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The methodology presented in this paper is a two-stage optimization approach that can be applied to large system
level models, in this case using a Stochastic Petri Net (SPN) framework, to produce an equivalent model response at
a reduced computational cost. The method consists of generating a reduced SPN which approximates the behavior
of its large counterpart with a shorter simulation time. Parameters in this reduced structure are updated following
a combined Approximate Bayesian Computation and Subset Simulation framework. In the first stage, optimization
of the reduced model via a Genetic Algorithm provides a first approximation of the optimal solutions for the full
system level model. In the second stage, these approximate optimal solutions then form the starting point of a short
optimization of the large SPN to fine tune the results using a reduced solution space. This method is demonstrated
for a sub-section of an SPN of a fire protection system. Optimization of the full model with a Genetic Algorithm
is compared to the optimization through this two-stage approach to demonstrate the capability of the methodology.
Results show good model agreement at a reduced computational cost.
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1. Introduction
Stochastic Petri Nets (SPNs) have been applied
widely to model the failure of large and com-
plex systems. Examples of this can be found
in Andrews (2013) and Andrews and Fecarotti
(2017). Simulation tools such as Monte Carlo
Simulation can be used for the analysis of such
models. Optimization algorithms can be applied
to SPNs to provide an asset management decision
making tool, to save on system life-cycle cost
while ensuring safe operation. However, for large
and complex SPNs these optimization algorithms
are computationally costly.

The use of SPNs has been shown to be effective
in Senderovich et al. (2018) but is computation-
ally expensive due to the requirement of a large
number of simulations to obtain convergence for
the marking sequences of the SPN.

SPNs can be combined with optimization tech-
niques such as Genetic Algorithms or Simulated
Annealing to find an optimal maintenance and in-
spection strategy to reduce risk, or unavailability.

This has been done in work such as Yang et al.
(2015) and Lee (2014). A drawback of apply-
ing an optimization technique to an SPN is the
repeated requirement for a convergent result for
each trial within the optimization since, a Monte
Carlo Simulation is required each time.

There have been several studies aiming to sim-
ulate SPNs more efficiently such as in Geist et al.
(2005) and Yianni et al. (2018). The methods used
here, though effective, require specialist hardware
and software and can still be costly in terms of
computational time.

This paper presents a methodology for the effi-
cient optimization of an SPN based model, known
as the reference SPN. Initially, the reference SPN
is reduced in size, then a 2-stage optimization is
applied implementing the optimal solution space
of the reduced SPN, hence decreasing the search
space for the optimization of the reference SPN,
which improves the efficiency of the optimization
process. The remainder of the paper is organized
as follows. Section 2 gives an introduction to
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the Petri Net (PN), and SPN, methodology. Sec-
tion 3 briefly overviews the overall optimization
methodology. In Section 4, the fundamentals for
SPN model reduction, are presented. Section
5 provides the parameter updating methodology
which is further used in Section 6 for the optimiza-
tion problem. The methodology is exemplified
in Section 7. Finally, Section 8 gives concluding
remarks.

2. Petri Nets
Petri Nets (PNs) are a digraph consisting of two
types of nodes, known as places and transitions,
connected by arcs. Associated with the PN struc-
ture is a rule known as the firing rule which allows
tokens, which sit within places, to be created and
destroyed to represent changes in the system being
modeled, as described in David and Alla (2010).
The firing rule states that if all the places that are
connected to a transition are marked by a token,
then firing can occur. During firing, tokens are
destroyed in these input places and created in the
output places, which are those connected from
the transition. A full definition can be found in
Murata (1989).

In practical applications, transitions are typ-
ically assigned time delays, this is useful for
performance evaluation and scheduling problems
of dynamical systems (Ajmone Marsan et al.
(1998)). The resulting PNs are called Timed Petri
Nets if the delays are deterministic, and Stochastic
Petri Nets if the delays are specified by a prob-
ability model (Molloy (1982)). In such cases, a
transition is fired once its time delay has passed,
provided that the firing rule is satisfied, leading to
a change in the marking sequence, Mk of the PN.

