updated by Algorithm 5, whereOm contains all
exponentials pertaining to the mth pair on process R.
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For process R, the change in nonadditive energy following an
atom move is denoted ΔUNA(R). ΔUNA is therefore the sum of
ΔUNA(R) over all processes. For each process, ΔUNA(R) is calculated
from the difference between the new and old nonadditive
energies for each triplet containing the moved atom δ. The new
nonadditive energies of each affected triplet on process R are

stored in the vector c(R), ready to be placed into u(R) if the move
is accepted. The length of c(R) is equal to the number of affected
triplets on the process,Nchanged(R) . The steps taken on each process
to identify affected triplets and recalculate their energies are
shown in Algorithm 6.

1If α < δ < β or δ < α < β do nothing.
The combination of all algorithms discussed thus far gives rise

to a general method for parallelizing the calculation of the
nonadditive energy in a simulation with a GP potential. This
method is in large part general to other methods of prediction
too. After a brief discussion of what must be done on accepting
or rejecting a move, the full algorithm is presented in this
section.
When a move is accepted in a Monte Carlo simulation, the

methods outlined above require the transfer of the triplet
nonadditive energies from c(R) into u(R).UNAtot , the position of the
moved atom, and the inverse distances must also be updated.

Meanwhile, rejecting a move necessitates replacing the
exponentials in E with the previous ones saved in O from each
process.
The methods presented in the preceding discussion are

summarized below in Algorithm 7, which describes how the
nonadditive energies are calculated for an entire simulation over
Nmoves moves. This algorithm includes all considerations of the
periodic boundary conditions and minimum image convention,
and can be generalized to exchange and volume change moves.
Furthermore, other than steps 3 and 8 it is general to all
nonadditive potentials.
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4. COMPUTATIONAL DETAILS
All calculations were undertaken for a simulation box of argon
atoms to assess the speed-up possible with the proposed
parallelization. Much recent work implementing ab initio
potentials in simulation7−12 has focused on noble gases as
exemplars due to the relative simplicity of their interactions.
Argon was chosen here specifically due to the ability of GPs to
model Ar3 triplets

22 and their success in developing virial
coefficients for CO2−Ar mixtures.19
Augusta, a University of Nottingham high-performance

computer, was used for all calculations. Each node on Augusta
has 2 × 20 core processors (Intel Xeon Gold 6138 20C 2.0 GHz
CPU). Code was written in Fortran, using the Fortran message
passing interface for parallelization and openMP for shared
memory. For all calculations, the O3 optimizer flag was enabled
to minimize computational time prior to parallelization.
The three body nonadditive energy was calculated for a

simulation box of Na = 500 argon atoms, which had random
starting positions. The side length L of the box was 29 Å,
corresponding to a density of 1.4 kg dm−3, which exceeded the
critical density.
Periodic boundary conditions (PBCs) and a minimum image

convention (MIC) were included, with a cutoff of rc = L/2 =
14.5 Å applied to all calculations. The cutoff resulted in roughly
12% of nonadditive energy calculations being undertaken
explicitly. 150 displacements were attempted, with atoms
selected at random and moved up to 1.5 Å forward or backward
along each of the x, y, and z axes. These moves were alternately
accepted and rejected without the use of theMetropolis method.
The nonadditive GP potential was trained on a 999-point

training set, via the method ofWheatley and Graham,19 in which
all energies were calculated at the CCSD(T) level of theory
using an aug-cc-pVTZ basis set. This potential achieved a root-
mean-square (RMS) error of <1% of the RMS value of the

reference set and was used to make nonadditive energy
predictions of first-principles quality for all explicit calculations.
Training on this set took around 7 h. The nonadditive energy of
a triplet αβγ was calculated as

= +
+ +

U U U U U U

U U

( ) ( ) ( ) ( ) ( )

( ) ( )
NA

(11)

where U(αβγ) is the total triplet energy, the negative terms are
the pairwise interaction energies, and the final three terms are
the energies of the individual atoms.

5. RESULTS AND DISCUSSION
The factor by which the speed of a calculation increases when
spread over a number of processes Np is referred to here as the
speed-up. This is defined as t1/tN dp

, where ti is the wall clock time
in seconds for i processes. Speed-up data are presented for atom
move and full box calculations.
The speed-up when completing the atom move and full box

calculations in their entirety, ttotal, is shown in Figure 1. This
evidence a 7.5-fold speed-up on 10 processes for both
calculations under realistic simulation conditions. On 40
processes, the speed-up is roughly 20-fold.
The speed-up on 40 processes means that 2.6 s is required to

calculate the full simulation box energy and 2.4 s to displace 150
atoms. For a simulation comprising 100,000 cycles, each of
which consists of one volume change and displacement of every
atom, this corresponds to 12 days for a first-principles-quality
simulation. This number is found by calculating the time for
100,000 volume changes on 40 processes (i.e. 2.6 s × 100, 000≈
3 days) and adding it to the time taken to displace all 500 atoms
100,000 times. The time to displace one atom is 2.4/150 = 0.016
s, which means the total displacement time is 0.016 s × 500 ×
100, 000 ≈ 9 days. The equivalent time to utilize a GP potential

