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Abstract

In the context of the global coronavirus pandemic, different deep learning so-

lutions for infected subject detection using chest X-ray images have been pro-

posed. However, deep learning models usually need large labelled datasets to

be effective. Semi-supervised deep learning is an attractive alternative, where

unlabelled data is leveraged to improve the overall model’s accuracy. However,

in real-world usage settings, an unlabelled dataset might present a different dis-

tribution than the labelled dataset (i.e. the labelled dataset was sampled from

a target clinic and the unlabelled dataset from a source clinic). This results in

a distribution mismatch between the unlabelled and labelled datasets. In this

work, we assess the impact of the distribution mismatch between the labelled

and the unlabelled datasets, for a semi-supervised model trained with chest

X-ray images, for COVID-19 detection. Under strong distribution mismatch

conditions, we found an accuracy hit of almost 30%, suggesting that the unla-

belled dataset distribution has a strong influence in the behaviour of the model.

Therefore, we propose a straightforward approach to diminish the impact of such
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distribution mismatch. Our proposed method uses a density approximation of

the feature space. It is built upon the target dataset to filter out the obser-

vations in the source unlabelled dataset that might harm the accuracy of the

semi-supervised model. It assumes that a small labelled source dataset is avail-

able together with a larger source unlabelled dataset. Our proposed method

does not require any model training, it is simple and computationally cheap.

We compare our proposed method against two popular state of the art out-of-

distribution data detectors, which are also cheap and simple to implement. In

our tests, our method yielded accuracy gains of up to 32%, when compared to

the previous state of the art methods. The good results yielded by our method

leads us to argue in favour for a more data-centric approach to improve model’s

accuracy. Furthermore, the developed method can be used to measure data

effectiveness for semi-supervised deep learning model training.

Keywords: Semi-supervised Deep Learning, MixMatch, Distribution

Mismatch, Out of Distribution Detection, Chest X-Ray, Covid-19, Computer

Aided Diagnosis.

1. Introduction1

The COVID-19 disease is caused by the novel SARS-CoV2 coronavirus, dis-2

covered in 2019 [66]. The COVID-19 pandemic has caused thousands of human3

losses around the world, where even the most developed health systems have4

not been able to cope with the infection peaks [66]. Health practitioners are5

struggling with the detection and tracking of infected subjects, as the number6

of patients in need for medical assistance increases.7

Therefore, accurately detecting patients infected with the SARS-CoV2 virus8

is a critical task to control the pandemic. Nevertheless, SARS-CoV2 detection9

methods like the Real-time Reverse Transcription Polymerase Chain Reaction10

(RT-PCR) test can be expensive and time consuming. As an alternative and/or11

complementary method, the usage of medical imaging based approaches can be12

less expensive and also accurate [15, 19]. Moreover, X-ray based imaging diagno-13
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sis can be considered cheaper. The usage of X-ray machines is more widespread14

when compared to other imaging technologies like computer tomography. This15

is specially the case in less industrialised countries [3]. However, a limitation16

of X-ray based diagnosing of COVID-19 is the need of highly trained clinical17

practitioners like radiologists, which in less industrialised countries are scarce18

[3].19

The implementation of Computer Aided Diagnosis (CAD) systems for COVID-20

19 diagnosis can be a solution to mitigate the specialized staff shortage. Deep21

learning based CAD systems have been extensively explored for different medical22

imaging applications [7, 14, 1]. More specifically, several deep learning archi-23

tectures for COVID-19 detection have been proposed recently in the literature24

[32, 33, 6]. These systems have been developed using publicly available X-ray25

images datasets, with COVID-19 positive [21] and negative cases [9].26

Nevertheless, a short-coming of implementing a deep learning architecture27

for real-world usage is the need of a large labelled dataset from the specific target28

clinic or hospital where the system is intended to be used. Labeling images in29

the medical domain is time-consuming and requires expensive human effort from30

highly trained clinical practitioners, which makes building an extensive labelled31

dataset costly. Previous work on COVID-19 detection with deep learning has32

relied on large and heterogeneous datasets, where around 100-400 COVID-1933

positive cases sampled from the dataset [21], and larger datasets of COVID-1934

negative cases sampled from different sources [38, 31, 22]. Such testing con-35

ditions can be considered far from a real-world scenario, where usually in the36

target clinic/hospital a limited set of labelled observations is available. Using37

external datasets for training might harm the overall performance of the model.38

This is mainly due to the differences between patient features and imaging pro-39

tocols. This affects the final data distribution between the test and training40

data [68].41

Another short-coming of the aforementioned previous work, is the bias of the42

population between the positive and negative COVID-19 samples. For example,43

as reported in [58], negative COVID-19 observations in [38] were sampled from44
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pediatric Chinese patients, while positive COVID-19 cases in [21] correspond to45

adult patients from different countries. This dataset combination has been ex-46

tensively used for training Convolutional Neural Network (CNN) based models47

to detect COVID-19, and leads to deceptive bias in both the test and training48

model data [58].49

To deal with the limited labelled datasets, different approaches have been50

implemented in literature [18]. In the context of COVID-19 detection, namely51

data augmentation and transfer learning [45, 25] have been used. In transfer52

learning, a source labeled dataset Ds
l is used to pre-train a model, and then fine-53

tune it in the target dataset Dt
l . However, as discussed in [79], fine-tuning might54

not be enough to improve the model’s accuracy. The distribution mismatch55

between Ds
l and Dt

l due to different patient populations and imaging acquisition56

protocols, is frequently a reason for poor transfer learning performance.57

Another approach to deal with scarce labelled data is the usage of Semi-58

supervised Deep Learning (SSDL). SSDL leverages cheaper and more widely59

available unlabelled data. Semi-supervised learning for COVID-19 detection60

have been explored in [9, 10] with positive results, where very small labelled61

datasets have been used. Such previous work suggests that using unlabelled62

data can increase the model’s performance. The authors combined SSDL with63

common data augmentation and transfer learning approaches. However, to64

implement deep learning based solutions for extensive real-world usage, testing65

different model attributes like robustness and predictive uncertainty is crucial66

for its safe usage. A deep review on the importance of measuring different model67

attributes like robustness in medical applications of Artificial Intelligence (AI)68

can be found in [54]. In a real-world scenario, the use of unlabelled data sampled69

from different sources (hospitals or clinics) can be considered. However, the70

usage of unlabelled datasets with different distributions from the labelled test71

and training target data might harm the accuracy of the model. This leads to72

the need of analyzing model robustness to different data distributions in the73

unlabelled dataset. Therefore, in this work, we study the impact of different74

unlabelled data sources in a SSDL model. Specifically, the MixMatch algorithm,75
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which previously yielded interesting accuracy gains with very small labelled76

datasets for COVID-19 detection using X-ray images [10, 9] is used. Moreover,77

we propose a simple approach to select and build an unlabelled dataset. This78

aims to improve the overall SSDL model accuracy.79

1.1. Problem Definition80

In this work, we evaluate a setting where the following datasets are available:81

1. A labelled dataset in the target clinic/hospital Dl
t is available. The number82

of labelled observations nl
t is very small. The target dataset is sampled83

from the clinic/hospital where the model is intended to be deployed.84

2. A larger unlabelled dataset in a different source clinic/hospital Du
s is avail-85

able, with nu
s > nl

t.86

Different deep learning applications in medical imaging face distribution mis-87

match situations between the different datasets used. This might be the case for88

SSDL, when using different unlabelled data sources. We argue that quantify-89

ing distribution mismatch with respect to the model behaviour is important for90

medical imaging applications, as different unlabelled data sources might be con-91

sidered. Moreover, simple dataset transformation procedures to improve model92

robustness to data distribution mismatch between the labelled and unlabelled93

datasets, is also important. This helps to narrow the gap between machine94

learning research and its real-world usage.95

The first contribution of this work aims to first explore the impact of distri-96

bution mismatch between the labelled and unlabelled dataset in SSDL in a real-97

world application: COVID-19 detection using chest X-ray images. We examine98

different distribution mismatch settings with data from the specific domain only99

