
Vol.:(0123456789)

Public Transport
https://doi.org/10.1007/s12469-019-00208-x

1 3

ORIGINAL PAPER

An adaptive scaled network for public transport route
optimisation

Philipp Heyken Soares1 · Christine L. Mumford2 · Kwabena Amponsah1 ·
Yong Mao1

Accepted: 3 June 2019
© The Author(s) 2019

Abstract
We introduce an adaptive network for public transport route optimisation by scal-
ing down the available street network to a level where optimisation methods such as
genetic algorithms can be applied. Our scaling is adapted to preserve the character-
istics of the street network. The methodology is applied to the urban area of Notting-
ham, UK, to generate a new benchmark dataset for bus route optimisation studies.
All travel time and demand data as well as information of permitted start and end
points of routes, are derived from openly available data. The scaled network is tested
with the application of a genetic algorithm adapted for restricted route start and end
points. The results are compared with the real-world bus routes.

Keywords Public transport · Route optimisation · Network design · Benchmark
instance · Genetic algorithm

1 Introduction

In the majority of cities around the world, public transport networks have been
developed using a combination of local knowledge, planning experience and pub-
lished guidelines. Most often these networks have evolved over time rather than
being designed as a whole (Mumford 2013). Multiple reports have pointed out

Electronic supplementary material The online version of this article (https ://doi.org/10.1007/s1246
9-019-00208 -x) contains supplementary material, which is available to authorized users.

 * Philipp Heyken Soares
 philipp.heyken@nottingham.ac.uk

 Christine L. Mumford
 MumfordCL@cardiff.ac.uk

1 Laboratory of Urban Complexity and Sustainability, University of Nottingham, Nottingham, UK
2 School of Computer Science and Informatics, Cardiff University, Cardiff, UK

http://orcid.org/0000-0003-0017-3967
https://orcid.org/0000-0002-4514-0272
https://orcid.org/0000-0002-7506-9040
https://orcid.org/0000-0003-2317-1171
http://crossmark.crossref.org/dialog/?doi=10.1007/s12469-019-00208-x&domain=pdf
https://doi.org/10.1007/s12469-019-00208-x
https://doi.org/10.1007/s12469-019-00208-x

 P. Heyken Soares et al.

1 3

the insufficiencies of this process and the need for a systematic computer-based
approach (see e.g. Zhao and Gan 2003; Nielsen et al. 2005).

The task to generate efficient public transport networks can be treated as five
interconnected phases (Ceder and Wilson 1986): (1) route design, (2) vehicle fre-
quency setting, (3) timetabling, (4) vehicle scheduling and (5) crew scheduling.
Solving all five phases simultaneously would be optimal. However, due to the high
complexity of the task, most researchers focus their efforts on simplified versions of
the problem. One common simplification is to focus on the route design phase under
the assumption of a fixed transfer time between different routes. This approach will
also be used in this paper.

Research for public transport route optimisation requires information on the avail-
able transport network and the travel demand. These combined datasets are usually
referred to as instances. Many researchers have tested their algorithms on the few
fully published instances. A prominent example is the instance published by Mandl
(1979) [used e.g. in Ahmed et al. (2019), Arbex and da Cunha (2015) Baaj and
Mahmassani (1991), Fan and Mumford (2010) and Nayeem et al. (2014)]. Another
often used test instance [e.g. used in Poorzahedy and Safari (2011) and Soehodo
and Koshi (1999)], a 24-node network published by Leblanc (1975), is based on the
city of Sioux Falls, USA. As these two instances are rather small (15 and 24 nodes),
Mumford published four larger instances ranging from 30 to 127 nodes, based on
the Chinese city Yubei and the two UK cities of Brighton and Cardiff (Mumford
2013). These have been used by several studies since (e.g. John et al. 2014; Nay-
eem et al. 2014). In addition to these studies, other researchers built their own test
instances based on data from urban areas around the world. Among these are Silman
et al. (Haifa, Israel, 1974) (Silman et al. 1974), van Nes et al. (Groningen, Nether-
lands, 1988), Pattnaik et al. (Madras, India, 1998) (Pattnaik et al. 1998), Feng et al.
(Taoyuan-County, Taiwan, 2011) (Feng et al. 2010), Cipriani et al. (Rome, Italy,
2012) (Cipriani et al. 2012), or Gutiérrez-Jarpa et al. (Concepcíon, Chile, 2017)
(Gutierrez-Jarpa et al. 2017).

Few publications describe the rules of instance generation in detail. One excep-
tion is the work by Mauttone and Urquhart (2009) who generated a network with
84 nodes to represent the city of Rivera, Uruguay. The nodes were placed on street
junctions close to the centres of housing blocks. This method is only suited to cit-
ies built in a strict grid pattern. Another node selection algorithm was proposed by
Bagloee and Ceder (2011) to generate instances for Winnipeg, Canada, and Chi-
cago, USA. They select every stop point as a node provided it is further than 300 m
from another with a higher expected travel demand. A similar method was also used
by John (2016) to generate networks for the UK cities of Nottingham and Edin-
burgh. Here a fixed number of stops was selected randomly while a minimal dis-
tance between selected stops was ensured.

The methods from Bagloee and Ceder (2011) and John (2016) are applicable
to most urban areas, but both share the same disadvantage: as the locations of the
selected stops within the street network are not fully taken into account, the chance
that the resulting network does not reflect the real spatial layout of the city is high
(John 2016), especially if the number of selected stops is only a fraction of the total
number available.

1 3

An adaptive scaled network for public transport routes

As the layout of the street network is essential for the design of bus routes, it
is important that an instance network sufficiently reflects the characteristics of the
street network. We therefore propose a network design procedure which scales down
the network to a size manageable for meta-heuristic-based optimisations, while
at the same time preserving the characteristics of the urban street network. Scal-
ing down an urban street network is desirable principally to restrict the computation
times needed for the passenger objective, which is usually the main bottleneck and
leads to an increase of the run time with f (N3) , N being the number of nodes in the
network [see Mumford (2013) for a full explanation]. For our modest desktop set
up,1 we determined 500 nodes, which would result in a runtime of about 600 h, to be
the upper-most limit for practical work.

