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Abstract

With advances in deep learning methodologies, Automatic
Speech Recognition (ASR) systems have seen impressive re-
sults. However, ASR in Low-Resource Environments (LREs)
are challenged by a lack of training data for the specific tar-
get domain. We propose that data sampling criteria for choos-
ing more informative speech samples can be critical to address-
ing the problem of training data bottleneck. Our proposed Lo-
cal Aggregation BERT (LABERT) method for self-supervised
speech representation learning fuses an active learning model
with an adapted local aggregation metric. Active learning is
used to pick informative speech units, whereas the aggregation
metric forces the model to move similar data together in the
latent space while separating dissimilar instances to detect hid-
den units in LRE tasks. We evaluate LABERT with two LRE
datasets: I-CUBE and UASpeech to explore the performance of
our model in the LRE ASR problems.

Index Terms: Self-Supervised Learning, BERT, Local Aggre-
gation Function, Low-Resource Environment ASR

1. Introduction

Recently, there have been remarkable improvements in end-to-
end (E2E) automatic speech recognition (ASR) systems, which
is paralleled by the availability of a large amount of labeled
speech data. However, applications in low-resource environ-
ments (LREs) are challenged in terms of the quality and diver-
sity of data resources, where representative training data and
labels are insufficient and difficult to collect [1]. Examples of
LREs include understudied languages, such as Kyrgyz [2], or
speakers with different accents [1]. As data selection criteria
is a major problem in LREs, an active learning approach can
decrease the training data requirements for a low-resource ASR
task by selecting more informative speech samples during the
training process. In LABERT , we propose a self-supervised
learning (SSL) approach by combining an active learning model
as our data sampling criteria with the Local Aggregation (LA)
function as our metric to identify similar speech units in the la-
tent space to obtain better speech representation in LREs.

SSL models learn general data representations from unla-
beled examples, which are then fine-tuned on labeled data [3].
wav2vec is an SSL model [4], which uses the Contrastive Pre-
dictive Coding (CPC) loss function for pre-training speech rep-
resentations by predicting the near future frames in the acoustic
sequence. The vg-wav2vec [5] model integrates wav2vec and
BERT model [6] to obtain BERT-like speech representations
through a two-stage training. DiscreteBERT [7] improves and
extends the vg-wav2vec model by using the BERT pre-trained
model and fine-tuning it on the downstream ASR task. wav-
BERT [8] is an SSL framework that trains the model to dis-
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cretize speech data and learn contextualized speech represen-
tations by solving the masked prediction task. BEST-RQ [9]
masks the speech input and feeds the masks into an encoder
to learn masked parts of speech based on the unmasked part
through random-projection quantizers. DeLoRes [10] learns
general purpose audio representations through an invariance
and redundancy reduction based objective function. wav2vec
2.0 [3] enhances vg-wav2vec through a single-stage training by
masking the input speech data into the latent space and then
solves a contrastive task defined over a quantization of the la-
tent representations by computing the similarity between the
predicted masked vectors and original vectors. TERA [11]
is a self-supervised pre-training method that utilizes alteration
along time, frequency, and magnitude to pre-train Transformer
Encoders on a large amount of unlabeled speech.

In the ASR literature, clustering approaches are also em-
ployed as a method to obtain pseudo-labels for SSL. Deep Clus-
ter [12] uses k-means algorithm to group similar instances and
optimizing an encoder network through a classification loss.
Hidden unit BERT (HuBERT) [13] uses an offline clustering
step to provide noisy labels for a BERT-like prediction loss.
SwAV [14] uses an online clustering assignment step that pro-
duces the pseudo-labels in a mini-batch structure. However,
many clustering algorithms suffer from the seed selection prob-
lem, resulting with noisy clustering results, which would neg-
atively affect the learning process in the LRE ASR task. Our
approach, Local Aggregation BERT (LABERT), draws inspi-
ration from Local Aggregation (LA) [15], and applies a local
non-parametric aggregation in a latent feature space instead of
within the global clustering algorithm. LABERT selects more
informative speech units and feeds them into the LA function,
which enables it to address the noisy and arbitrary clustering
process and to model the interrelation similarity more accu-
rately in the latent spaces for the LRE ASR system.