(chest X-ray images), different than classic testing benchmarks where distribu-100

tion mismatch is caused by adding images from different domains. We explore101

the influence of using unlabelled data from different data sources from the same102

domain, and measure its impact in SSDL. The second contribution consists in103

two novel methods based upon the feature space of a generic pre-trained CNN,104
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to score unlabelled data according to its likelihood in the distribution of the105

labelled data. Such scores are used to filter possibly harming unlabelled data,106

and improve the performance of the SSDL model by using the filtered unlabelled107

data.108

1.2. Manuscript Organization109

This manuscript is organized as follows: Section 2 studies recent literature110

around SSDL methods, and more specifically SSDL techniques designed to be111

robust to unlabelled data with a considerable distribution mismatch with respect112

to labelled data. In such section we also study Out of Distribution (OOD) detec-113

tion techniques, as they are closely related to distribution mismatch robustness.114

Given the research gap described in Section 2, in Section 4 we propose our novel115

method to increase distribution mismatch robustness in a SSDL setting. We test116

our proposed method using the state of the art MixMatch algorithm [8]. The117

datasets used to create the different distribution mismatch tested throughout118

the experiments are described in Section 3. The detailed description of the ex-119

perimental design is depicted in Section 5. An analysis of the yielded results and120

the initial observations is developed in Section 6, to later address the conclusions121

and future work in Section 7.122

2. State of the art123

2.1. Semi-supervised Deep Learning124

SSDL aims to deal with small labelled datasets, by leveraging unlabelled125

data. Supervised deep learning networks often require large labelled datasets.126

This is partially addressed with the usage of data augmentation and transfer127

learning [73]. However, the usage of cheaper and more widely available unla-128

belled data, can further lower the need for labelled data. With a formal notation,129

in SSDL both labelled and unlabelled datasets are used. Each labelled observa-130

tion Xl = {x1, . . . ,xnl
} is mapped to a label in the set Yl = {y1, . . . , ynl

}. The131

unlabelled dataset corresponds to a set of observations Xu = {x1, . . . ,xnu
},132

with Su = Xu.133
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SSDL architectures can be classified as: Pre-training [23], pseudo-labelled134

[24] and regularization based. Within regularization based approaches, consis-135

tency loss term and graph based regularization and generative based [18] regu-136

larization techniques can be distinguished. A detailed survey regarding SSDL137

can be found in [74, 39].138

Concerning regularization based SSDL, a regularization term leveraging un-

labelled data is implemented in the loss function Su:

L (S) =
∑

(xi,yi)∈Sl

Ll (w,xi,yi) + γ
∑

−→x j∈Xu

Lu (w,xj) , (1)

with w the model’s weights array, Ll and Lu the labelled and unlabelled loss139

terms respectively. The coefficient γ weighs the influence of unsupervised reg-140

ularization. As previously mentioned, a number of regularization based varia-141

tions can be found in the literature. The main ones include: consistency loss142

based [69, 68], graph based [76, 44] and generative augmentation based [64, 60].143

Consistency based methods make the assumption of clustered-data/low-density144

separation. Such assumption refers to how the observations corresponding to a145

class, are clustered together. This makes the decision manifold lie in very sparse146

regions [74]. A violation to this assumption might degrade the performance of147

the semi-supervised method [74].148

In pseudo-label training, pseudo-labels are estimated for unlabelled data.149

These are used for later model refinement. A straightforward pseudo-label based150

approach is based in co-training two models [4]. The model is pre-trained with151

the limited size labelled dataset. Later, the pseudo-labels are estimated for the152

unlabelled data using two models trained with different views (features) of the153

data. A voting scheme is implemented for estimating the pseudo-labels.154

MixMatch [8] combines both pseudo-label and consistency based SSDL,155

along with heavy data augmentation using the MixUp algorithm [77]. Accord-156

ing to [8], MixMatch out-performs, accuracy wise, previous SSDL approaches.157

Given the recently state of the art performance demonstrated by MixMatch and158

also the good results yielded in [9, 10] for medical imaging applications, we chose159

it for the developed solution in this work. A detailed description of MixMatch160
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Model Category nl = 500 nl = 1000 nl = 2000

Supervised only Supervised 22.08 ± 0.73 [62] 14.46 ± 0.71 [62] -

Pi Model (Pi-M) 6.83±0.66 [69] 4.82±0.17[69] -

Temporal Ensemble Model (TEM) 5.12±0.13[69] 4.42±0.16[57, 69] -

Virtual Adversarial Training with Entropy Minimization (VATM+EM) - 3.86±0.22[50] -

Virtual Adversarial Training Model (VATM) - 5.42±0.22[50] -

Mean Teacher Model (MTM) 4.18±0.5 [69] 3.95±0.19[57, 69] -

Self Supervised network Model (SESEMI) 6.5±0.28[71] 5.59±0.12[71] -

Mutual Exclusivity-Transformation Model (METM) 9.62±1.37[27] 4.52±0.4[27] 3.66±0.14[27]

Walker Model (WaM) 6.25±0.32[27] 5.14±0.17[27] 4.6±0.21[27]

Transductive Model (TransM) Consistency based SSDL 4.32±0.3[62] 3.8±0.27[62] 3.35±0.27 [62]

Transductive Model with Mean Teacher (TransM+MTM) 4.09±0.42[62] 3.09±0.27 [62] 3.35±0.27 [62]

Memory based Model (MeM) - 4.21±0.12[16] -

MixMatch - 3.5±0.28 -

ReMixMatch Consistency and Pseudo-label based SSDL - 2.65±0.08 -

FixMatch using Random Augmentation - 2.28±0.11 -

FixMatch using CTA Augmentation - 2.36±0.19 -

Tri-Net - 3.71±0.14[24] -

Speed as a supervisor for SSDL (SaaSM) Pseudo-label based SSDL - 3.82±0.09[20] -

Tri-Net with the Pi-M - 3.45±0.1[24] -

Table 1: SSDL error rates (the lower the better) from literature of state of the art methods,

using the SVHN dataset. As number of labels, nl = 500, nl = 1000 and nl = 2000 were the

most frequently used in the literature.

can be found in Section 4. Table 1 quantitatively summarizes the reported ac-161

curacy performance of some of the most recent SSDL approaches. The results162

suggest that MixMatch and similar methods yield the lowest error rates. The163

reported results used the Street View House Numbers dataset (SVHN) dataset.164

Based upon the good results of MixMatch compared to other state of the art165

methods, we selected it to test our proposed data-centric method to improve166

SSDL robustness to OOD data.167

2.2. SSDL robustness to distribution mismatch168

The distribution mismatch between Su and Sl is also referred to as the iden-169

tically and Independent and Identically Distributed (IID) assumption violation.170

It might have different degrees and causes, which are enlisted as follows [35]:171

• Prior probability shift: The distribution of the labels in Sl can be different172

when compared to Su. In a CAD system this can be exemplified when the173

labels of the medical images have different distributions between the two174

datasets Sl and Su. A specific case would be the label imbalance of the175

labeled dataset Sl as discussed in [10].176
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• Covariate shift: A different distribution of the features in the input ob-177

servations might be sampled, leading to a distribution mismatch. In a178

medical imaging application, this can be related to the difference in the179

frequencies of the observed features between Sl and Su.180

• Concept drift: It refers to the different features observed in a sample, with181

the same label. In the application at hand in this work, this might happen182

when different patients with different variations of the COVID-19 disease183

are sampled to build Su with the same pathologies (classes) in Sl.184

• Concept shift: It is associated to a shift in the labels, with the same185

features. In the aforementioned example, it would refer to labelling a186

medical image with similar features with a different pathology (a bias187

caused by the image labellers).188

• Unseen classes: The dataset S(u) contains observations of unseen or un-189

represented classes in the dataset S(l). One or more distractor classes are190

sampled in the unlabelled dataset. Therefore, a mismatch in the number191

of labels exist, along with a prior probability shift, and a feature distri-192

bution mismatch. For instance, the dataset S(l) might include only the193

classes viral pneumonia and normal, while the unlabelled dataset might194

include the classes bacterial pneumonia, viral pneumonia and normal.195

In our tested setting, different data sources were used only to gather unla-196

belled data Su. We recreate two of the aforementioned distribution mismatch197

causes: covariate and prior probability shift. The unlabelled datasets created198

and tested belong to normal (no pathology) chest X-ray images (COVID-19−),199

from patients of different nationalities. As the labelled dataset Sl includes both200

classes (COVID-19+ and COVID-19−), a label distribution mismatch also oc-201

curs. The tested setting in this work simulates the case where different unla-202