For large and complex SPNs with a variety of
transition types, finding an exact analytical solu-
tion to the SPN is practically impossible. Sim-
ulation tools, such as Monte Carlo Simulation,
can be employed to find the average marking se-
quences based on the probability model associated
with the transitions. Transitions within the SPN
are each assigned a probability distribution. A
run of the Monte Carlo Simulation is initiated
by marking the SPN with tokens; this enables
firing of some transitions in the SPN. Each time
a transition within the SPN is enabled, the firing
time is sampled from its associated probability
distribution. Upon the firing of this transition
the firing time is then re-sampled if it becomes
enabled again. This process is carried out for
each of the transitions within the model as they are
enabled. The outputs of the SPN for a given time
period are then recorded and the SPN is returned
to it’s initial condition in order to begin the next
run. This process is repeated with numerous runs
until a convergent solution is reached.

3. Overview of Optimization
Methodology

For a defined SPN reference structure, with an
associated optimization problem, the optimization
methodology presented in this paper requires the
following steps:

(i) Define the key outputs of the reference SPN
for comparison with a proposed reduced
structure,

(ii) Define the reduced model structure,
(iii) Identify parameters in the reduced model

structure for updating,
(iv) Update parameters,
(v) Validate the reduced structure by comparing

the reduced model outputs to the outputs for
the reference SPN,

(vi) Find the approximate optimal solution space
using the reduced model structure,

(vii) Find the optimal solution space for the ref-
erence SPN by searching a reduced solution
space based on the approximate optimal so-
lution found in the previous step.

These steps are expanded in the remaining sec-
tions of this paper. A numerical example is given
in Section 7.

4. The Reduced Model Structure
The aim of the reduction methodology is to de-
velop a technique for an SPN, known as the ref-
erence SPN, to be represented by a smaller SPN,
known as the reduced SPN.

Central to this reduction method is the defini-
tion of key model outputs that are present in both
the reference and reduced model structures. For
this methodology to be applied, the reduced SPN
must have at least:

• The capacity to reproduce the key output, or
outputs, of the reference SPN;

• The capacity to incorporate the behaviors re-
quiring optimization.

A reduced SPN structure must give a reason-
able approximation to the reference SPN, while
sufficiently reducing the complexity. Different
reduced structures can be tested to consider their
level of approximation. A measure of this arises
naturally during the parameter updating process.

It is recommended that the reduced structure
is decided based on the knowledge of the mod-
eler to prevent restrictions on the possible sim-
plifications, however work can be found for the
optimal simplification of PN models in Pham and
Karaboga (2000) following certain rules. The
combination of states corresponding to different
failure mechanisms is an intuitive choice for a
reduction.
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5. Parameter Updating
Parameters within the probability distributions
governing the reduced SPN, can be updated based
on the SPN’s key outputs in comparison to the
outputs of the reference SPN. In this methodol-
ogy, the ABC-SubSim algorithm, first published
in Chiachio et al. (2014), is used to update the
parameters within the reduced SPN. Before the
method can be applied, a choice must be made
on the number and location of parameters to up-
date and the basis for which the suitability of the
parameters will be assessed.

Multiple parameters within the reduced SPN
can be updated in order to give an improved ap-
proximation to the reference SPN. However, ad-
ditional computational effort is required for each
parameter updated. Hence, there is a trade-off
between the approximation made by the reduced
model and the efficiency of the updating method-
ology. Good results have been found by updat-
ing parameters governing the transitions where
the highest simplification of the model has been
carried out.

Within this process, the place, or places, repre-
senting the key outputs of the reference SPN are
identified. The corresponding place, or places, in
the reduced SPN are also selected. The marking
sequence of these comparison places forms the
basis for which the reference SPN and reduced
SPN can be compared. It is important to choose
effective comparison places that hold the same
meaning in each SPN and contain the required
information from the original model.

Next, once the reduced SPN is identified, pa-
rameter updating is required to make it approxi-
mate the reference SPN. Bayesian model updating
provides a methodology to make inferences about
parameters of a model based on experimental data
in order to find a posterior parameter region (Box
and Tiao (1992)).