LABERT is a novel self-supervised representation learning
model for learning speech representations for the low-resource
ASR task. Inspired by HuBERT, our model consists of an of-
fline hidden unit detection module to provide the noisy labels
for a BERT-like pre-training model. LABERT adapts, for the
first time, non-parametric aggregation in a latent feature space
for visual embedding [15] instead of using a global clustering
algorithm to detect hidden units to learn speech representations.
To address the training data bottleneck in LREs, we integrate
a committee-based active learning model with an LA function
to select more informative speech units. This is done by en-
abling the LA to obtain high performance in identifying close
neighbours around the speech samples in the latent space. Our
procedure, of improving and fine-tuning the committee-based
active learning model during training, provides more informa-
tive speech units in the latent space that enables LA to classify



the speech units with similar statistical structures into the same
clusters. This procedure allows LABERT to select an informa-
tive and diverse subset of the data to train a model, and obtain
more accurate speech units to achieve performance comparable
to the full dataset to address the data bottleneck and model a
well-suited representation for downstream LRE ASR task.

2. Proposed Approach

LABERT is an end-to-end (E2E) ASR model which explores
how to effectively use speech-only data to improve the perfor-
mance of the speech recognition system in a low-resource en-
vironment. The components of LABERT are shown in Figure
1, which consists of: a) hidden unit discovery through Local
Aggregation (LA) function and b) masked target unit predic-
tion. The first module is to extract the hidden units from the
raw audio speech. To accomplish this, the local aggregation
(LA) function moves similar audio units together in the em-
bedding space, while enabling dissimilar units to separate from
each other. A committee-based active learning approach is used
to select the more informative initial unit seeds, to address the
noisy clustering problem in the local aggregation function [15].
The most critical aspect of clustering is determining the features
into which the waveform should be transformed for clustering.
Mel-Frequency Cepstral Coefficients (MFCCs) are used for the
first clustering iteration, and for subsequent clustering, selected
representations from the Canonical Correlation Analysis (CCA)
[16] module are used. In the second module, a masked language
model objective, similar to what is done in BERT [6], is used for
masked prediction of hidden units. To achieve this, we calcu-
late the cosine similarity between the context vectors and every
hidden unit embedding from all available hidden units. Cross-
entropy loss is then used for prediction.

Compare hidden units and context vectors

a) Hidden Unit Discovery b) Masked Target Unit Prediction
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Figure 1: The structure of LABERT model.

2.1. Hidden Unit Discovery through LA function

In LABERT, LA function is adapted to extract hidden speech
units from raw audio data. Our main objective is to train an
embedding function Y = f(X), which can effectively map the
input speech X = [X1, ..., X7] to the corresponding features,
Y = [Y1, ..., Y], where similar units are grouped together and
dissimilar ones are separated. To do this, we identify two sets of
neighbours, close neighbours (C;) and background neighbours
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(Bi), dynamically during the training of the embedding func-
tion for X; and its embedding Y; [15]. Close neighbours are
embeddings that are similar to Y;, while background neighbours
establish the distance scale to determine the closeness to the em-
bedding. Within the context of LREs, background neighbours
enable the LABERT model to scale the measurement for the
target downstream task to obtain a better performance in such
environments. After detecting the close and background neigh-
bours, LABERT forces the current embedding toward close
neighbours but far from background ones.

In each step of optimization, for a given embedding space
Y, the background neighbours are determined as the k closest
embedding spaces gx(Y;) within Y, where the cosine distance
is used as the measure of similarity. To find the close neigh-
bours, k-means clustering algorithm is applied to cluster all em-
bedding spaces in Y to cluster the representations into P groups
{1, ..., P}. At this step of LABERT, to address the noisy clus-
tering results, we employ a committee-based active learning ap-
proach to obtain more informative embedding as the initial clus-
tering seeds for the k-means algorithm. This helps LABERT to
achieve more accurate classification of hidden units. The num-
ber k of background neighbours and number P of clusters are
hyperparameters of the model.

Taking into account the definition of close and background
neighbours, a LA level is defined as L(C;, B;|©, X;) for each
speech unit X;. © parameters are tuned during the training to
maximize the level of local aggregation. In [15], the probability
that a feature Y to be considered as the ¢-th unit is defined as:

exp(Y;TY /1)
o eap(Y;TY/T)
where 7 € [0, 1] is a fixed hyperparameter.