belled data sources might be available (for instance from different hospitals), at203

the beginning of a pandemic. Furthermore, a small labelled dataset might be204

available in the target hospital/clinic.205
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The usage of different unlabelled datasets might potentially cause a violation206

of the aforementioned clustered-data/low-density separation assumption. Using207

unlabelled datasets with different distributions when compared to the labelled208

dataset, might create wrong sparse regions and/or less clustered groups of ob-209

servations belonging to the same class. Therefore, in this work we explore data-210

oriented approaches to deal with potential violations of the clustered-data/low-211

density separation assumption. Unlabelled data can be considered significantly212

cheaper than labelled data. Thus, discarding potentially harmful observations213

with the aim to decrease the odds of violating the clustered-data/low-density214

separation assumption is viable and worthy to explore.215

In [55], an extensive evaluation of different distribution mismatch settings216

and its impact in SSDL is developed. Authors concluded that distribution mis-217

match in SSDL is an important challenge to be addressed. Recently, different218

approaches for improving SSDL robustness to the distribution mismatch be-219

tween Su and Sl have been proposed. In [52], an OOD masking method is pro-220

posed, referred to as RealMix. It consists on weighting the observations likely221

to be OOD during semi-supervised training. The output of a softmax activation222

function after the raw model output, was used as OOD masking coefficient. A223

hard thresholding was applied to the unlabelled data, in order to discard OOD224

data. This works as an observation-wise masking during semi-supervised model225

training. The authors compared their proposed method with state of the art226

general-purpose SSDL approaches like MixMatch [8]. The test bed consisted227

in different unlabelled datasets with a varying degree of distribution mismatch.228

The contamination source consists of images with different labels and features229

(completely OOD), corresponding to the unseen class IID violation cause. Their230

method proved to improve model robustness against OOD data contamination231

in Su, using general purpose datasets such as Canadian Institute For Advanced232

Research dataset with 10 classes (CIFAR-10) and SVHN. However, other types233

of distribution mismatch corruption such as concept drift or covariate shift were234

not tested.235

Another approach to deal with distribution mismatch under OOD contam-236
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ination (different labels and features), can be found in [17]. The proposed237

method also implements a weighting coefficient, calculated as the softmax out-238

put of a models ensemble. It is referred to as Uncertainty Aware Self-Distillation239

(UASD) by the authors. Similar to RealMix, a hard thresholding of the OOD240

data was proposed. However, more diverse distribution mismatch scenarios were241

tested, using different degrees of contamination using unseen classes as pollu-242

tion source. In a similar trend, the work in [26] propose a weighted approach243

to deal with OOD observations (with different label, different features). The244

proposed method was named Deep Safe Semi-Supervised Learning (DS3L) by245

the authors. However, instead of using the softmax output, the observation-wise246

weight is estimated through an optimization step. The score or weight obtained247

for each observation, is used to weight it in the unlabelled loss term, instead for248

discarding the data. We refer to this approach as soft thresholding. Similar to249

[52], only general purpose datasets (CIFAR-10 and Modified National Institute250

of Standards and Technology dataset (MNIST), using approximately half of the251

dataset as unseen classes in the unlabelled dataset) were used, with no other252

variations of distribution mismatch settings. Another resembling approach and253

testing bed to [26], can be found in [78], where an optimization based approach254

to weight each observation is implemented, with a test-bed focused in OOD255

contaminated unlabelled datasets. To diminish the computational cost of esti-256

mating the observation-wise weights for the unlabelled data, a clustering step257

was implemented. The cluster centroids were used to calculate the weights for258

all the observations within the cluster. The method is referred to as Robust259

Semi-Supervised Learning (R-SSL) by the authors.260

In this work, we analyze the effect of distribution mismatch in SSDL within261

a real-world application: COVID-19 detection using chest X-ray images. Un-262

like previous work on SSDL under distribution mismatch, we test a real-world263

setting in the medical domain, and explore its implications within such context.264

As previously mentioned, we analyze the impact of a distribution mismatch265

caused by covariate and prior probability shift. Different unlabelled dataset266

sources within the same domain and features are used. We aim to evaluate dif-267
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Method name IID violation cause Thresholding OOD data filtering approach

RealMix Unseen classes Hard Output based

UASD Unseen classes Hard Output based

DS3L Unseen classes Soft Optimization based

R-SSL Unseen classes Soft Optimization based

Table 2: State of the art SSDL methods robust to distribution mismatch. The unseen classes

setting is the most tested cause for distribution mismatch. Our proposed method tests co-

variate and prior probability shift causes for distribution mismatch, and implements a feature

space based method for scoring unlabelled data.

ferent approaches to weigh how harmful an unlabelled observation could be for268

SSDL training. We test different OOD detection approaches in this work. After269

calculating a harm coefficient for each unlabelled observation, different steps270

can be implemented to use such unlabelled dataset. For example, filtering the271

observations with high harm coefficients, select an unlabelled dataset upon its272

estimated benefit for SSDL, or weigh the unlabelled observation during SSDL273

training.274

Moreover, we focus on a data-oriented approach to identify and/or build a275

good unlabelled dataset for SSDL. We propose a simple and very inexpensive276

method to evaluate the distribution mismatch between an unlabelled and la-277

belled datasets, Su and Sl respectively. Such method can be thought as an OOD278

scoring approach (harm coefficient), which leads us to compare our method to279

recent OOD detectors used in the context of OOD data filtering to improve the280

accuracy of an SSDL model. Unlike most recent SSDL methods which use out-281

put or optimization based scoring for the unlabelled data, our approach uses the282

feature space, as seen in very recent OOD detection approaches. This research283

gap can be inferred by the state of the art summary table for SSDL robust284

methods, in Table 2.285

2.3. OOD data detection286

OOD data detection refers to the general problem of detecting observations287

that are very unlikely given a specific data distribution (usually the training288
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dataset distribution) [29]. The problem of OOD data detection can be thought289

as a generalization of the outlier detection problem, as it considers individual290

and collective outliers [63]. Specific scenarios of OOD data detection can be291

found in the literature. These include novel data and anomaly detection [56],292

with several applications like rare event detection [28, 2]. In classical pattern293

recognition literature different approaches to anomaly and OOD data detection294

are grounded in concepts such as density estimation [47], kernel representations295

[70], prototyping [47] and robust moment estimation [59].296

Recent success of deep learning based approaches for image analysis [75]297

have motivated the development of OOD detection techniques for deep neural298

networks. OOD detection methods with deep learning architectures can be299

categorized in methods based upon the Deep Neural Networks (DNN)’s output,300

its input, or its learned feature space.301

DNN’s output based methods include the softmax based OOD detector pro-302

posed in [30]. In such work, OOD detection is framed as a confidence estimation303

using the model’s raw output layer values and passing it through a softmax func-304

tion. Its maximum softmax value is used as confidence. Authors claim that the305

highest softmax value of OOD observations meaningfully differ from in distri-306

bution observations.307

However, as reported in [42], non calibrated models can be overconfident308

with OOD data. Therefore, in [42] a calibration methodology is introduced, im-309

plementing a temperature coefficient. OOD data detection in neural networks is310

implemented in [42] using input perturbations meant to maximize the softmax311

based separability. For this end, a gradient descent optimization is used, result-312

ing in a preprocessed image. A temperature coefficient in the calculation of the313

softmax output is added and is estimated to make the true positive rate of 95%314

for in-distribution data detection, using the previously pre-processed images.315