There are some model classes where Bayesian
model updating cannot be used directly for pa-
rameter updating, such as for an SPN. In cases
such as these, Approximate Bayesian Computa-
tion (ABC) methods can be used to provide a
framework for parameter inference and model se-
lection. In ABC methods, parameters θ′ are used
to simulate model outputs, x, and higher weights
are given to regions where these values are closer
to the true posterior, y. To find a region where
x ≈ y, a tolerance parameter ε is introduced
that represents closeness of the simulated outputs
to the true posterior, judged by a metric value ρ
gained by a summary statistic η(·). Through this
approach, the posterior is approximated to assign
higher probability density to parameter values that
satisfy the condition ρ

(
η(x), η(y)

)
6 ε. An

algorithm to generate N samples by ABC is given
in Algorithm 1.

The success of the ABC algorithm is dependent

Algorithm 1 Standard ABC
for t = 1 to N do

repeat
1.- Simulate θ′ from p(θ)
2.- Generate x′ ∼ p(x|θ′)

until ρ
(
η(x′), η(y)

)
6 ε

Accept (θ′, x′)
end for

on a good choice of the summary statistic η(·),
metric choice ρ and tolerance parameter ε. For
small posterior regions, ABC can be computa-
tionally expensive as a high quantity of simula-
tions is required to reach a significant number of
parameter values within the required tolerance.
There have been several algorithms developed to
decrease the computational time for the ABC al-
gorithm, and some of these can be found in Michel
et al. (2012). For this reduction methodology
the ABC-SubSim algorithm has been chosen as a
sufficiently good algorithm to reduce the compu-
tational effort of ABC. In this methodology the pa-
rameters are updated based on a summary statistic
comparing the key outputs of the reduced SPN to
the reference SPN. The ABC-SubSim algorithm
combines ABC with SubSet Simulation and a full
description of the ABC-SubSim algorithm can be
found in Chiachio et al. (2014).

Following the updating of the parameters
within the reduced SPN the outputs must be com-
pared to ensure that the approximation made by
the reduced SPN is reasonable. A measure of the
difference in the key outputs can be found using
the same summary statistic as in the parameter
updating stage. For the reduced SPN, where
approximations have been made in the reduced
structure, slight differences are expected in the
outputs.

6. Optimization
A Genetic Algorithm is implemented in this paper
to find the optimal solutions for the maintenance
and inspection intervals of a component in order to
reduce the probability that the component is in the
unrevealed failed state. This optimization method
can be applied to a larger asset management model
in order to reduce risk and life-cycle cost of the
system in question as in Yianni (2017).

A full description of the Genetic Algorithm
method can be found in Santos et al. (2018) and
Holland (1983). In a Genetic Algorithm, an ini-
tial population is cross-bred and mutated over a
number of generations, with the best candidates
selected to proceed at each generation. A pseudo-
code implementation is given in Algorithm 2.

In the methodology presented in this paper, a
two-stage approach is used to find optimal solu-
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Algorithm 2 Pseudo-code implementation for a
Genetic Algorithm

Inputs:
P0 = p01, p

0
2, ..., p

0
N {The initial population of

N vectors, where p0n is a vector of length L}.
J, {Fitness function, in this case the risk of
the system and cost of interventions calculated
via Monte Carlo Simulation of the Petri Net
model}
I, {Number of iterations}
S(P ) {Selection operator, based on the fitness
of the solution}
X(pa, pb) {Crossover operator}
M(P ) {Mutation operator}
Algorithm:
for j : 0, . . . , (I − 1) do
P = Pj {set the population at each iteration}

for k : 0, . . . , N do
Fk = J(pk)

end for
Pparent = S(P ), where R is the number of
parents following selection
Pj+1 ← Pparent
for q = 0, . . . , R/2 do
pchild1, pchild2 = X(pa, pb), where pa, pb
are vectors from the parent population and
each parent is only used once
Pj+1 ← pchild1, pchild2

end for
Pj+1 =M(Pj+1)

end for

tions to the reference SPN, with an intermediate
step applied to the reduced model. The first step
in the optimization process is to find an optimal
solution space for the reduced SPN. This is found
by completing a number of generations of a Ge-
netic Algorithm applied to the reduced SPN. The
second step of the optimization approach is to de-
fine a region encompassing these solutions to give
an approximate solution space. The third step is
to use the approximate solution space as the initial
population of a Genetic Algorithm, and to apply a
low number of generations of the algorithm to the
reference SPN to gain the optimal solution space.
In summary, the optimization process is mostly
performed on a smaller more efficient model, with
the larger model reintroduced in the latter stages to
fine-tune the solutions.