The down-scaling of the street network is achieved by devising simple and robust
rules applicable to all urban layouts. The procedure further includes the identifica-
tion of potential terminal nodes, an aspect vital for route design in an urban context.

We will limit this work to instance generation and route network optimisation
with restricted start and end points, as it is part of an incremental approach to more
realistic public transport network optimisation. Our generation procedure is used to
produce an instance for bus route optimisation in the extended urban area of Not-
tingham, UK. Further, a route initialisation procedure and a modified heuristic route
optimisation algorithm, both specialised for work with restricted route start and end
points, are applied to the generated instance. The optimisation results are compared
to the real-world bus routes.2

The main contributions of this paper are as follows:

1. A novel methodology for generating an instance dataset, by systematically scal-
ing down a street network and utilising census data (see Sect. 2). The generated
instance will be published online for free use for all researchers.

2. An additional methodology for transforming pre-existing public transport routes
to fit the scaled-down street network (see Sect. 4).

3. A multi-objective genetic algorithm modified for restricted route start and end
points, to allow direct comparison with the pre-existing public transport routes,
showing potential to improve performance (methodology in Sect. 3 and results
in Sect. 5).

1 We used a desktop PC with an Intel i5-6500 3.20GHz Quadcore CPU and 8GB RAM.
2 It should be noted that this work focuses on mono-modal transport, and the Nottingham tram network,
with only two lines in 2011, was not taken into account. For the instance generation, the interoperation
of the tram could be included in principle with the rules described in Sect. 2. However, the optimisation
algorithm (see Sect. 3) would require modifications beyond the scope of this paper to deal with multi-
modal optimisation.

 P. Heyken Soares et al.

1 3

2 Generating a scaled instance network for bus route optimisation

This section outlines a systematic approach to generate a street network, consist-
ing of node placement, link generation, and the production of the travel time and
demand matrices. The methodology is applied to the extended urban area of Not-
tingham, UK (see Fig. 1), using UK-specific street and census data. However, the
same can be applied to areas outside the UK using other data sources. Examples
for potential sources are given in the footnotes 4, 5, and 6.

2.1 Problem description

An available transport network can be represented as an undirected graph
G = {N,E} , with nodes N = {n1, n2,… , n|N|} representing access and interchange
points (see Sect. 2.3.2) and links E = {e1, e2,… , e|E|} representing the edges (e.g.
streets) connecting the nodes (see Sect. 2.4). Given such a graph, a public trans-
port route can be represented as a list of directly connected nodes r = [nf ,… , nl]
and the public transport network as a set of routes R = {r1, r2,… , r|R|} . It is nec-
essary to ensure that the first and the last node on each route is a designated ter-
minal node V = {v1, v2,… , v|V|} ∈ N which allows u-turns (see Sect. 2.5). Travel
times T and travel demand D are symmetrical matrices as defined below.

In order to allow an optimisation of the route set R on the graph G, the travel
time and travel demand between the nodes N need to be given. We do this in form
of two symmetrical matrices:

T: Gives the travel times ti,j along the connection between the nodes ni and nj .
Travel times between nodes that are not directly connected are set to ti,j = ∞
and self connections are set to ti,i = 0.

D: Gives the number of passengers di,j travelling from source ni to destination nj .
Travellers staying at one node are not considered (di,i = 0).

2.2 Definitions

We first define some parameters:

• Catchment radius c:
 Defines circular catchment areas around the nodes used to assign travel

demand (see Sect. 2.6). For the Nottingham instance we used c = 400 m, a
value widely considered as an acceptable walking distance to a bus stop
(Ammons 2001).

• Snapping Distance s:
 Distance within which two or more junctions are snapped together to be

represented by one single node in between (see Sect. 2.3.2). The value for

1 3

An adaptive scaled network for public transport routes

this snapping distance is not critical and has been chosen to be s = c ⋅ sin(
�

4
) ,

resulting in s = 283m.

2.3 Constructing the network

The first step is to select which streets will be taken into consideration for the net-
work. This is followed by a process to determine the positions of the nodes on the
street map.

2.3.1 Defining the street network

For the Nottingham application we base our selection of streets on the integrated
network layer from 20113 generated by the UK Ordnance Survey.4 We selected all
streets classified as “A-”, “B-” or “Minor Road”. Streets classified as “Local Street”
were only selected if they fulfil two conditions: (a) bus stop points exist alongside
them5; (b) they are not parallel to any street classified as “A-”, “B-” or “Minor Road”
within a distance s. One-way streets are only selected if travel in the other direction
is possible on streets within s.

2.3.2 Placing nodes

With the streets selected, the positions of the nodes N need to be determined. In con-
trast to the instances generated by Bagloee and Ceder (2011) and John (2016), the
nodes in our network do not directly represent bus stop points. Instead they usually
represent street junctions. The interpretation is not that buses stop at each node but
rather that they travel from node to node and stop at the stop points they encounter
on the way. The nodes simply allow us to identify the path a bus will take.

We determine the position of our nodes in three steps:

1. Initial nodes are placed on all points where two or more of the previously selected
streets meet. This includes junctions, (t-)intersections, roundabouts, etc.

3 The same year of census data used to assign the demand (see Sect. 2.6).
4 Researchers with UK institutional access can download ITN data from http://digim ap.edina .ac.uk/. The
procedure can also be applied to data from other sources. The only constraints are a sufficient classifica-
tion to select streets available for bus travel and the ability to convert the data to a network dataset for
use in ArcGIS to generating the travel time matrix (see Appendix 1). Such data should be available from
most national transport authorities, or local authorities. Alternatively, street data from OpenStreetMap
(https ://www.opens treet map.org) can be used as long as it is sufficiently accurate for the study area.
5 The location of bus stops can be extracted from the National Public Transport Access Nodes (NaP-
TAN) which is included in the National Public Transport Data Repository (NPTDR) downloadable from
https ://data.gov.uk/datas et/nptdr . Outside the UK similar datasets should be available from national trans-
port authorities, local authorities or public transport operators. For operators which use General Transit
Feed Specification (GTFS) these datasets can be downloaded from https ://trans itfee ds.com/. Also Open-
StreetMap (https ://www.opens treet map.org) usually provides bus stop locations with a sufficient accu-
racy.

http://digimap.edina.ac.uk/
https://www.openstreetmap.org
https://data.gov.uk/dataset/nptdr
https://transitfeeds.com/
https://www.openstreetmap.org

 P. Heyken Soares et al.

1 3

2. Nodes within a distance s of each other form clusters, and each cluster of nodes
is snapped together to form a new node. This leads to a simplification error of up
to s

2
 for the distance between two nodes, but removes the clustering nodes (see

Figs. 2, 3).
3. It can happen that two directly connected nodes are too far apart to assign all the

demand from zones along the connection to one of the nodes (see Sect. 2.6). In
these cases additional nodes need to be placed in-between the regular nodes to
properly capture the demand for a bus route along this route (see Fig. 4). The
same situation might occur in case of dead-end streets which are longer than c.