Another approach for OOD detection based on the model’s output is the316

usage of Monte Carlo Dropout (MCD) based uncertainty estimations.MCD is317

a popular method for implementing predictive uncertainty estimation [43, 37].318

It consists in analyzing the distribution of N predictions using the same input319
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and adding noise to the model (drop-out in the context of DNNs). This idea320

has been ported to the OOD detection problem, where observations with high321

uncertainty are scored with high OOD likelihood [34, 61].322

Regarding feature space (a latent space approximation in DNNs) based323

methods for OOD detection different approaches can be found in the litera-324

ture. For example, in [41], the authors implemented the Mahalanobis distance325

in latent space of the dataset to the input observation, assuming a Gaussian326

distribution of the data. Both the mean and covariance are estimated for the327

in distribution dataset. For a new observation x, the OOD score is estimated328

as the Mahalanobis distance for such given distribution. The authors also im-329

plemented the calibration approach used in [42]. A superior performance of330

their proposed method in generic OOD detection benchmarks is reported, when331

compared to the methods in [42, 30]. However, no statistical significance tests332

of the results were performed.333

Another feature space based approach can be found in [72], known as de-334

terministic uncertainty quantification. Such approach is also intended for un-335

certainty estimation, but also is tested as an OOD detection technique. It336

makes use of a centroid calculation of each category in the feature space, to337

later quantify the distance of a new observation to each centroid. Uncertainty338

quantification is estimated based in the kernel based distance to the category339

centroids. The approach is compared against an ensemble of deep neural net-340

works (an output based approach for OOD detection). This is done in a simple341

OOD detection benchmark, where the CIFAR-10 is used as an in-distribution342

dataset and the SVHN as a OOD dataset. The authors reported the area under343

the Receiver Operator Characteristic (ROC) curve of their approach against344

other OOD methods. Their approach showed the highest area under the ROC345

curve index. However, no statistical analysis of the results were done.346

In [12] the authors developed an extensive testing of the influence of distri-347

bution mismatch between unlabelled and labelled datasets. Moreover, they also348

developed an approach to estimate the accuracy hit of such distribution mis-349

match for a state of the art SSDL method. The proposed method estimates the350
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distribution mismatch in the feature space between Sl and Su, using what the351

authors referred as a Deep Dataset Dissimilarity Measure (DeDiM). Euclidean352

and Manhattan based DeDiMs were tested and compared against density based353

DeDiMs. All of them were applied within the feature space, built with an im-354

age net pre-trained network. The authors found a significant advantage of the355

density based distances. In [80], the authors proposed an OOD detector using356

the feature space as well. The approach fits different parametric distributions357

in the feature space of the data. The decision to discriminate between OOD358

and In-Distribution (IOD) data is done based on the estimation of the approx-359

imated parametric model. Unfortunately, no comparison with other popular360

OOD methods was presented. Table 2.3 describes a summary of the state of361

the art methods and the benchmarks used to test them by the authors. This362

summary makes clear how most previous OOD detection methods have focused363

in the unseen class distribution mismatch cause. In this work we evaluate the364

covariate shift cause for a distribution mismatch between the labelled and unla-365

belled datasets in a real-world application, used by a SSDL method. Addition-366

ally we propose a simple feature based approach to improve SSDL performance367

under those circumstances, as few very recent OOD detection approaches have368

proposed.369

2.3.1. Unsupervised Domain Adaptation370

When using an unlabelled dataset Su with a very different distribution to371

Sl, a solution would be to correct or align the feature extractor trained with372

labelled or unlabelled data from the source of the unlabelled dataset Su, to the373

distribution of the labelled dataset Sl (target dataset, usually smaller). This374

is known as Unsupervised Domain Adaptation (UDA). For instance in [79],375

the authors proposed an UDA method to align the feature extractor from a376

source dataset to a specific target dataset. This is done within the context377

of COVID-19 detection using chest X-ray images. The feature extractor was378

originally trained with source data. Later, the feature extractor is aligned by379

using both labelled and unlabelled data from the target dataset. The feature380

15



Method name IOD data OOD data Category

Max. value of Softmax layer [30] CIFAR-10 1 SUN1,2

CIFAR-100 2 Gaussian 1,2

MNIST 3 Omniglot 3

notMNIST3

Uniform noise3

Inhibited Softmax [51] CIFAR-101 SVHN1

MNIST2 LFW-A1

notMNIST2

Omniglot2

ODIN [42] CIFAR-101 TinyImageNet1,2 Output based

CIFAR-1002 LSUN1,2

iSUN1,2

Uniform1,2

Gaussian1,2

Epistemic Uncertainty Estimation [67] CIFAR *1 CIFAR*1

FashionMNIST*2 FashionMNIST*2

SVHN*3 SVHN*3

MNIST*4 MNIST*4

Mahalanobis Latent Distance [41] CIFAR-101 SVHN1,2

CIFAR-1002 CIFAR-103

SVHN3 TinyImageNet1,2,3

LSUN1,2,3

Deterministic Uncertainty quantification CIFAR-10 SVHN Feature space based

Deep Residual Flow [80] CIFAR-101 CIFAR-103

CIFAR-1002 TinyImageNet1,2,3

SVHN3 LSUN1,2,3

SVHN1,23

Table 3: OOD test benchmarks for different techniques. Datasets with * were randomly cut

by half for in-distribution training labelled data and the other half was used as

OOD unlabelled data. The table reveals how arbitrary different testbeds have

been used for benchmarking OOD detection algorithms, using the unseen classes

cause for the IID assumption violation. IOD-OOD dataset pairs are indicated

by number pairs in the table.
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extractor alignment procedure basically consists in an adversarial training step381

using the aforementioned datasets. As a disadvantage of such method, the382

feature extractor needs to be trained with labelled source data (as usual in383

supervised learning). Hence a large number of labels is needed. Also, the384

feature extractor alignment process can be considered to be expensive, as an385

adversarial loss function needs to be optimized.386

3. Datasets387

In this work, we explore the sensitivity to distribution mismatch between Su388

and Sl of a SSDL COVID-19 detection system using chest X-ray images. There-389

fore, we use different data sources for chest X-ray images for both COVID-19+390

(positive COVID-19) and COVID-19− (no pathology chest X-ray observations).391

For COVID-19+ cases we use the open dataset made available by Dr. Co-392

hen in [21]. This dataset is composed of 105 COVID-19+ images at the time393

of writing this work. The observations were sampled from different journal394

websites like the Italian Society of Medical and Interventional Radiology and395

radiopaedia.org, and more recent publications in the field. In this work we396

used COVID-19+ observations, discarding images related to Middle East Respi-397

ratory Syndrome (MERS), Acute Respiratory Distress Syndrome (ARDS) and398

Severe Acute Respiratory Syndrome (SARS).399

The images present varying resolutions from 400 × 400 up to 2500 × 2500400

pixels. As for COVID-19− observations, we used four different data-sources.401

Table 4 summarizes the COVID-19− cases data sources. Figure 1 shows obser-402

vations for each one of the data sources used in this work. The datasets were403

randomly augmented with flips and rotations. No random crops were used to404

avoid discarding important regions in the images.405

In this first set of experiments, we evaluate the impact of OOD on data406

with different unlabelled data sources and different degrees of contamination.407

We simulate the following scenario: A small labelled target dataset Dt
l (with408

nl = 20 and nl = 40 observations) is provided with a partition of the observa-409
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Figure 1: Row 1, column 1: a COVID-19+ observation from [21], row 1, column 2: a COVID-

19− observation from the Chinese dataset [38], row 2, column 1: ChestX-ray8 COVID-19−

image [31], row 2, column 2: Indiana dataset COVID-19− sample image [22]. The bottom

image corresponds to a sample image from the Costa Rica dataset [10]. As it can be seen,

images from the Costa Rica dataset include a black frame.
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tions of the COVID-19+ taken from Dr. Cohen’s dataset and the COVID-19−410

cases of the Indiana Chest X-ray dataset, described in Table 4. A larger number411

of 142 unlabelled observations is also available, to be used in the harm coeffi-412

cient estimations methods. This can be thought as the target labelled dataset413

with limited labels which is accessible in a real-world application from the clin-414

ic/hospital where the model is intended to be deployed.415

For the unlabelled dataset, different partitions of COVID-19− cases the chest416

X-ray data sources described in Table 4. This simulates the usage of different417

sources of unlabelled datasets Ds
u, taken from different hospitals/clinics. All418

the unlabelled observations are COVID-19−, to enforce a prior probability shift419

(label imbalance). As in our preliminary tests, the worst performing unlabelled420

dataset Ds
u dataset is the Costa Rican dataset described in Table 4, we used421

it to create different combinations with the rest of datasets. All of these are422

depicted in Table 7. A total of nu = 90 unlabelled observations were picked423

from such datasets with different combinations. Using different data sources for424

the unlabelled dataset, can help to assess the impact of a distribution mismatch425

between Su and Sl.426

As for the test dataset, it consists in another partition of the target dataset427

which includes the COVID-19+ dataset, along with another partition of the In-428

diana Chest X-ray dataset (COVID-19−). Both are the same size. This yields429

a completely balanced test setting. We used a total of nt = 62 observations,430

drawn from the same target dataset (31 observations per class). The test data431

comes from the distribution of the labelled data with no contamination. This432

simulates the case where the labelled data comes from the target dataset dis-433

tribution. Both unlabelled and labelled datasets were standardised, given that434

the authors in [13] found that normalisation is important in semi-supervised435

learning.436
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Table 4: COVID-19− observation sources description used in this work.