There are several decisions to be accounted for
when implementing this approach in addition to
those required when applying a Genetic Algo-
rithm. Firstly, the number of generations that are
applied to the reduced SPN before re-introducing
the reference SPN must be decided. Secondly, the
definition of the approximate solution space, given
the population obtained from the reduced SPN op-

timization, must be defined. These decisions are
dependent on the problem in question and more
research should be completed into an automated
approach for this. It is recommended that the
number of generations applied to the reduced SPN
is sufficient to see a good level of convergence
in the solutions so that the search space can be
adequately reduced. It is also recommended that
the optimal solution space uniformly covers all
values gained from the reduced SPN optimization,
with some values outside of this range. This is
recommended to allow the algorithm to explore
the approximate space and to check for values
outside, but close to, the values found from the re-
duced SPN optimization. Both these assumptions
are made from the expectation that the optimal
solutions from the reduced SPN will approximate
the optimal solutions for the reference SPN.

7. Example
The reference SPN used as an illustrative example
is given in Figure 1. This SPN can be used to
model a repairable component and is taken from
a wider model simulating a fire protection system.
The input data used in this model can be found in
Appendix A.

In this SPN, place P1 corresponds to the work-
ing state of the component and place P4 corre-
sponds to the failed state of the component. There
are two pathways that can result in a failure, firstly
through the age of the component modeled by
transitions t1, t2 and t3, and secondly through a
randomly occurring failure modeled by transitions
t1 and t5. Place P6 corresponds to a revealed
failure and place P7 corresponds to a scheduled
maintenance action, either due to a revealed fail-
ure, or the age of the component, represented by
transitions t6 and t8 respectively. Place P8 counts
the number of maintenance actions.

The shaded regions are those that will be re-
duced and place P4 is emphasized as its marking
pattern over time is used as the key output for the
SPN.

The optimization problem for this SPN aims
to reduce the time that the component is in the
unrevealed failed state by finding the optimal in-
spection and age-based maintenance intervals for
the component, within a given cost constraint.
This corresponds to reducing the time that place
P4 is marked, representing the unrevealed failed
state, by altering the parameter values of the distri-
butions governing transitions t4 for the inspection
interval and t8 for the age-based maintenance.

A reduced Petri Net structure, for the reference
SPN given in Figure 1, is presented in Figure
2. Here, place P ′

1 corresponds to the working
state of the component and place P ′

2 corresponds
to the unrevealed failed state of the component.
Place P ′

3 corresponds to the revealed failed state
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Fig. 1. Reference SPN used for illustration throughout this
paper

of the component and place P ′
4 counts the number

of maintenance actions, either due to a revealed
failure or the age of the component. Transition t′4
represents periodic age-based maintenance. Place
P ′
2 corresponds to the unrevealed failed state of

the component represented by place P4 in the
reference SPN model. The shaded areas in the
reduced SPN correspond to the shaded areas in
the reference SPN and highlight the following
reductions:

(i) The intermediate states of the component that
lie between the working and failed states are
absorbed into the single transition t′1;

(ii) The maintenance scheduling delay on failure
is assumed to be much less than the inspec-
tion interval and so this delay, and the state
corresponding to scheduled maintenance, are
absorbed into the place P ′3 to represent a
state where failure is revealed and mainte-
nance is scheduled.

P ′
1 P ′

2
t′1

t′2

P ′
3

t′3

t′4P ′
4

Fig. 2. A reduced SPN used for approximation of the SPN in
Figure 1

For the reduced SPN presented in Figure 2 in
comparison to the reference SPN presented in Fig-
ure 1, the parameters governing the Transition t′1
were updated. A 2-parameter Weibull distribution
was assigned to this transition. The ABC-SubSim

algorithm was implemented to find the region in
the parameter space where the parameters gov-
erning this Weibull distribution resulted in the
most similar reduced model output to that of the
reference SPN.