Snapping clusters of initial nodes together has several implications. It further simpli-
fies the representation of transfers between bus stops located at the same node, and
it increases the effective length between some snapped nodes compared to a sin-
gle pair of the snapped nodes (see Fig. 3). However, it drastically reduces the total
number of nodes and thereby the processing time. In our case snapping reduces the
number of 497 initial nodes by about one third to 324. The mean distance between
an initial node and the snapped node placed instead is 73.8 m. The accumulated
simplification error for the travel time estimation is about 1.6% of the total travel
time along all network edges. As 104 additional street nodes have to be added to
ensure all demand can be assigned, giving a total of 324 + 104 = 428 (see Fig. 2),
the snapping process is important to keep the total number of nodes sufficiently low.
Using an estimation of run time of f (N3) , the snapping process reduces the run time
for the network with 428 nodes by a factor of 3 when compared to a network with
about 600 nodes (initial nodes plus street nodes).

Fig. 1 Left: map of the study area together with the street network and placed nodes (source: UK Ord-
nance Survey, map source: https ://www.opens treet map.org, street data source: UK Ordnance Survey; see
footnote 4). Right: graph network showing the connections between the nodes with terminal nodes high-
lighted in red (colour figure online)

https://www.openstreetmap.org

1 3

An adaptive scaled network for public transport routes

2.4 Generating links

After placing the nodes, a travel times matrix T is required for the optimisation
stage. Thus the travel times ti,j between connected nodes need to be determined. We
do this by calculating along the shortest path between two directly connected nodes
using ArcGIS. The process takes turning restrictions and traffic calming zones into
account. The details are given in Appendix 1. Travel times between nodes that are
not directly connected are set to ti,j = ∞ and self connections are set to ti,i = 0.

2.5 Determining terminal nodes

One often overlooked aspect in route optimisation studies is that public transport
routes cannot terminate everywhere, as this implies that the vehicles are able to turn
around and traverse the route in the opposite direction. Therefore, possible termi-
nal nodes require sufficient infrastructure to perform u-turns. It is vital to take this
constraint into account when modelling real-world data in an urban context (see e.g.
Amiripour et al. 2014).

While it is possible to check the surrounding area of every node manually for
turning possibilities, this process would be very time-consuming. Instead we iden-
tified possible terminal nodes based on the journey patterns of real-world buses.
These journey patterns can be extracted in the form of lists of traversed stop points
from the UK’s 2011 National Public Transport Data Repository (NPTDR).6 The
stop point lists are then projected on the generated instance network (this process
is described in Sect. 4.2). This allows us to determine the nodes at which real-world
journey patterns end, either by leaving the study area or by using an existing turn
possibility to start the journey in the reverse direction. There may be further nodes
which offer such possibilities and are not used by the existing routes. However, as
this method already identified 168 terminal nodes in our Nottingham instance (39%
of all nodes), we are confident that this process is sufficient. Four additional nodes
had to be added to the list of terminal nodes. These are dead-end nodes and in the
algorithm used in this paper can only be included at the beginning or end of a route.
For them, manual examination ensured the turning possibilities.

2.6 Assigning travel demand

The final step is to generate a node-to-node travel demand matrix D for the network,
which gives the demand di,j between the nodes ni and nj , with (di,i = 0).

Generating a fully realistic travel demand dataset is a very complex task and not
within the scope of this work. What we will show here is not a process for extracting

6 The 2011 NPTDR contains a snapshot of every public transport journey in Great Britain in a selected
week in October 2011 (UK Department for Transport 2015). It can be downloaded from https ://data.gov.
uk/datas et/nptdr . For outside the UK, datasets containing lists of traversed stop points as well as the loca-
tion of stops should be available from national transport authorities, local authorities or public transport
operators. For operators which use GTFS, the datasets can be downloaded from https ://trans itfee ds.com/.

https://data.gov.uk/dataset/nptdr
https://data.gov.uk/dataset/nptdr
https://transitfeeds.com/

 P. Heyken Soares et al.

1 3

Fig. 2 Example for snapping
nodes in one part of the Notting-
ham street network: the nodes n1
and n3 emerge directly from ini-
tial nodes placed on junctions,
while the node n2 results from
the snapping together of initial
nodes a and b (which are closer
than distance s). It should be
noted that node n2 remains rep-
resentative of both the junctions
it emerged from (i.e. a and b).
Thus it is not possible to travel
directly between nodes n1 and
n3 without passing through node
n2 . This generates a maximum
simplification error of s for a
travel between node n1 and node
n3 . In our case the accumulated
error is estimated to be 1.6% of
the total travel time

Fig. 3 Left: three initial nodes which are all within snapping distance and which are snapped together
to a single node. Right: three initial nodes of which two pairs are within snapping distance. They are
snapped into two nodes and the junction between them is represented by either node, depending on the
best option for a particular route

Fig. 4 Example for placing a street node: two regular nodes (red) with catchment area are displayed. The
blue dots mark centroids of census zones used to assign the transport demand (see Sect. 2.6). Zone 2 is
completely outside the catchment of the two regular nodes; therefore, an additional street node (green) is
placed in between them to capture the travel demand for that zone (colour figure online)

1 3

An adaptive scaled network for public transport routes

travel patterns from raw data sources, but rather a method to transform given travel
data between specified zones to a node-to-node demand matrix. Zonal demand data
can be generated in different ways. One option is to estimate the number of trips
between zones based on the number of origins and destinations in each zone and
other parameters [see e.g. Wills (1986) or Wilson (1969)]. This methodology, how-
ever, depends much on the quality of the land use data and requires trip survey data
or trip counts for calibration. Another methodology well studied in recent years is to
extract the travel demand from mobile phone data [see e.g. Golding (2018) or Zhang
et al. (2010)], which requires the cooperation of one or several telecommunication
companies. A third option is to use survey data. Producing trip surveys is usually
time consuming and expensive, and it is preferable to try to access existing survey
data if available. In our case we used travel-to-work flow data from the 2011 UK
census. It lists the number of commuters from all output areas (in the following ori-
gin zones) to all workplace zones (in the following destination zones).7

To generate a node-to-node origin-destination matrix (OD-matrix) we take the
population weighted centroids of the origin and destination zones8 and assign them
to nodes based on the catchment areas. The catchment area of a node is of circular
shape with a radius c but can be modified under the following circumstances:

• Natural or man-made barriers (rivers, rail tracks, etc.) prevent the commuters
from having access to the part of the street network the node represents.