Dataset CR Chinese ChestX-ray8 Indiana

No. of patients 105 5856 65240 4000

Patient’s age range (years) 7-86 children 0-94 adults

No. of obs. 105 5236 224316 8121

Hospital/clinic Clinica Chavarria No info. Stanford Hospital Indiana Network

for Patient Care

Im. resolution 1907 × 1791 1300 × 600 1024 × 1024 1400 × 1400

Reference [10] [38] [31] [22]

4. Proposed method437

4.1. SSDL with MixMatch438

In this work, we explore the usage of MixMatch as an SSDL method, there-439

fore, we describe it as follows. We selected MixMatch as a baseline method440

given its good performance compared to other state of the art methods, as de-441

scribed in Table 1. For more details please refer to [8]. As previously mentioned,442

MixMatch combines both pseudo label and consistency regularization SSDL. In443

such context, a pseudo-label ŷj is estimated for each unlabelled observation xj444

in Xu. It corresponds to the the mean model output of a transformed input445

x′
j , using K number of different transformations, such as flips and rotations [8].446

Each pseudo-label ŷ is sharpened using a temperature parameter T [8]. Also, a447

simple data augmentation approach is implemented, by linearly combining un-448

labelled and labelled observations, through the usage of the MixUp algorithm449

[77].450

The pseudo-labels are used in the MixMatch loss function, which combines451

a supervised and unsupervised loss terms. In this work, the well-known cross-452

entropy function is used as a supervised loss term. As for the unsupervised loss453

term, we used the previously implemented Euclidian distance loss in [8]. The454

Euclidian distance measures the distance between the current model output and455

its pseudo-label, for the unlabelled observations. This loss term is weighed by456

the unsupervised learning coefficient γ. In this work, we used the MixMatch457

20



hyper-parameters recommended in [8], of K = 2, and T = 0.25. As for the458

unsupervised coefficient, a value of γ = 200 is used, given our empirical test459

results.460

4.2. Harm coefficient estimation for unlabelled observations461

Interesting results were yielded in [12, 11], where the authors found an strong462

correlation between the feature-density based distances and the MixMatch’s463

accuracy. Based upon it, we propose to estimate how harmful an individual464

unlabelled observation might be towards the MixMatch’s level of accuracy. We465

refer to this operator as the SSDL harm coefficient H
(
xu
j

)
, where xu

j ∈ Su.466

We aim to implement a simple and computationally inexpensive method to467

filter OOD data in the unlabelled dataset, This is done in order to decrease the468

distribution mismatch between Su and Sl.469

As mentioned in Section 2, using different unlabelled data sources might in-470

crease the chance of violating the clustered-data/low-density separation assump-471

tion. This is particularly the case given the potential distribution mismatch472

between the labelled and unlabelled datasets. Therefore, our proposed method473

aims to discard harmful observations that might create wrong low density re-474

gions to build the manifold and/or sparser sample clusters for each category. In475

a real-world scenario for OOD filtering, DNNs are fed with high resolution im-476

ages, frequently with images from the same domain (chest X-ray images in our477

case). This contrasts with the usual settings of the methods discussed in Section478

2. As previously discussed, benchmarking in the literature have been usually479

performed with small resolution images and with relatively not very difficult480

OOD detection challenges (i.e distinguishing between CIFAR-10 and MNIST481

images). We aim to further test real-world distribution mismatch conditions in482

a medical imaging analysis application such as the COVID-19 detecion using483

chest X-ray images.484

In this work, we propose to use the feature density of a labelled dataset485

Sl, to weigh how harmful could be to include an unlabelled observation xu
j in486

the unlabelled dataset Su. This is done witin the context of training a model487
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using the SSDL algorithm known as MixMatch. This harmful coefficient is488

represented as H
(
xu
j

)
. We test two different variations to estimate H

(
xu
j

)
. The489

first one consists in a non-parametric estimation of the feature density through490

an histogram calculation. The second variation assumes a Gaussian distribution491

of the feature space, by using a Mahalanobis distance. We use a generic feature-492

space built from a pre-trained image-net model, to keep the computational cost493

of the proposed method low. For all the tested configurations, we only use the494

features of the final convolutional layer. Computational resource restrictions for495

solving a real-world problem in medical imaging makes very expensive to use496

all the features extracted in the different layers as done in [41]. The procedure497

to calculate the harm coefficient using both methods, is depicted as follows:498

1. For all of the input observations xl
j ∈ Sl, with xl

j ∈ Rn, being n the499

input space dimensionality, using the feature extractor f , we calculate its500

feature vector as hl
j = f

(
xl
j

)
.501

2. The feature vector hl
j ∈ Rn′

has dimension n′ , with n′ < n. For instance,502

a given feature extractor f using the Imagenet pretrained Wide-ResNet503

architecture, yields n′ = 512 features. For architectures such as densenet504

that might yield larger feature arrays in its final convolutional layer, we505

sub-sampled it to keep it in n′ = 1024 features, using an average pooling506

operation. This yields a feature set Hl.507

3. For the Feature Histograms (FH) method, we perform the following steps:508

(a) For each dimension r = 1, ..., n′ in the feature space, we compute

its normalized histogram to approximate the density functions p̃lr, in

the sample Hl. This yields the set of approximated feature density

functions:

P̃ l =
{
p̃l1, . . . , p̃

l
n′

}
(2)

(b) Using the approximated feature densities in P̃ l, we estimate our509

SSDL harm coefficient H
(
xu
j

)
, for an unlabelled observation in the510

following steps xu
j .511

(c) Calculate the features for each unlabelled observation as hu
j = f

(
xu
j

)
,512

for each dimension in hu
j ∈ Rn′

,513
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(d) The total likelihood calculation within the density function approx-

imation set P̃ l assumes that each dimension is statistically indepen-

dent. Thus:
n′∏
r=1

plr
(
hu
j,r

)
. (3)

(e) To avoid under-flow, we calculate the negative logarithm of the like-

lihood, and use it as the harm coefficient:

H
(
xu
j

)
= −

n′∑
r=1

ln
(
plr

(
hu
j,r

))
. (4)

4. For the Mahalanobis based filtering, we perform the following steps:514

(a) Calculate the covariance matrix Σ from the features set Hl, and the515

sample mean from the features set hl.516

(b) Calculate the features for each unlabelled observation as hu
j = f

(
xu
j

)
.517

(c) Compute the harm coefficient as:

H
(
xu
j

)
=

(
hl − hu

j

)T
Σ−1

(
hl − hu

j

)
. (5)

The harm coefficient H
(
xu
j

)
can be used to discard the observations with518

high values, or to weigh them in case an online semi-supervised per-observation519

weighting is implemented. In this work, we test the impact of the distribution520

mismatch between the labelled target and unlabelled source datasets, Dl
t and521

Du
s , respectively, in the accuracy of the SSDL MixMatch algorithm. Later,522

we test the impact of the proposed feature based harm coefficient to eliminate523

potentially harming observations from the unlabelled dataset. This was done524

to assess the accuracy of the model using the filtered unlabelled dataset Du
s .525

This way, we can assess in a controlled setting the impact of the distribution526

rectification procedure, implemented through a data filtering process. Figure 2527

summarizes both proposed methods.528

5. Experiments529

5.1. Experiment Design530

Test-bed 1 (TB-1) is designed to assess the effect of on MixMatch’s accuracy531

of using different unlabelled datasets Ds
u with a target labelled dataset Dt

l . As532
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Figure 2: Summary of the proposed unlabelled data scoring methods for SSDL, HFH and

HMahalanobis.