The probability that a feature Y is classified as a unit in a
speech frame 7" is computed as:

PGlY) = (1

P(T|Y) =Y P(i]Y) @)

i€T

The level of local aggregation is defined as the negative log-
likelihood of Y; being a close neighbour (is in C;), given that
Y; is recognized as a background neighbour (is in B;):

P(C; N BilYi)

L(C;, B;1©, X;) = —log P(B.Y) 3)
Finally, the loss to be minimized is:
Loss = L(C;, Bi|©, X;) + \||©|)3 4)

where ) is a regularization hyperparameter.

As explained earlier, LABERT employs a committee-based
active learning (AL) approach to obtain more informative parts
of speech data to consider them as seeds for the local aggre-
gation function. Most of the classical committee-based AL ap-
proaches consist of two or more different structure models to
present the difference among the models [17]. In [17], a sin-
gle committee-based AL model, SMCA, is proposed, where the
committee model and its variants are constructed by applying
the dropout technique. The main drawback of the SMCA is
the inconsistency between training and inference, which leads
to reduced performance of the model in both high- and low-
resource ASR scenarios. To address this issue, in LABERT, we
use the R-Drop model [18], in which each speech input X; is
fed into the model twice at each step of training, producing two
samples of the model, p{’ (I;]|z;) and p5 (I;|z;), where I; is the



transcribed text of x;. R-Drop regularizes the minimization of
bidirectional Kullback-Leibler (KL) divergence between these
distributions:
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By applying the R-Drop method during the training step,
the dropout hypotheses of the seed model could be different
from the normal hypotheses in the model. The difference be-
tween these hypotheses at frame-level is considered as a data
selection metric to obtain more informative speech units from
utterance to start the clustering algorithm in local aggregation
function. LABERT incorporates both informativeness and di-
versity to select a more informative subset of speech data to ad-
dress the noisy clustering problem. LABERT employs the B;
set to dynamically compute the diversity during the pre-training
process. Therefore, AL approach prevents LA function to select
most or all of the data to be similar to each other, which enables
LABERT to produce more accurate clusters of speech units.

2.2. Masked Target Unit Prediction

In this section, we summarize how to use the BERT model
[6] and also how to select a good representation from BERT
to use in the second iteration of the LA function. BERT is a
language model which uses the masked prediction model over a
large amount of text data. Therefore, a pre-trained BERT model
can satisfy the lack of text data for an ASR system in the low-
resource target task. LABERT adopts the same strategy as Hu-
BERT [13] and wav2vec 2.0 [3] for mask generation, but only
p% of the selected timesteps are masked to allow the model
to receive real input to address the train-test inconsistency. In
LABERT, we develop on our previous work [19] and use a layer
analysis module to select the layer best-suited for the LRE target
ASR task for our second iteration in the LA function. We use
CCA [16] as a measure to detect the layer of the model, which
is well-suited for the target LRE ASR task. CCA is a statistical
approach to represent the maximum correlations between linear
combinations of two continuous value vectors. Therefore, CCA
can be used to calculate the similarity between the represen-
tations of the layers and the acoustic feature vector to evaluate
how different layers of the model are adapted to the downstream
target task. Through this strategy, we force the model to learn
representations from the downstream ASR task to improve the
performance of the model in the target domain.

3. Experiments
3.1. Datasets

For unsupervised pre-training, we use the full 960 hours of
LibriSpeech (Libri) [20], full 81 hours of Wall Street Journal
(WSJ) [21], 1k hours of Common Voice (CV) [22] and 450
hours of TED-LIUM 3 (TED3) as our high-resource environ-
ment (HRE) datasets. The performance of LABERT is eval-
uated in low-resource environments, using the following LRE
datasets: 1) The UASpeech dataset [23], which is the largest
corpus of dysarthric speech in American English. It is a collec-
tion of 541 speech recordings from 19 individuals with cerebral
palsy. 2) The Industrial Co-bots Understanding Behavior (I-
CUBE) dataset is a Human-Robot Collaboration dataset, gen-
erated through a user study in our lab, where participants were
asked to interact with an actor posing as a robot (following the

Wizard of Oz protocol) using natural language [24]. The dataset
involves speakers who instruct and ultimately teach a robot how
to sort different garments into four baskets as if they were sort-
ing their own. During the experiments, the robot would also
respond to the actions of the participant with its own actions or
speech. Video recordings of each session were collected, re-
sulting in a total of 42 videos, which represent 300 minutes of
transcribed audio.