• If a centroid is outside of the catchment area of any node, even when its associ-
ated zone overlaps with one or more catchment areas, then these catchments are
extended to include this population. (This is to reduce the number of additionally
placed street nodes as described in step 3 in Sect. 2.3.2).

• A street node (see step 3 in Sect. 2.3.2) represents the whole street and not just
the point where it is placed. (This removes the need to place several nodes along
longer streets.)

After this assignment, trips between origin zones and destination zones can easily be
converted to trips between the nodes to which the respective zones are assigned. For
zones which are within two or more catchment areas, their trips are divided equally
between the nodes.

There are of course problems with using travel-to-work data to generate the
demand matrix. It represents only a subset of all trips, e.g. trips for shopping or

7 Output areas and workplace zones are low-level census geographical types. They are redefined for
every census. Every output area includes between 40 and 250 households (for the 2011 census on aver-
age 309 residents). Workplace zones are created using similar criteria to output areas, to capture employ-
ment statistics. It should be noted that output areas and workplace zones overlap (UK Office for National
Statistics 2016a). The geometries and flow data can be downloaded from https ://censu s.ukdat aserv ice.
ac.uk/.
8 Population weighted centroids are generated by the UK data service, UK Office for National Statistics,
together with the respective areas (UK Office for National Statistics 2016b). They can be downloaded
from https ://censu s.ukdat aserv ice.ac.uk/. If using other datasets where the exact distribution of the popu-
lation within the zones is not known, the geometric center of a zone can be used instead. These can be
calculated with GIS software.

https://census.ukdataservice.ac.uk/
https://census.ukdataservice.ac.uk/
https://census.ukdataservice.ac.uk/

 P. Heyken Soares et al.

1 3

leisure purposes are not included. We will therefore in the following limit our com-
parisons with the real-world bus routes to the morning rush hour when trips to work
dominate the overall travel pattern. This represents a sufficient estimate for this step
of our incremental approach. It is worth noting that the demand matrix does not
have to be an accurate count of trips but only a weighting for the trip demand within
the generated instance network.

3 Optimisation procedure

The main goal of this paper is to present a new approach to bus route network
design. Thus, we use a genetic algorithm (GA) here simply to produce some viable
results to demonstrate the potential of the new network design method. Improve-
ments to the optimisation procedure will follow as future work. For our present pur-
pose, we have implemented an NSGAII algorithm based on the one in John et al.
(2014), making some necessary changes to the initialisation process and the genetic
operators to accommodate the specified terminal nodes in our Nottingham instances
[in the paper by John et al. (2014), any node in the network could act as terminal
node for a route].

3.1 Initial definitions

3.1.1 Passenger and operator objectives

Optimisation will attempt to minimise the travel times for individual passengers,
while at the same time ensuring the cost to the bus company is reasonable. Our
objectives are the average travel time as cost for the passengers, and the total drive
time of the route sets as cost for the operator. These are the same objective functions
which have been used in John et al. (2014) and other studies (e.g. Mumford 2013).
We are using them as it is our aim to only adapt the algorithm described in John
et al. (2014) for the use of terminal nodes. Changes to these objectives are possible
but beyond the scope of this paper.

The minimum journey time for a given passenger travelling between their ori-
gin a and destination b, can be given by �a,b(R) , representing the shortest path in
terms of travel time. However, this path is made up of two components: in vehicle
travel time and transfer time. In this paper (in line with other recent studies) we will
assume that the transfer time is a constant, which is imposed each time a passenger
changes vehicle. We set this time constant, representing the average waiting time, to
be 5 min.9 Furthermore, we will assume that each passenger will choose to travel on
their shortest-time paths. We define the passenger objective for a route set R to be
the mean journey time over all passengers,

9 This is in line with the definition for “frequent services” given by the UK Department for Transport,
which is to have at maximum 10 min between buses (Turfitt 2018). For Nottingham the majority services
in the morning rush hour fall into this category.

1 3

An adaptive scaled network for public transport routes

where �ij is the shortest journey time from i to j using route set R. The operator
objective depends on many factors; however, we shall use a simple proxy for opera-
tor costs: the sum of the costs (in time) for traversing all the routes in one direction,

where r is a typical route in R, and |R| is the number of routes in the route set. ti,i+1(r)
represents the travel time between adjacent nodes in route r. The passenger cost CP
(average travel time) and the operator cost CO (total route length) will be traded off
as conflicting objectives by our multi-objective optimisation algorithm.

Changes in route frequency would effect both costs for the operator and the
average travel time, which would in turn require a re-optimisation of the route
design. For the present we will set a standard headway of 10 min, in line with
UK Government definitions for frequent services (Turfitt 2018).

3.1.2 Optimisation constraints

While optimising sets of routes for the two objectives, the optimiser has to fol-
low the specifications of the instance generated in Sect. 2, including the recogni-
tion of terminal nodes. These are in addition to the constraints applied in John
et al. (2014). The full list of constraints is given below:

1. Each route set R consists of a predefined number of routes, |R|
2. Each route r in a route set R will consist of a number of nodes greater than or

equal to lmin , and less than or equal to lmax : lmin ≤ |r| ≤ lmax.
3. No route fully overlaps with another route in the same set.
4. The route set is connected—it is possible to travel between each pair of nodes in

the transport network.
5. Each node ni is present in at least one route in a route set.
6. No loops or cycles are present in a route.
7. Buses travel back and forth along each route, for which the inbound journey is

the reverse of the outbound journey.
8. There is a fixed waiting/transfer time for passengers transferring from one route

to another.
9. Each route r begins and ends at a terminal node v ∈ {v1, v2,… , v|V|} , where buses

can turn around.