Figure 1. Speed-up on one node for the atom move (a) and full box (b) calculations. The move data are summed over 150 moves, of which half were
accepted.
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on one process is 245 days. Calculating the additive energy
requires a small fraction of the time for the nonadditive energy.
Due to differences in the PES being considered and the number
of calculations, direct comparison of these timings to those of
other machine-learned potentials cannot be made without
reservation. However, the times achieved here are comparable to
those elsewhere,46 and faster reported GP potentials39 featured
lower cutoff values and do not consider nonadditive
intermolecular interactions.
An equivalent calculation using CCSD(T) with a complete

basis set extrapolation would require around one h per triplet.

When Na = 500 there are ∼20.7 million triplets, of which 12%
must be evaluated due to the cutoff. This necessitates ∼2.48
million calculations, which at one h each would take over
100,000 days. Similarly, the 500 atom displacements would
require over 300,000 days. Thus, the time for a single cycle with
direct CCSD(T) calculations would take in excess of 400,000
days or over 1000 years.
The time to undertake the nested sum over triplets, ttriplet, in

eq 9 is the main contribution to ttotal and is considered in Figure
2. Figure 2(a) shows that the speed-up in ttriplet is excellent
overall for the atom move calculation. Meanwhile, Figure 2(b)

Figure 2. Speed-up on one node in calculating the nested triplet sum after an atom is moved (a) and for the full simulation box (b). The data in (a) are
summed over 150 moves.

Figure 3. Speed-up on a single node in calculating the exponentials for the atommove (a) and the full box (b) calculations. The atom move data were
summed over 150 moves.

Figure 4. Speed-up in twait, which is the sum of ttriplet and tgather (a), and the values of ttriplet, tgather, and ttotal (b). The data are summed over 150 atommove
calculations, and part (b) starts at Np = 8.
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illustrates that the speed-up in the full box calculation is also
impressive, if slightly lower. This is significant because the speed-
up in ttriplet facilitates the reduction in simulation time shown in
Figure 1 for both calculations. For example, for the full box
calculation on a single process, ttriplet = 0.28 s, which is 85% of
ttotal. For the atom move calculations, ttriplet is 87% of ttotal.
The time required to calculate and store the exponentials in

shared memory, texp, is also a notable contribution to ttotal. For
example, texp is ∼10% of ttotal for the atom move calculation on a
single process. For the full box calculation this rises to 14%.
Figure 3 shows that an 11-fold speed-up in texp at Np ≈ 15 is not
bettered reliably for the atommove calculation, while for the full
box calculation a plateau at a 12-fold speed-up is achieved at Np
≈ 17. The plateaus in texp for both calculations partially explain
the reduction in speed-up seen in Figure 1 relative to that in
Figure 2. After Np ≈ 15, texp is effectively a fixed cost of 0.42 and
0.61 s for the atom move and full box calculations, respectively.
This means when Np = 40, texp accounts for 18% of the atom
move calculation and 23% of the full box calculation. Alongside
the greater fixed costs associated with the full box calculation,
this is the reason for the reduction in speed-up between Figure
2(b) and Figure 1(b).
Meanwhile, for the atommove calculation, the reduced speed-

up in Figure 1 compared with Figure 2(a) is caused by the “wait”
for the busiest process to send its partial sum before the total
energy can be calculated. The effect of the “wait” is proven by
examining the speed-up on the root process in twait = ttriplet +
tgather, where ttriplet is the time to calculate the nonadditive

energies, and tgather is the time to add them and gather the partial
sums. Figure 4 shows the speed-up in twait for the atom move
calculation, revealing that it is similar to the speed-up seen in
Figure 1. This implies that waiting for the busiest process at the
gather stage is the limiting factor on the total speed-up for the
atom move calculation. This assertion is reinforced by Figure 4,
which shows ttotal ≈ twait.
Figure 5 shows the ttotal breakdown into its main contributions

for both calculations. The setup time tset, which is shown in red,
includes all fixed costs such as instantiating arrays and process
communication times. The figure shows that twait is the main
contribution to ttotal whenNp = 40 for both calculations and that
the fixed costs for the atom move calculation are insignificant.
Fixed costs for the full box calculation are slightly larger,
however, as is the contribution of texp.
The preceding results indicate that neither calculation had

plateaued when spread over 40 processes. As such, the speed-up
in both calculations across 120 processes split evenly over four
nodes was investigated. The even distribution of processes
means that, for example, when Np = 120, there are 120/4 = 30
processes on each node. When Np = 1, the process is on a single
node.
The speed-up over multiple nodes for the full box calculation

is displayed in Figure 6(a). A similar trend is observed over the
blue points in this figure as in the overall trend in Figure 1. For
example, atNp = 32 in Figure 6(a), a roughly 17-fold speed-up is
seen, which matches closely the speed-up on a single node at
equivalentNp. Each blue point represents a calculation for which