3.2. Experiment Setup and Metrics

For pre-training, we train LABERT with the selected HRE
datasets in two settings: Base setting with 12 layers and Large
setting with 24 layers of the encoder. For the model configura-
tion, the mask span is set to [ = 10 and p = 8% of the wave-
form encoder output frames are randomly selected as the initial
mask. We set k = 4096 to compute B; using the nearest neigh-
bours procedure. In computing C;, we run the k-means clus-
tering algorithm with 50 and 100 clusters on 39-dimensional
MEFCC features, to obtain labels for LABERT pre-training over
the HRE data sets. We considered 50 and 100 clusters on 100h,
300h and 500h of speech samples from LibriSpeech and fine-
tuned the model with I-CUBE for cluster quality analysis. The
input acoustic features are 80-dimensional filterbanks, extracted
with a hop size of 10 ms and a window size of 25 ms, which are
normalized with the mean and variance. For the WSJ setup, the
number of output classes is 52, including the 26 letters of the
alphabet, space, noise, symbols such as period and an unknown
marker. To predict the probability distribution of all characters
in the alphabet, we use the CTC loss function and use AdamW
optimizer [25] to update the model with an initial learning rate
of 0.001. The text is tokenized using SentencePiece [26] and
we set the vocabulary size to 500.

Benchmarking results are presented for the pre-trained and
fine-tuned wav2vec 2.0 and HuBERT models in Base and Large
settings, as well as for QuartzNet and DiscreteBert. The pri-
mary evaluation metric we used is the word error rate (WER).
We also compute the Phone Purity and Phone-Normalized Mu-
tual Information (PNMI) to evaluate the quality of the obtained
cluster assignments from LA function in different layers:

We obtain phonetic transcripts that are aligned at the
frame level to quantify the correlation between the LA assign-
ments and the underlying phonetic units. Let [y, ..., y:] and
[f1, .-, ft] be frame-level and LA function labels, respectively.
The joint distribution of y and f is the normalized number of
occurrences of the labels:

T =7 A =7
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where i and j demonstrate the it" phoneme class and 7" LA
function class label [13]. Phone Purity measures the frame-level
phone accuracy if we transcribe each LA function class with the

most likely phone label. It is defined as E, . ;) [py‘f (y*(4) |j)] ,

where py#(y"(j)|j) is the conditional probability of phone
given a class label j and y*(7) is the most likely phone label
for the j-th class. Higher purity indicates greater quality.

PNMI is an information-theoretic metric used to measure
the similarity between two clusterings of data. It measures the
percentage of uncertainty about the phone label y that is reduced
after observing the class label f and is defined as follows, where
H(.) is the entropy:
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A higher value of PNMI in our analysis indicates that the quality
of LA clustering is better.

3.3. Results

Table 1 presents the ASR performance of LABERT in terms
of the word error rate (WER) when tested on I-CUBE and
UASpeech LRE datasets, after being pre-trained and fine-tuned
on [-CUBE and UASpeech, respectively. Comparisons are re-
ported for wav2vec 2.0 and HuBERT in Base and Large set-
tings, as well as DiscreteBERT [7] and QuartzNet[27]. We
show that the performance of LABERT is improved by increas-
ing the amount of unlabeled data during pre-training (see Sec-
tion 3.1) which indicates the scalability of the proposed model.
In the Base setup, after fine-tuning on I-CUBE, LABERT
achieved WERs of 13.39%, 14.78%, 14.93% and 17.35%
when pre-trained on LibriSpeech, TED, WSJ and CV corpora,
respectively, which outperformed the other algorithms in the
Base setting. LABERT achieved even better results in the
Large setting when tested on I-CUBE dataset, with WER of
9.53%, 10.24%, 12.21% and 16.63% after pre-training over
LibriSpeech, TED, WSJ and CV, respectively. LABERT sig-
nificantly outperformed QuartzNet and DiscreteBERT as well.
Similarly, after fine-tuning over UASpeech on Base and Large
settings, LABERT achieved best results across all benchmark
algorithms.

Table 1: Word error rate (WER) results obtained with different
methods pretrained in HRE datasets (Libri, TED, WSJ and CV)
and fine-tuned in two LREs (I-CUBE and UASpeech). The best
performing models in corresponding settings are highlighted.