(1)CP(R) =

∑�N�
i,j=1

dij�ij(R)

∑�N�
i,j=1

dij

(2)CO(R) =

|R|∑

i=1

|r|−1∑

i=1

ti,i+1(r)

 P. Heyken Soares et al.

1 3

3.2 Heuristic construction of route sets

Our initialisation procedure attempts to produce a population of high quality, legal
route sets, obeying all of the constraints listed above. We will tackle the construction
of route sets in three separate stages:

1. production of a shortest path usage map and a transformed shortest path usage
map

2. generation of candidate routes to form a palette of routes
3. selection of candidate routes to form route sets

3.2.1 First step: constructing a shortest path usage map and transforming it

We use the technique described in Kiliç and Gök (2014) to create a demand map
based on edge usage. The process begins by evaluating shortest travel time paths
between each pair of nodes for which there is a source to destination travel demand.
Then, by recording the total usage of each edge (assuming that each passenger is
able to travel along their shortest path) it is an easy matter to create a ‘shortest path
usage map’.

Next we perform a simple transformation on the usage map, to reverse the ranks
of the labels on the edges. This is where our technique diverges from that of Kiliç
and Gök (2014), who convert the usage values directly into edge selection probabili-
ties. In our approach we transform usages into distances, so that the highest usage
value becomes the shortest distance and vice versa. We use these transformed values
in a deterministic way to create routes, based on shortest path distances through the
transformed usage network. The transformation is achieved simply by subtracting
the usage on each edge from the total demand for the network as a whole.

3.2.2 Second step: generating candidate routes

This second step produces a palette of routes from which selections can be made to
construct the initial population of route sets for our GA. It makes sense to ensure
that edges with the highest usage occur in one or more routes within the palette. On
the other hand, the inclusion of less busy links will almost inevitably be required to
satisfy some of the demand. Thus, although our algorithm begins by selecting the
busier edges, the weight on each edge will be very slightly increased every time it is
selected, so that the more times an edge is chosen, the less likely it is to be chosen
again. We use an arbitrary factor of 1.1 (chosen after some sensitivity tests), making
the updated weights equal to 1.1 times the previous weight.

In our initialization we ensure that all routes generated for the route palette begin
and end at a terminal node. To this end, our algorithm iterates through all pairs of
terminal nodes in turn, choosing the source-destination pair with the highest total
demand first, and then the pair with the second-highest total demand, and so on.
The algorithm then selects the source-destination node pairs from a pre-sorted list
(on total demand for each node pair), created at the start of this second step. For
each pair of terminal nodes, the shortest paths from source to destination are then

1 3

An adaptive scaled network for public transport routes

computed according to the transformed demand usage map. (Note: the edge weights
for the shortest paths here are entirely different from those used in stage 1. The stage
1 weights are travel times, but the stage 2 weights are transformed demand usages).

Each shortest path through the transformed usage map forms a candidate route
which can be added to our route palette. Following the creation of each new route,
the transformed demand usage map is updated by applying the factor 1.1 to the
edge weight of each link selected for the route. The iterations cease once we have
included each of the nodes in the instance in at least one of the routes included in
our palette. It is likely that the algorithm iterates more than once through the list of
terminal node pairs, to ensure that all the nodes are included somewhere in the pal-
ette. One further point is that in the presence of problem constraints, such as limita-
tions to the lengths of the routes, our procedure will discard any routes that do not
obey all the constraints. However, the transformed usage map is updated, whatever
the outcome. It is worth noting that, if the imposed constraints are too severe, it may
not be possible to generate a route set that obeys all of the constraints, so care is
needed when setting the parameters for an instance.

The question now arises whether it is possible to construct legal route sets by
making selections from the routes generated by our heuristic construction method.
To begin with, we delete duplicate routes from our palette of routes. In the next par-
agraph we describe a simple method to select and aggregate subsets of routes from
the above palette of routes to form route sets that obey all the constraints.

3.2.3 Third step: forming route sets by combining routes from the palette
of candidate routes

We select routes from the palette one at a time until we have generated an initial
population, of route sets P0 (50 for our experiments), each containing exactly |R| (i.e.
69) routes. For the first route set, the procedure begins by selecting the first route in
the palette. We then add further routes in such a way that: (1) the chosen route has
at least one node in common with a route already in the selected subset (beginning
with just the first route), and (2) the addition of the selected route maximises the
proportion of new nodes included, related to the total number of nodes in the candi-
date routes. At each iteration, the current subset of routes is tested for inclusion of
all the nodes present in the instance. Once all the nodes are present, unused routes
from the palette are added at random until the first route set contains |R| routes. To
generate the second route set for the initial population, the second route in the pal-
ette is the first route to be selected, and the third route set is seeded with the third
route in the palette, and so on.

3.3 Genetic algorithm

We adopt an NSGAII genetic algorithm to evolve the generated route sets further.
NSGAII is an elitist non-dominated sorting genetic algorithm for the optimisation
with multiple objectives (Deb et al. 2002). We constructed our implementation of

 P. Heyken Soares et al.

1 3

the NSGAII after the one in John et al. (2014) but made some changes to adapt to
the use of terminal nodes. A flow diagram of the algorithm can be seen in Fig. 5.

3.3.1 Outline of our implementation of NSGAII

To save space we do not give full details of the genetic algorithm here, but refer the
interested reader to Deb et al. (2002) and John et al. (2014). In summary, let P0 be
an initial population with |P| route sets. All these route sets are evaluated and sorted
into a series of Pareto fronts (f1, f2,…) based on their level of domination. Each
solution is assigned a fitness value according to its front membership, with f1 being
the fittest, f2 the second fittest, and so on. An offspring population Q0 , also of size
|P|, is then generated from P0 through binary tournament selection, crossover and
mutation (see Fig. 5).