error measure we use the accuracy in a balanced test dataset. This test-bed533

recreates different distribution mismatch conditions between Ds
u and Dt

l . The534

Costa Rican dataset acts as a source of OOD data, as it yielded the lowest accu-535

racy when used as Ds
u for MixMatch, among the empirically tested unlabelled536

data sources. We combine the aforementioned data sources with the Costa537

Rican dataset. This helps enforce different distribution mismatch settings.538

In the Test-bed 1.1 (TB-1.1), the first sub-experiment defined within the539

TB-1, we measure MixMatch’s accuracy using a densenet model, with feature540

extractor fine-tuning and without it. As error measure we also use the accuracy541

in a balanced test dataset. We aim to measure if there is a significant accuracy542

gain of fine-tuning the feature extractor during training. Table 5 shows the543

results of performing MixMatch’s training without feature extractor fine-tuning,544

while Table 6 shows the results with it.545

Additionally, we devised a Test-bed 1.2 (TB-1.2), where the baseline results546

obtained in this MixMatch accuracy baseline test-bed in Tables 5 and 7 are547

correlated with the cosine DeDiMs between each Ds
u and Ds

u. This is measured548

as proposed in [13], and represented as dC(Ds
u, D

t
l ). We measure the linear549
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correlation between the model’s accuracy and its measured labelled-unlabelled550

dataset distance. For this experiment, we tested an alexnet’s model feature551

extractor, given its low computational cost. We implemented the cosine dataset552

DeDiM with a batch dataset size of nb = 40, with 10 batches of random samples.553

The same batches were used to test the different configurations. Similar to the554

proposed harm coefficient estimation methods, we used a generic Imagenet pre-555

trained feature extractor to build the feature density estimations, as proposed556

in [13]. The DeDiM results are linearly correlated using a Pearson coefficient in557

Table 9. We performed a Wilcoxon test to verify whether there is a statistically558

significance difference when comparing: feature extractor fine-tuning vs. no559

feature extractor fine-tuning, the two proposed methods to each one of the560

previous methods (softmax and MCD based), and the proposed Mahalanobis561

method vs. the also proposed FH approach, with p < 0.05.562

Finally, Test-bed 2 (TB-2) aims to assess MixMatch’s accuracy results when563

implementing the proposed methods in this work to filter the OOD observa-564

tions, against two popular output based OOD filtering methods: the MCD and565

Softmax based OOD filters. In this test bed, we measure MixMatch’s accuracy566

through the four different filtered datasets, testing both alexnet and densenet567

as a model. We also tested the model with nl = 20 and nl = 40 labels. The re-568

sults using the proposed feature histograms and Mahalanobis distance for each569

generated unlabelled data source Ds
u are depicted in Tables 11 and 13, for the570

alexnet and the densenet models, respectively. To filter possible OOD observa-571

tions, we eliminated the same percent of contaminated observations using the572

Costa Rican dataset (i.e, if the Chinese dataset was contaminated with 35% of573

observations with the Costa Rican dataset, we eliminated 35% of the observa-574

tions with the highest harm coefficient, and so on). We leave the problem of575

defining the right harm coefficient threshold out of this study.576

In all test beds, the MixMatch algorithm is tested with a densenet and577

alexnet models, using the recommended parameters in [8], along with an unsu-578

pervised regularization term coefficient of 200. As for model training, we use579

the one-cycle policy implemented in the FastAI library, with a weight decay580
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Table 5: TB-1.1 results: Accuracy of a Densenet model trained with MixMatch with different

Ds
u datasets. The unlabelled datasets Chest-Xray8, Costa Rican and Chinese datasets include

only COVID-19− observations. No use of a fine-tuned feature extractor.

Dataset nl = 40 nl = 20

Supervised 0.851 ± 0.037 0.803 ± 0.039

Indiana (with COVID-19+ [21]) 0.891 ± 0.047 0.875 ± 0.04

China 0.735 ± 0.0621 0.722 ± 0.054

Costa Rica 0.493 ± 0.014 0.511 ± 0.029

ChestX-ray8 0.825 ± 0.061 0.795 ± 0.052

ChestX-ray8 65% - Costa Rica 35% 0.579 ± 0.115 0.582 ± 0.067

ChestX-ray8 35% - Costa Rica 65% 0.5 ± 0.001 0.503 ± 0.009

China 65% - Costa Rica 35% 0.588 ± 0.066 0.559 ± 0.067

China 35% - Costa Rica 65% 0.498 ± 0.004 0.508 ± 0.024

Indiana 65% - Costa Rica 35% 0.504 ± 0.014 0.553 ± 0.062

Indiana 35% - Costa Rica 65% 0.501 ± 0.004 0.5 ± 0.001

of 0.001, This way we can measure MixMatch’s behaviour with models with581

different depth and architecture. For each configuration, we trained the model582

with 10 runs, using a different random data partition for training and test, for583

50 epochs.584

Finally, Table 14 shows the average and standard deviation of the execution585

time in seconds for the tested harmful data filters. As for the data load of586

the aforementioned tests, nl = 142 and nu = 90 observations were used. For587

these performance tests, a densenet backbone was used. The Mahalanobis based588

method is the fastest with an execution time of around 65.1 secs. in average589

and a standard deviation of 2.3 secs. (for a typical data load of the test bench),590

when compared to the histogram based approach. The Mahalanobis method591

was the fastest with statistical significance according to our Wilcoxon test, when592

compared to the rest of the evaluated methods.593
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Table 6: TB-1.1 results: Accuracy of a Densenet model trained with MixMatch with different

Ds
u datasets. The unlabelled datasets Chest-Xray8, Costa Rican and Chinese datasets include

only COVID-19− observations. Using the fine-tuned feature extractor.

Dataset nl = 40 nl = 20

Supervised 0.852 ± 0.045 0.795 ± 0.005

Indiana (with COVID-19+ [21]) 0.892 ± 0.044 0.885 ± 0.039

China 0.733 ± 0.043 0.709 ± 0.059

Costa Rica 0.498 ± 0.004 0.501 ± 0.016

ChestX-ray8 0.804 ± 0.061 0.793 ± 0.044

ChestX-ray8 65% - Costa Rica 35% 0.598 ± 0.1 0.591 ± 0.105

ChestX-ray8 35% - Costa Rica 65% 0.501 ± 0.004 0.488 ± 0.033

China 65% - Costa Rica 35% 0.593 ± 0.057 0.614 ± 0.0926

China 35% - Costa Rica 65% 0.514 ± 0.055 0.496 ± 0.022

Indiana 65% - Costa Rica 35% 0.516 ± 0.048 0.535 ± 0.047

Indiana 35% - Costa Rica 65% 0.508 ± 0.016 0.501 ± 0.011

Table 7: TB-1.1 results: Accuracy of a Alexnet model trained with MixMatch with different

Ds
u datasets. The unlabelled datasets Chest-Xray8, Costa Rican and Chinese datasets include

only COVID-19− observations.

Dataset nl = 40 nl = 20

Supervised 0.785 ± 0.038 0.809 ± 0.085

Indiana (with COVID-19+ [21]) 0.782 ± 0.039 0.75 ± 0.06

China 0.648 ± 0.0247 0.659 ± 0.033

Costa Rica 0.501 ± 0.001 0.5 ± 0.001

ChestX-ray8 0.72 ± 0.076 0.71 ± 0.074

ChestX-ray8 65% - Costa Rica 35% 0.711 ± 0.083 0.66 ± 0.11

ChestX-ray8 35% - Costa Rica 65% 0.516 ± 0.022 0.511 ± 0.016

China 65% - Costa Rica 35% 0.701 ± 0.055 0.688 ± 0.084

China 35% - Costa Rica 65% 0.53 ± 0.023 0.528 ± 0.019

Indiana 65% - Costa Rica 35% 0.532 ± 0.024 0.559 ± 0.059

Indiana 35% - Costa Rica 65% 0.501 ± 0.001 0.503 ± 0.009
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Table 8: TB-1.2 results: Cosine DeDiM distance, using 10 different batches of 80 observations,

between the labelled and unlabelled datasets, Sl and Su, respectively. Using Alexnet, to keep

computing cost low.

Dataset d(Sl, Su)

China 2.06 ± 0.11

Costa Rica 30.9 ± 0.4

ChestX-ray8 1.04 ± 0.27

ChestX-ray8 65% - Costa Rica 35% 3.95 ± 0.94

ChestX-ray8 35% - Costa Rica 65% 11.84 ± 0.94

China 65% - Costa Rica 35% 5.74 ± 0.79

China 35% - Costa Rica 65% 14.85 ± 0.0

Indiana 65% - Costa Rica 35% 6.33 ± 0.3

Indiana 35% - Costa Rica 65% 16.61 ± 0.3

Table 9: TB-1.2 test results: Pearson coefficient between the accuracy and the calculated

divergences.