The output used here was the marking of the
place corresponding to an unrevealed failure in
both SPNs. In this case, the centroid linkage was
used as the summary statistic, alternatives can be
found in Desa and Desa (2009). The metric value
used for updating the parameters was the squared
sum of the centroid linkage, for the marking of
this place at each time.

Four levels of the ABC-SubSim algorithm were
applied to update the parameters from a uniform
prior region. This can be seen in Figure 3, where
the prior region is enclosed in the dotted lines and
each of the circles represents the pair of param-
eter values within the estimated posterior region
at each level. The evolution of the parameters
within each level was chosen adaptively to max-
imize convergence to the posterior region. Fur-
ther discussion on this can be found in Chiachio
et al. (2014). With repeated further levels of
the algorithm, there was limited reduction in the
posterior region, showing that after a point the
approximation made by the reduced model could
not become any more exact. Different structures
or choices of parameters to update might yield a
more exact approximation. This could be used
to compare the approximations made by different
model configurations.
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Fig. 3. The posterior region at each level of the ABC-SubSim
algorithm; θ1 gives the values for η and θ2 gives the parameter
values for β in the Weibull distribution.

The probability that the component is in the
unrevealed failed state at each time, taken from
each of the reference and reduced models, is given
in Figure 4. It can be seen here that the behavior
of the reduced SPN closely follows that of the
reference SPN.

A Genetic Algorithm was applied to the SPNs
presented in this paper. For comparison, the
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Fig. 4. The probability that the component is in the failed
state at each time, taken from both the reference and reduced
SPNs.

algorithm was applied to the reference SPN in
isolation and the reduced SPN in isolation. Finally
the Genetic Algorithm was applied across both
SPNs using the two-stage approach.

In this example, the Genetic Algorithm had a
population of 100 vectors and a mutation rate of
1 in 100. The initial population of 100 vectors
was defined for parameter values where entries
ranged from 1 to 100. For example, the first
member of the population was a vector where all
entries had the value 1 and for the last population
member, all entries had the value of 100. For
the reference SPN in isolation and the reduced
SPN in isolation, eight generations of the Genetic
Algorithm were completed. For the two-stage
approach, five levels of the Genetic Algorithm
were completed for the reduced SPN to find the
approximate solution space. Following this, three
levels of the Genetic Algorithm were applied to
the reference SPN using the approximate solution
space as the initial population. The selection oper-
ator was weighted such that the fittest individuals
had a higher probability of selection.

An arbitrary cost was assigned to each of the
inspection and maintenance actions and this was
constrained to within 1000 units over the time
period in question. The time that the component
was in an unrevealed failed state was minimized
subject to this constraint.

The approximate solution space was found by
taking the maximum and minimum value of each
variable in the population gained at the 5th gen-
eration of the Genetic Algorithm for the reduced
SPN. The maximum and minimum values for each
variable were found along with the difference be-
tween these. The approximate solution space, for
this case, is defined by the region given by Eq.(1)
and Eq.(2) for the two variables θ1 and θ2.

dθn = σmaxn − σminn (1)

σminn − dθn ≤ θn ≤ σmaxn + dθn (2)

where σmaxn is the maximum value for parameter
n, and σminn is the minimum value for parameter
n, as found in the 5th generation of the Genetic
Algorithm optimization of the reduced SPN, for
values of n = 0, 1.

The initial population of 100 vectors was ini-
tiated within this region for the second stage of
the optimization using the reference SPN. For
this example, the nth entry of element, pi of the
population is defined as in Eq.(3).

pi(n) = i ·
⌊(

σmaxn − σminn + 2dθn
imax

)⌋
+σminn − dθn

(3)

for a population member pi, where i is in the range
[1, 100] and imax = 100.

The results for the two-level optimization are
given in Figure 5 for the optimal inspection in-
terval and age-based maintenance interval. Each
mark within the generation represents the param-
eter value of the individual population member
with the horizontal bar representing the mean
value of the population for the variable in ques-
tion. The mean of the population for the opti-
mization applied to the reference SPN in isolation
was 9.21 time units and 9.03 time units for the
inspection and maintenance interval, respectively.
The mean of the population for the optimization
applied to the reduced SPN in isolation was 11.00
time units for the inspection interval and 11.00
time units for the maintenance interval. The mean
of the population for the two-level approach was
8.87 time units and 9.84 time units for the inspec-
tion and maintenance interval respectively.