Next, the combined (mating) population M0 = P0 ∪ Q0 is used to select |P| route
sets as a new parent population P1 . This selection is primarily based on domina-
tion, but crowding distance is also taken into account (see Fig. 5). Crowding dis-
tance is an additional fitness measure used to obtain a wide spread of solutions that
adequately covers the full extent of the Pareto front (Deb et al. 2002). P1 is then used
to generate Q1 via binary tournaments, crossover and mutation as previously. The
stages of NSGAII repeat for a predetermined number of generations.

3.3.2 The genetic operators

Crossover: In the crossover step, route sets of the current parent population Pk
are selected in binary tournaments and used to generate in total |P| offspring route
sets. For each parent route set it is decided probabilistically10 if it is either directly
inserted in the offspring population, or if it performs a crossover operation with one
other parent to generate an offspring route set. In the crossover operation, routes
from both parent route sets are selected in alternation to construct the new route
set. The route selection prefers routes which visit nodes not already included in the
offspring route set. Before the new route set is allowed to enter the offspring popula-
tion, a feasibility test is applied (see below). If it fails the test, the crossover process
is restarted.

Mutations: In the mutation stage, all route sets of the offspring population
undergo changes through mutation operations. The number of mutations in each
route set is defined by a binomial distribution B(|R|, 1

|R|) , with |R| being the number
of routes in each route set. For every mutation one of the following mutation opera-
tions11 is selected at random:

10 The probability to perform a crossover with another route set is in our case set to �
cross

= 0.9.
11 We use in principle the same mutation operators as John et al. (2014). The operators Delete Node
and Add Node, both originally from Mumford (2013), had to be modified to work with terminal nodes.
The operator Exchange is used as it was originally proposed by Mandl (1979). The operators Merge and
Replace, both from John et al. (2014), stay as they were, apart from the changes in the route generation
procedure. Only the operator Remove Overlapping (John et al. 2014) is deleted from the set of mutations
as it is part of the feasibility test.

1 3

An adaptive scaled network for public transport routes

• “Delete nodes”: selects a route at random, ensures that it includes more than two
terminals and starts to delete nodes from one of its ends until it reaches another
terminal. If less than Z nodes12 are deleted in this way, another route is chosen
and the process is repeated until at least Z nodes are deleted.

• “Add nodes”: selects a route at random and adds nodes at one of its ends. The
new nodes are selected by a guided random walk to ensure that the route ends
at the next possible terminal. If fewer than Z nodes (see footnote 12) are added
in this way, another route is chosen, and the process is repeated until at least Z
nodes are added.

• “Exchange”: extracts two intersecting routes at random, splits them at one com-
mon vertex and forms two new routes from the split paths.

• “Replace”: calculates which route satisfies the least demand and deletes it. The
route is replaced by a newly generated route13.

• “Merge”: randomly selects two routes which share one terminal node and do not
overlap elsewhere and merge them into one route. Afterwards a new route is gen-
erated13.

After every mutation operation, the mutated route set is subject to a feasibility test14
(see below). If it fails the test, all mutations are undone and a new mutation opera-
tion is selected at random.

Further details of add nodes and delete nodes are given in the appendix Sects. 1
and 2, respectively. The other operators are changed very little from those in John
(2016).

Feasibility test: Every offspring route set generated by a crossover as well as
every route set changed by mutation is subject to a feasibility test to ensure that all
route sets obey the constraints listed in Sect. 3.1.2. However, to avoid rejecting inva-
lid solutions that are easily corrected, we implemented two repair operations to fix
two common constraint violations:

• “Add missing nodes”: In cases where nodes are missing, we adopt a repair pro-
cedure based on that used in Mumford (2013). However, this method required
some adaptation to work effectively with pre-defined terminal nodes and is
explained in detail in Appendix 3.

• “Replace overlapping”: In cases where one route fully overlaps with another
route in the same set, we replace the shorter route with a newly generated route13 .
Details are given in John (2016).

12 Z ∈ [0,
n
max

2
] is randomly selected at the beginning of the operation [as in Mumford (2013)].

13 The new route is generated by a version of the generation procedure of Shih and Mahmassani (1994)
which is modified for the use of terminal nodes. The original procedure selects the node pair with the
highest travel demand that is not yet directly connected and generates a shortest path route between them.
For the use with terminal nodes it has to be ensured that only terminal node-pairs can be picked.
14 It is important to note that for the operation “Delete Nodes” the repair function is disabled as it could
undo the mutation.

 P. Heyken Soares et al.

1 3

These repair algorithms are automatically run when the corresponding constraint
validation is detected. If the repair is successful, the feasibility test continues for the
remaining constraints.

4 Comparison of optimisation result and real bus routes

One way to evaluate the effectiveness of our bus routing optimisation is by compari-
son with real-world bus routes. Such comparisons are relatively rare in the available
literature. One reason for this could be that the often used published instances, such
as the Mandl instance (Mandl 1979), do not come with a given set of real-world
bus routes. From the researchers who create their instances, a few have made com-
parisons with the real-world routes within their study area [e.g. Bagloee and Ceder
(2011), Bielli et al. (2002), or Cipriani et al. (2012)].

4.1 Necessary network reduction

For our Nottingham instance generated with the method in Sect. 2, a compari-
son between the real-world bus routes and the routes generated by the algorithm
described in Sect. 3 is not straightforward. As the evaluation procedure for route
sets is based on the average travel time between the different nodes, it consequently
requires that all nodes of the network are included in the route sets. The real-world
route set, however, does not include all the nodes generated by the rules in Sect. 2.3,
as bus operators drop those parts of the network they consider too unprofitable. To
make a comparison with the real-world routes possible, we first need to generate a
reduced version of the Nottingham instance in which all the nodes not visited by the
real-world routes are excluded (see Fig. 6).

Excluding the non-visited nodes essentially generates a second instance net-
work. Travel times between the remaining nodes have to be recalculated and the
travel demand has to be reassigned, as described in Sects. 2.4 and 2.6, respectively.

Fig. 5 Flow diagram for NSGAII. In every generation k the parent population Pk is used to generate an
offspring population Qk . The parent population of the next generation Pk+1 is then selected from the com-
bined population Mk based on domination and crowding distance

1 3

An adaptive scaled network for public transport routes

Demand from zones which are not within the catchment area of any of the remain-
ing nodes will not be taken into account.