Figure 5. Plots showing the contributions to ttotal againstNp forNp = 6−40 for the atommove (a) and full box (b) calculations. The bottom, red section
shows the contribution of the setup time tset, while the area under the blue line shows texp. The vertical purple lines show the value of twait for each
calculation.

Figure 6. Speed-up in ttotal (a) and the values of the main contributions to ttotal (b) for the full box calculation on four nodes. Blue points in (a)
correspond to Np values of 2x.
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the total number of processes was a power of two (i.e.Np = 4 for
22, Np = 8 for 23, etc.). This suggests that the points on the plot
where the calculation time increases withNp are a product of the
HPC architecture, rather than inherent to the algorithm. The
similarity between the speed-up on four nodes and on one node
for the unaffected points suggests that the algorithm extends to
multiple nodes well.
The cause of the inconsistency of the parallelization of the full

box calculation is evidenced in Figure 6(b), which shows that texp
increased drastically for certain values of Np. When this
happened, texp became the dominant cost in the calculation,
degrading speed-up. The figure also shows that when Np > 60
the setup and exponential calculation times exceed twait. This
explains the plateau in Figure 6(a).
For the atom move calculation, shown in Figure 7(a), a 20-

fold speed-up is achieved across 40 processes, whichmatches the
results seen for one node in Figure 1(a). This is evidence that the
calculation can be parallelized acrossmultiple nodes without loss
of performance. In addition, the distribution across more
processes gives rise to a further increase in speed-up.Meanwhile,
Figure 7(b) shows that twait nears convergence when Np = 120.
This implies that spreading the calculation over more processes
is unlikely to reduce calculation time further, with the costs
associated with producing and communicating between further
processes having the potential to degrade speed-up.
For any calculation in which ttriplet constitutes a larger

proportion of ttotal, such as in a system containing molecules
that require a more expensive potential with more training
points, a further speed-up over multiple nodes would be
expected. This would be most noticeable in the full box
calculation as it would eliminate the plateau shown in Figure
6(a), but it would lead to enhanced speed-up in both. The 30-
fold speed-up already observed for these calculations corre-
sponds to an eight day calculation for the simulation outlined
earlier, a massive reduction from the 245 days required if no
parallelization was undertaken.

6. CONCLUSIONS
The parallelization strategy outlined reduces significantly the
calculation time for the nonadditive energy of argon. The
method is robust to different computational setups, with the
parallelization conferring a 20-fold speed-up on 40 processes in
both calculations on one or many nodes. This corresponds to a
12 day calculation time for a first-principles-quality nonadditive
energy in a simulation comprising 100,000 cycles. Distribution
over more processes leads to a further reduction, with 8 days

required for the calculation rather than 245 if no parallelization is
attempted.
Moreover, simulations requiring a larger number of triplet

calculations, such as those with large simulation boxes, would
see even better parallelization. This is also true if individual
triplet evaluations were more costly, as would be the case for a
molecular system with a potential that requires more training
points. In addition, the method for distributing the triplet
nonadditive energy calculations is applicable to different
potentials.
To apply the strategy to Monte Carlo simulations, long-range

corrections must be applied. Additive long-range corrections are
described elsewhere,6 while a method for implementing
nonadditive corrections is given in the Supporting Information.
This will allow a proof-of-concept calculation of phase
coexistence in argon via a Monte Carlo simulation. Such
simulations could be run for different properties or different
monatomic systems using a suitable GP potential via the
methods outlined above. Extension to molecular dynamics
simulations is also possible by introducing forces, a method for
which is also given in the Supporting Information.
Applications to systems of small molecules, such as those

observed in CCUS pipelines, would require extension of the
abovemethodology tomixtures of atomic andmolecular species.
This is relatively straightforward, requiring only the inclusion of
an operator to identify the correct GP hyperparameters for any
interaction and a method to order the interatomic distances in
interactions between different species to construct the
associated permutation matrices. Thus, the parallelization
strategy discussed here represents a significant step toward
quantitatively accurate simulations with GP potentials that give
additive and nonadditive energies derived from first principles.
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