The optimal solution for the reduced SPN oc-
curs in a region that approximates the solution
space of the reference SPN. However, by us-
ing the two-stage approach, the optimal solutions
obtained more closely recreate the solutions for
the reference SPN Genetic Algorithm optimiza-
tion. In the two-stage approach, the impact of the
method for finding the approximate region can be
seen in the population values at the 6th generation
by the more uniform nature of the members of the
population in comparison to the previous popula-
tion.

It is notable that the reduced SPN gives solu-
tions that are close to the reference SPN, and that
for some modeling scenarios it may be suitable to
solely take the optimal values from the reduced
SPN. However, the reduced SPN may not closely
reproduce the time that the component is in the
failed state given the parameter changes to the
system. This is due to dependencies within the
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Fig. 5. The population for the two-level approach with each
generation of the Genetic Algorithm when considering the in-
spection interval (above) and the maintenance interval (below)
as the variables

model that are absorbed during the parameter fit-
ting process. To clarify, the reduced SPN may
be sufficient to mimic trends in the behavior of
the reference SPN for different parameter val-
ues, to enable an approximation to be made in
an optimization process, but may not be able to
reproduce exactly the key model outputs when
parameters are changed within the model.

A graph showing the different simulation times
for the different optimization approaches is given
in Figure 6. A reduction in the computational time
for the optimization process can be seen for this
simple example.

MRef only MRed only Combined MRef,MRed

S
im

u
la
ti
on

ti
m
e
(s
ec
on

d
s)

0

200

400

600

800

1000

1200

Fig. 6. A bar chart showing the computational time for op-
timization of: the reference SPN, (MRef ), in isolation, the
reduced SPN, (MRed), in isolation and the 2-level approach
combining both the reference SPN and the reduced SPN

7.1. Discussion
This methodology shows a reduction in time for
the optimization of a simple SPN model, whereby
the optimal solutions are closely recreated using
an approximation of the SPN within a reduced
structure. It is expected that a larger level of
reduction in this approach will lead to a greater
reduction in computational cost. This could be
especially useful if there are multiple repeated
components that can be modeled by the same
reduced structure. One of the limitations of this
method is the computational effort required to re-
duce the model size, in order to gain the reduction
in computational time for the optimization. Fur-
ther work can be completed to find an automatic
way to reduce the structure of a large SPN and
to decide on which parameters should be updated.
Secondly, further work can explore the definition
of the approximate optimal region and how this
impacts the convergence of the population of the
Genetic Algorithm.

8. Conclusion
This paper has presented a two-stage approach to
the optimization of an SPN. Initially, a reduction
of the model within an ABC-SubSim framework
is completed followed by an optimization using
this reduced model structure as an intermediate
step towards the desired solution space. This
is undertaken by initially optimizing the reduced
structure to find an approximate region and using
this approximate region as the basis for a shorter
optimization of the full SPN structure. An illustra-
tive example has been demonstrated in the paper.
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Appendix A. Model Input Values
Table 1 gives the model inputs for the SPNs given
in Figure 1 and Figure 2.

Table 1. The data used in the SPN models given in this paper.

Transition Firing model Parameters

t1 Normal PDF µ = 20, σ = 7

t2 Normal PDF µ = 13, σ = 4
t3 Normal PDF µ = 8, σ = 2

t4 Interval (Global) I = 6
t5 Uniform PDF C = 0.005

t6 Normal PDF µ = 1, σ = 0.5

t7 Normal PDF µ = 0.1, σ = 0.01
t8 Normal PDF µ = 30, σ = 10

t′1 2-ParameterWeibull PDF η = 100.29, β = 1.64

t′2 Interval (Global) I = 6
t′3 Normal PDF µ = 1, σ = 0.5

t′4 Normal PDF µ = 30, σ = 1

Note: Here the Interval (Global) firing model generates a firing
time based on the difference between the global time and the time
until the next integer value multiplied by interval I
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