SSDL model nl Pearson coefficient

Alexnet 20 -0.798

40 -0.75

Densenet 20 -0.665

40 -0.662

Table 10: Accuracy of a Alexnet model trained with MixMatch, with the filtered datasets

using the harm coefficient with the two output-based methods: MCD and Softmax. The

percentage of discarded observations is the same of the amount of Costa Rican observations.

nl = 40 nl = 20

Dataset Acc. Softmax Acc. MCD Acc. Softmax Acc. MCD

ChestX-ray8 35% - Costa Rica 65% 0.532 ± 0.059 0.506 ± 0.012 0.52 ± 0.038 0.5 ± 0.002

ChestX-ray8 65% - Costa Rica 35% 0.582 ± 0.096 0.567 ± 0.067 0.579 ± 0.096 0.558 ± 0.067

China 35% - Costa Rica 65% 0.514 ± 0.04 0.503 ± 0.009 0.525 ± 0.077 0.509 ± 0.02

China 65% - Costa Rica 35% 0.591 ± 0.096 0.579 ± 0.076 0.585 ± 0.096 0.567 ± 0.051

Indiana 35% - Costa Rica 65% 0.503 ± 0.009 0.503 ± 0.006 0.506 ± 0.019 0.509 ± 0.014

Indiana 65% - Costa Rica 35% 0.574 ± 0.078 0.544 ± 0.032 0.551 ± 0.054 0.543 ± 0.042
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Table 11: Accuracy of a Alexnet model trained with MixMatch, with the filtered datasets

using the harm coefficient with the two proposed feature density based methods: FH and the

Mahalanobis based filter. The percentage of discarded observations is the same of the amount

of Costa Rican observations.
nl = 40 nl = 20

Dataset Acc. FD Acc. Maha. Acc. FD Acc. Maha.

ChestX-ray8 35% - Costa Rica 65% 0.709 ± 0.084 0.727 ± 0.078 0.682 ± 0.09 0.685 ± 0.089

ChestX-ray8 65% - Costa Rica 35% 0.732 ± 0.064 0.7612 ± 0.049 0.717 ± 0.08 0.709 ± 0.09

China 35% - Costa Rica 65% 0.683 ± 0.065 0.708 ± 0.07 0.667 ± 0.078 0.667 ± 0.09

China 65% - Costa Rica 35% 0.693 ± 0.044 0.695 ± 0.079 0.687 ± 0.078 0.674 ± 0.072

Indiana 35% - Costa Rica 65% 0.732 ± 0.052 0.711 ± 0.032 0.703 ± 0.1 0.719 ± 0.09

Indiana 65% - Costa Rica 35% 0.719 ± 0.058 0.748 ± 0.059 0.709 ± 0.093 0.711 ± 0.09

Table 12: Accuracy of a Densenet model trained with MixMatch, with the filtered datasets

using the harm coefficient with the two output-based methods: MCD and Softmax. The

percentage of discarded observations is the same of the amount of Costa Rican observations.

nl = 40 nl = 20

Dataset Acc. Softmax Acc. MCD Acc. Softmax Acc. MCD

ChestX-ray8 35% - Costa Rica 65% 0.5 ± 0.001 0.5 ± 0.001 0.488 ± 0.025 0.529 ± 0.077

ChestX-ray8 65% - Costa Rica 35% 0.543 ± 0.09 0.537 ± 0.11 0.543 ± 0.095 0.498 ± 0.004

China 35% - Costa Rica 65% 0.498 ± 0.004 0.5 ± 0.001 0.49 ± 0.04 0.496 ± 0.009

China 65% - Costa Rica 35% 0.517 ± 0.029 0.501 ± 0.004 0.5 ± 0.007 0.504 ± 0.01

Indiana 35% - Costa Rica 65% 0.499 ± 0.001 0.5 ± 0.001 0.48 ± 0.036 0.496 ± 0.009

Indiana 65% - Costa Rica 35% 0.5 ± 0.001 0.501 ± 0.008 0.497 ± 0. 0.503 ± 0.0173

Table 13: Accuracy of a Densenet model trained with MixMatch, with the filtered datasets

using the harm coefficient with the two proposed feature density based methods: FH and the

Mahalanobis based filter. The percentage of discarded observations is the same of the amount

of Costa Rican observations.
nl = 40 nl = 20

Dataset Acc. FD Acc. Maha. Acc. FD Acc. Maha.

ChestX-ray8 35% - Costa Rica 65% 0.691 ± 0.10 0.769 ± 0.048 0.683 ± 0.105 0.779 ± 0.025

ChestX-ray8 65% - Costa Rica 35% 0.717 ± 0.091 0.811 ± 0.049 0.695 ± 0.1 0.783 ± 0.049

China 35% - Costa Rica 65% 0.794 ± 0.036 0.795 ± 0.053 0.787 ± 0.048 0.769 ± 0.076

China 65% - Costa Rica 35% 0.788 ± 0.056 0.812 ± 0.05 0.774 ± 0.053 0.798 ± 0.036

Indiana 35% - Costa Rica 65% 0.758 ± 0.047 0.729 ± 0.035 0.727 ± 0.0512 0.714 ± 0.046

Indiana 65% - Costa Rica 35% 0.737 ± 0.049 0.762 ± 0.055 0.703 ± 0.055 0.722 ± 0.032
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Harmful data filter Time (secs.)

Mahalanobis 65.1 ± 2.3

Feature Histograms 269.7 ± 2.7

Softmax 1246.7 ± 22.2

Monte Carlo Dropout 1089.6 ± 10.8

Table 14: Average and standard deviation of the execution time, in seconds, of the different

unlabelled harmful data techniques tested in this work. The execution time of using 10 random

data batches was measured.

5.2. Experiment setup594

Regarding hardware resources, most of the experiments were run at the595

DIGITS computer, De Montfort University, equipped with a 12GB NVIDIA596

TITAN V GPU, 24 Intel(R) Xeon(R) E5-2620 0 @ 2.00GHz CPU and 32GB of597

RAM memory. Software wise, this system was used with Ubuntu 18.04 LTS,598

with Python version 3.7.0. The Pytorch library used to develop the algorithms599

in this thesis, with version 1.4.0 in both systems. We also used the FastAI library600

(version 1.0.61) to develop some sections of this work 3. The repository with601

the code used in this work can be found in https://gitlab.com/saul1917/602

mixmatch_with_ood.603

6. Results Analysis604

In this section we develop the interpretation of the obtained results. As for605

the results in TB-1.1, depicted in Table 5, we can see a very strong influence606

of the unlabelled data source Ds
u in the accuracy of the SSDL MixMatch algo-607

rithm. Training the model with the Indiana dataset including also COVID-19+608

observations, yields the highest accuracy, with around 0.89, higher than the su-609

pervised model. From there, using the ChestX-ray8 as Ds
u, yields an accuracy610

of 0.825, followed by the usage of the Chinese dataset as Ds
u, accuracy wise.611

3The Pytorch/FastAI MixMatch implementation is based on the repository available at

https://mc.ai/a-fastai-pytorch-implementation-of-mixmatch/
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Using the Costa Rican dataset as Ds
u yields the lowest accuracy, with close to612