The final reduced instance has 376 nodes, 52 less then the full instance. The total
demand is reduced by 14%. In the following we will run experiments with both
instances to point out the differences necessary to serve different network sizes.

4.2 Extracting real‑world routes

As mentioned in Sect. 2.5, it is possible to extract information about the existing bus
routes from the UK’s 2011 National Public Transport Data Repository (NPTDR)6 .
The NPTDR provides this information in the form of 990 Journey Patterns (JP). A
JP consists of a list of stop points the buses traverse and the starting times of the bus
journeys. To convert this information into a route set comparable with the results of
our optimisation requires a three-step process: filtering JPs by starting time, convert-
ing stop points to nodes, and filtering out overlaps.

4.2.1 Filtering journey patterns by starting time

As not all Journey Patterns are in use at a given time, we need to filter out those
routes which fit our demand data. As we generated our demand data from travel to
work data, we aim to include only JPs active during the morning rush hour into our
real-world route set. We therefore select only the 210 JPs which, according to the
journey starting times, cover the entire time window of 7:30 am to 10:30 am.

4.2.2 Converting stop point lists to node lists

The NPTDR comes with a 2011 version of the National Public Transport Access
Nodes (NaPTAN) containing the location of all bus stop points. We use this to link
every stop point with the node closest to it, up to a distance � =

s

2
+ 2sp . Where s

2

is the maximal distance between a node and a junction it represents. sp is the usual
distance between a junction and a bus stop. For the Nottingham street network, we
found sp = 30m which results in � = 202m.15 Mapping the stop point lists of the JP
to node lists allows the real-world routes to be compared with the routes generated
by the optimisation algorithm.

4.2.3 Filtering out overlaps

Journey Patterns always contain only one journey in one direction. In contrast, the
routes in our optimisation are undirected and represent travel in both directions.
Also, there are several bus routes which consist of similar JPs which are used in
alternation. To filter out these overlaps, we add the node lists of the JPs in ran-
domised order to the real-world route set. Every time a new node list j is added it

15 It should be noted that some post-processing is always needed to make sure that all stop points are
correctly allocated.

 P. Heyken Soares et al.

1 3

is compared to all routes i already part of the real-world route set. This is done by
calculating �j,i the overlap of j and i as well as the length � of � , j and i :

• If �(�j,i) = �(j) : j is fully overlapped by i and is not inserted.
• If �(�j,i) = �(i) : i is fully overlapped by j and j replaces i.
• If |�(�j,i) − �(j)| ≤ mi and |�(�j,i) − �(i)| ≤ mi and |�(i)) − �(j)| ≤ mi+mj

2
 with

mx = min(2,
�(x)

10
):

 There are only very small variations between j and i. If j’s first journey starts
earlier than i’s first journey, j replaces i. Otherwise j is not inserted.

After this final filter process, 69 JPs remain as routes in our real-world route set.

5 Experimental results

We ran two computer experiments. Experiment 1 used the reduced instance (follow-
ing Sect. 4) and its results can be directly compared with the real-world route set.
Experiment 2 used the full instance (following Sect. 2). As the full instance network
includes about 14% more nodes than served by the real-world routes the results of
experiment 2 cannot be directly compared. However, optimising the route set on the
full instance network is, nevertheless, a useful exercise in demonstrating the condi-
tions under which a public transport service for the entire area can be realised.

In each case, we generated |P| = 50 initial route sets and optimised them with the
described GA over 200 generations. Each of the route sets has |R| = 69 routes, the

Fig. 6 Illustration of the differences between the original and the reduced instance network in the area
of Gedling at the east end of the study area. Left: the real-world bus routes in projection on the original
instance network (blue). Nodes of the network are represented as black circles and connections unused
by the real-world routes as black lines. Red pentagons mark the nodes which are not served by the real-
world routes. Right: real-world bus routes in projection on the reduced network: All nodes not served are
removed from the network and the remaining nodes are connected accordingly (colour figure online)

1 3

An adaptive scaled network for public transport routes

same number as the real-world route set.16 For experiment 1 the maximal number
of nodes per route was set to lmax = 45 , which is around 10% more than the longest
real-world route.17 For experiment 2 we used lmax = 52 , to reflect the approximately
14% larger size of the instance network. The minimal number of nodes per route was
set to lmin = 3 for both experiments, one less than the shortest real-world route.

The results of both experiments are presented in Fig. 7. In both cases the evalu-
ation results of the final route sets (black dots) form a clear Pareto front. In experi-
ment 1 five route sets surpass the performance of real-world route sets (black x) in
both objectives. Even for experiment 2 the results show that route sets serving the
entire study area can be optimised to achieve evaluation results close to those of the
real-world route set in the reduced instance.

To ease the discussion, the results at four key positions in the Pareto fronts for
both experiments are highlighted and compared. At the extremes, the most pas-
senger-friendly route sets (red) and the most operator-friendly route set (blue) are
identified in the figure. Further, in yellow we can see the most passenger-friendly
route set with shorter total route length than the real-world route set, while the most
operator-friendly route set with shorter average travel time than the real-world route
set is identified in green.

For experiment 1, the highlighted results are shown in more detail in Table 1.
From the table we can see that the route set marked in yellow has slightly cheaper
operator costs (− 1.24%) than the real-world route set, shortening the average travel
time by half a minute. On the other hand, the route set marked in green reduces the
operator cost by 12.9%, yet still achieves a better passenger cost (− 0.7%) than the
passenger cost for the real route set. The general trend towards higher optimisation
potential on the operator side is also present at the extreme ends of the Pareto fronts.
We can observe that the most passenger-friendly route set (red), reduces the average
travel time by 12.6 % (to 12.5 min) but increases the operator-cost by 69.8%. On the
other hand, the most operator-friendly route set (blue) reduces the operator cost by
46% by driving up the average travel time by 38.5% (to almost 20 min).

While the yellow and green marked route sets of experiment 1 indicate that the
real-world routes can be improved upon with our optimisation procedure, yellow
and green marked route sets of experiment 2 show that it is possible to construct
route sets serving the entire study area producing very similar operator and pas-
senger costs to the real-world route set. The green route set offers approximately
the same travel time as the real-world routes (14.2 min), although this comes at an
increase in operator cost of about 22.7%. The yellow route set serves the larger net-
work for approximately the same operator cost (− 1.7%) by prolonging the average
travel time to 15 min.