LRE Method Libri | TED | WSJ CvV
I-CUBE | LABERT - Base 13.39 | 14.78 | 1493 | 17.35
LABERT - Large 9.53 | 10.24 | 12.21 | 16.63
wav2vec 2.0 — Base 17.38 | 1545 | 16.61 | 18.42
wav2vec 2.0 — Large | 11.61 | 13.64 | 14.73 | 17.22

HuBERT - Base 16.81 | 1643 | 1598 | 18.13
HuBERT - Large 11.28 | 1271 | 1439 | 16.81
QuartzNet 26.51 | 29.75 | 28.39 | 31.53
DiscreteBERT 2793 | 31.35 | 29.48 | 33.38
UASpecch | LABERT - Base 17.28 | 18.65 | 21.13 | 2391

LABERT - Large 11.27 | 12.28 | 15.11 | 17.93
wav2vec 2.0 — Base 19.07 | 21.31 | 23.94 | 25.18
wav2vec 2.0 — Large | 14.28 | 1591 | 16.23 | 18.87

HuBERT - Base 19.31 | 21.18 | 24.49 | 25.93
HuBERT - Large 1493 | 15.58 | 16.39 | 18.98
QuartzNet 29.15 | 34.93 | 31.79 | 36.75
DiscreteBERT 31.48 | 36.75 | 32.19 | 37.21

The PNMI results are shown in Table 2. These results
demonstrate that the PNMI increases with the amount of pre-
training speech data, which enhance the quality of the cluster
results. A possible explanation for this might be that by increas-
ing the pre-training data, the committee-based active learning
approach can select more informative speech units for seed ini-
tialization of the LA function, therefore LABERT can improve
the quality of the clusters in LRE tasks.

Finally, we evaluate the quality of the LA function for de-
tecting hidden units in each layer of LABERT. In this analy-
sis, we considered the first two iterations of the LABERT after
pre-training the model on LibriSpeech dataset and fine-tuning
it with I-CUBE and UASpeech. The results are compared with
HuBERT since it achieved the next best WER results in the ear-
lier analysis. Phone Purity and PNMI are shown in Figures 2
and 3, for each layer of the model. We observe that the phone
purity gradually increased in the first layers after pre-training
and fine-tuning with both I-CUBE and UASpeech. The inter-

Table 2: PNMI values for different cluster numbers and pre-
training data size. Fine-tuning is done using I-CUBE.

Number

Feature of Clusters PNMI
100h | 300h | 500h
MFCC 50 0.384 | 0.387 | 0.388
100 0.432 | 0.435 | 0.435

Selected Layer

From CCA 50 0.631 | 0.633 | 0.633
100 0.785 | 0.787 | 0.787

esting finding is that in the last layers of both models, phone
purity decreased. The same trend is observed in the PNMI af-
ter fine-tuning the models with both I-CUBE and UASpeech.
The middle layers (7-9) of the LABERT, which were selected
by the CCA module to feed into the AL model for selecting
initial seeds for hidden units detection process, exhibited the
highest PNMI. In both LRE settings, fine-tuning on I-CUBE
and UASpeech, significant phone purity and PNMI results were
observed at these middle layers, suggesting that they are well-
suited for the downstream LRE ASR task. Notably, the phone
purity and PNMI analysis revealed that the LABERT model
demonstrates more stable clusters, indicating that it performs
reasonably well for low-resource ASR tasks.
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Figure 2: Phone purity of LABERT and HuBERT in Base configuration after pre-
training on LibriSpeech and fine-tuning over I-CUBE and UASpeech for the first
and second iteration. a and b stand for I-CUNE and UASpeech, respectively.
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Figure 3: PNMI of LABERT and HuBERT in Base configuration after pre-training
on LibriSpeech and fine-tuning over I-CUBE and UASpeech for the first and sec-
ond iteration. a and b stand for I-CUNE and UASpeech, respectively.

4. Conclusions

We proposed LABERT, a self-supervised speech representa-
tion learning model for ASR in LREs. LABERT integrates a
committee-based active learning model with a local aggrega-
tion (LA) function as a hidden unit detection module. Active
learning is used to select informative speech units, whereas the
LA function learns feature embeddings, which classify simi-
lar speech units together and move apart dissimilar ones. We
pre-train LABERT on four well-known high-resource datasets
and fine-tune it with two LRE datasets. Our model achieves up
to 16.63% WER reduction on the LR data, which outperforms
state-of-the-art ASR models. In conclusion, LABERT creates
representations, which are useful to a variety of speech recog-
nition tasks in low-resource settings.
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