0.493. Contaminating the ChestXray8, Chinese and Indiana dataset with the613

Costa Rican dataset, yields a lower accuracy with an increasing degree of con-614

tamination. As for the impact of fine-tuning the feature extractor, there is no615

statistical significant difference of performing it, when comparing the results616

in Tables 5 and 6. This suggests that using an image-net pre-trained feature617

extractor for harm coefficient estimation is justifiable.618

Regarding TB-2 results, when comparing the accuracy yielded by MixMatch619

for each tested Ds
u with the calculated inter-dataset cosine DeDiMs in Table 8,620

we can see an interesting relationship. The Costa Rican dataset and heav-621

ily contaminated Ds
u data sources present the highest distances. For instance,622

the Chinese dataset contaminated with a degree of 65% with the Costa Rican623

dataset, presents a distance of 50.93 with the labelled dataset Ds
u, similar to624

the inter-dataset distance to the Costa Rican dataset of 57.19 (the Ds
u with the625

highest distance to Dt
l ). We can see how using both of the aforementioned Ds

u626

datasets, yield very low MixMatch accuracy. This behaviour is summarized in627

the obtained Pearson coefficients depicted in Table 9, with a very high lineal628

correlation, of around 78% for the tested variations. The correlation is still high629

for the semi-supervised densenet model behaviour with the dataset distances,630

using a generic Imagenet pre-trained alexnet model. This suggests that the us-631

age of the feature density can bring useful information to preserve or discard an632

unlabelled observation in a Ds
u.633

Regarding the results of TB-2, Tables 13 and 11 show the accuracy of Mix-634

Match yielded when filtering the unlabelled datasets with the proposed FH635

and Mahalanobis methods, for both tested models (alexnet and densenet, re-636

spectively). For both proposed methods, we can see how filtering potentially637

harming observations from the unlabelled dataset increases MixMatch’s accu-638

racy significantly, when compared to the baseline accuracies in Tables 7 and639

5, for both tested models. For instance, when using the densenet model with640

nl = 40, the ChestX-ray8 dataset contaminated with 35% and 65% with the641

Costa Rica dataset, increases its accuracy from 0.579 to 0.78 and 0.5 to 0.79,642
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respectively, when filtering harmful observations with the Mahalanobis method643

(both with statistical significance, according to our Wilcoxon tests). This can644

be seen in both Tables 5 and 13. The usage of the FH method yields also an645

important accuracy gain. In this case however, it is lower than the gains ob-646

tained with the Mahalanobis method. The accuracy of the model trained with647

Ds
u using the ChestX-ray8 dataset with no contamination is almost restored,648

as MixMatch originally yielded 0.825. We have to consider that the filtered649

dataset is always smaller than the original unlabelled dataset. Despite this, the650

accuracy ends very close. Similarly, for the alexnet model with nl = 40, the651

accuracy of using an Indiana unlabelled dataset contaminated with 65% of the652

Costa Rica dataset is close to 50%, according to Table 7. However, after filter-653

ing out harmful unlabelled observations ends close to the 71%, using both the654

FH or the Mahalanobis method.655

When comparing the accuracy gain of using the feature histograms against656

the Mahalanobis distance based method, we can see a similar behaviour across657

almost all the tested unlabelled datasets Ds
u. This since according to our statis-658

tical analysis test using the Wilcoxon method, there is no statistically significant659

difference between the FH and Mahalanobis method. However, this behaviour660

is broken for the ChestX-ray8 dataset, when using the densenet model, where661

the Mahalanobis based method yields statistically significant accuracy gains the662

FH approach, as seen in Table 13. This suggests that the feature distribution of663

the labelled dataset Dt
l fits well with a Gaussian distribution, given the similar664

and sometimes slightly better results of the Mahalanobis method. The Maha-665

lanobis based method is faster, as it only needs to compute a covariance matrix,666

when compared to the histogram based approach, which needs to build a feature667

histogram. This proved to be significantly slower in our tests as seen in Table668

14.669

As for the tested MCD and Softmax baseline methods, popular in OOD670

detection and uncertainty estimation, the results depicted in Tables 10 and671

12, for the alexnet and densenet models, show a very poor performance. The672

accuracy gains are negligible and sometimes the accuracy is diminished, when673
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compared to the baseline results shown in Tables 7 and 5. Therefore, the usage674

of the feature density based methods for filtering potentially harmful unlabelled675

observations prove to be a significantly better approach. Accuracy gains of up676

to 25% with statistical significance in all the tested settings were obtained (using677

a Wilcoxon test with p < 0.05), when using the feature density approaches over678

the tested output based ones. This can be seen when comparing the results for679

the proposed feature density techniques in Tables 11 and 13, with Tables 10 and680

12, for the both tested architectures alexnet and densenet, respectively.681

7. Conclusions682

In this work, we have analyzed the impact of the distribution mismatch683

between the labelled and the unlabelled dataset for training a SSDL model,684

using the MixMatch algorithm. The setting assessed used medical imaging685

data, for COVID-19 detection. Measuring the impact of distribution mismatch686

between the unlabelled and labelled dataset for medical imaging applications is687

still an under-reported problem in the literature.688

In the first test-bed, we have assessed the impact of using different unla-689

belled data sources Ds
u, and quantitatively analyzed the distribution mismatch690

between them using DeDiMs as a metric. The high linear correlation between691

the measured DeDiMs and the MixMatch accuracy, suggests a strong influence692

of the feature distribution mismatch between Ds
u and Dt

l . In contexts where a693

decision must be made about what unlabelled data source Ds
u must be used,694

from a set of possible unlabelled datasets, the DeDiMs might be used as a695

quantitative prior method. Implementing the tested DeDiMs requires no model696

training, as a generic pre-trained ImageNet model seems to be good enough to697

estimate the benefit of using a specific unlabelled dataset Ds
u, according to our698

results. Data quality metrics for deep learning models as argued in [48, 5] is an699

interesting path to develop further, as it might help to narrow the gap between700

research and real-world implementation of deep learning systems. For instance,701

building high quality datasets for training a semi-supervised model, or assess702
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the safety of using a deep learning model before hand, can benefit from quan-703

titative data quality measures. We argue for the community to include robust704

data quality metrics in the deployment of deep learning solutions.705

To increase the robustness of the SSDL model to the distribution mismatch,706

we tested different approaches to discard potentially harming unlabelled obser-707

vations from the unlabelled dataset Ds
u. The tested setting can be considered to708

be closer to real-world settings, as images within the same domain were used as709

OOD data contamination sources. This contrasts to the frequent OOD detec-710

tion benchmarks where images from very different dataset were used as OOD711

data sources [80]. Our approach is data-oriented, as it modifies the original712

dataset in an explicit way by removing potentially harming unlabelled observa-713

tions. We tested output based OOD filtering techniques against our proposed714

feature density based approaches.715

Our proposed methods based on the feature densities built upon a pre-716

trained model with Imagenet, showed a large and significantly advantage over717

previous output based OOD filtering methods. In the context of SSDL, some718

approaches have relied in weighing each unlabelled observation using the out-719

put of the model, as in [52]. According to our results, we argue that using the720

model’s output might yield over-confident results to filter or weigh unlabelled721

observations. This is widely known in OOD detection literature [40]. Even722

ensemble based approaches like the tested MCD method are not able to filter723

harming unlabelled observations, according to our test results. However, both724

feature density based approaches demonstrated a good performance on detect-725

ing harming unlabelled observations, almost recovering the original accuracy726

of the no contaminated datasets. The proposed methods can be deployed to727

correct and create more effective unlabelled datasets. Moreover both proposed728

methods do not require any deep learning model training, making it cheap and729

reducing the carbon footprint of its implementation [65]. Research of computa-730

tionally efficient methods to identify potentially harmful data for deep learning731

systems remains as an interesting future research path.732

Recently, the renowned deep learning researcher, Andrew Ng, has urged the733
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community to focus in data-centric based AI solutions, that are able to tackle734

the main challenges faced by AI systems during its everyday usage [49]. As735

argued in [36], most of development effort of AI solutions for real-world usage is736

invested in data manipulation tasks. Nevertheless, data-oriented operations are737

often overlooked in the deep learning research community. Also different dataset738

testing settings (scarcely labelled datasets, datasets with distribution mismatch739

settings), are frequently omitted. This often obscures the actual accuracy gain740

of using a specific methodology. Therefore, we agree with Andrew’s call on741

focusing in more data-centric methods and more sophisticated dataset settings742

evaluations to develop deep learning and AI technology, along with stronger743

data quality and evaluation standards for data-driven AI systems.744

In the context of the currently active COVID-19 pandemic, these short-745

comings for deep learning based solutions have hindered its path to solve urgent746

challenges to face the pandemic. It can be argued that the AI and deep learning747

community mostly focused on developing model-centric solutions that delivered748

questionable accuracy gains, often using datasets under unrealistic assumptions749

(same distribution of the test and training datasets) and hidden biases (age750

and other types of biases have been found in popular datasets used in recent751

publications) [49]. This has led to a poor and almost null impact of AI tools in752

the struggle against the COVID-19 pandemic [46, 53]. The lack of high quality753

data standards and regulations to obtain them (data bias acknowledgement,754

data standardisation and sharing, data quality and robustness metrics, etc) in755

the AI research community, is an obstacle to develop robust models for daily756

clinical usage.757
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