It should be noted that all these comparisons are based on route optimisation
only, and thus assume a fixed frequency of 10 min for all routes compared. Our

16 We have chosen this after a sensitivity analysis showed that changing the number of routes does not
lead to a general improvement of results.
17 The higher limit reflects the possibilities for planners to construct slightly longer routes than currently
exist.

 P. Heyken Soares et al.

1 3

future work looks to improve the realism of these comparisons by using more accu-
rate demand data as well as including aspects such as frequency setting and multi-
modal interactions.

Fig. 7 Evaluations of the final population of 50 route sets from the GA (black dots) for both experiments,
the reduced instance (left), and the full instance (right). In each plot four evaluation results are high-
lighted: the most passenger-friendly route set (red-R), the most operator-friendly route set (blue-B), the
most passenger-friendly route set with shorter total route length than the real-world route set (yellow-Y),
and the most operator-friendly route set with shorter average travel time than the real-world route set
(green-G). Further, passenger and operator cost for the real route set is marked on the reduced instance
(left) with an X (colour figure online)

Table 1 Comparison between optimisation results (as highlighted in Fig. 7) and the real world for opti-
misation criteria and transfer statistics

Real routes Red Blue

Average travel time 14.3 min 12.5 min − 12.6% 19.8 min + 38.5%
Total route length 1369 min 2325 min + 69.8% 741 min − 45.9%
% direct trips 30.6% 39.5% + 8.9% 16.9% − 13.7%
% of 1 transfer trips 54.1% 48.5% − 5.6% 34.4% − 19.7%
% of 2 transfer trips 13.9% 11.1% − 2.8% 28.0% + 14.1%
% of 3 + transfer trips 1.4% 0.9% − 0.5% 20.7% + 19.3%

Real routes Green Yellow

Average travel time 14.3 min 14.2 min − 0.7% 13.8 min − 3.5%
Total route length 1369 min 1192 min − 12.9% 1352 min − 1.24%
% direct trips 30.6% 29.2% − 1.4% 30.5% − 0.1%
% of 1 transfer trips 54.1% 47.7% − 6.4% 48.5% − 5.6%
% of 2 transfer trips 13.9% 20.0% + 6.1% 18.8% + 4.9%
% of 3+ transfer trips 1.4% 3.1% + 1.7% 2.27% + 0.9%

1 3

An adaptive scaled network for public transport routes

Table 1 further shows transfer statistics of the route sets, another performance
measure used in the literature (see, e.g. Feng et al. 2010). The transfer statistics
show the percentage of travellers reaching their destination, with none, one, two,
three or more transfers. For the four marked route sets we see an evident increase
in transfers for route sets with shorter total route length and longer average travel
times. This observation is confirmed by the transfer statistics for all route sets shown
in Fig. 8. This graphic shows a clear correlation between the passenger cost and
proportion of passengers needing to make a specific number of transfers, with the
number of passengers making zero or one transfer decreasing and the number mak-
ing two or more transfers increasing, with increasing passenger cost. This behaviour
is present in the results of both experiments indicating that it is independent from
the specific network or network size. The reason for it lies in the differences in route
coverage density in the network as shown in Fig. 9 for the two extreme Pareto route
sets for the full instance. By the route coverage density, we simply mean the number
of routes covering each link of the network.

Figure 8 further shows that the real-world route set (displayed by ‘X’ markers)
has a comparatively low number of transfers, minimising transfers at the expense
of operator costs. One potential explanation for this low number of transfers is the
fragmentation of the Nottingham bus market. In the absence of tickets valid for all
companies, direct travel is monetarily attractive for passengers. Companies optimise
their networks individually to attract passengers with direct travel. This leads to a
network with higher operator costs overall, due to unutilised transfer potential. How-
ever, more research would be required to confirm this.

Fig. 8 Transfer statistics for the reduced instance experiment (left) and full instance (right). The coloured
dots show the percentage of travellers reaching their destination with direct trips (purple), with one trans-
fer (blue), two transfers (green), or three or more transfers (orange). Further, ‘X’ markers display the
transfer statistics for the real-world route set (colour figure online)

 P. Heyken Soares et al.

1 3

6 Conclusion

In this paper we introduced a new methodology for modelling and scaling down a
street network to facilitate optimisation of public transport networks in a realistic way.
Furthermore, we built our model using only data that is freely available from public
sources. The process involves a systematic placement of nodes on junctions of a street
network suitable for bus travel. The travel times between the nodes are generated from
street data, the information about potential terminal nodes is derived form existing bus
routes, and the travel demand was extracted from UK census data. In the initial study,
we applied our techniques to the bus network of greater Nottingham.

We showed that the pre-existing public transport routes can be projected onto
the generated instance network, allowing the direct comparison between optimi-
sation results and pre-existing public routes in a reduced version of the generated
instance. Additionally, we adapted an evolutionary multi-objective optimisation algo-
rithm (NSGAII) to operate effectively on our Nottingham instance characterised by
restricted terminal nodes (i.e., where buses can turn around). The comparison between
our results and the actual 2011 bus routes of the study area indicate that it is possible
to reduce both the average passenger travel time and the operator cost simultaneously.
Our results further suggest that a bus network optimised for direct travel (i.e. for a
fragmented service with many different operators) is not the most effective network
for passengers or operators. Given that this work is only the first step in an incremental
approach for general public transport optimisation, these results are very promising.

There are several possible directions for future work. One is to improve the
instance generation, e.g. by using better resolved demand data, or by generating

Fig. 9 Network density for the extreme Pareto points in the full instance. Left: the most passenger-
friendly route set (i.e. the red route set in Fig. 7). Right: the most operator-friendly route set (i.e. the blue
route set in Fig. 7). The colour coding shows the number of routes sets serving a specific connection
within the network. The most operator-friendly route set serves most connections with only one route
causing many transfers. The most passenger-friendly route set has many connections served multiple
times increasing the chance that passengers can travel directly to their destination

1 3

An adaptive scaled network for public transport routes

asymmetric travel time matrices to better capture the impact of turn restrictions in a
similar way to what was done in Perugia et al. (2011). Extending the optimisation to
one or more of the four remaining phases mentioned in Sect. 1 (Vehicle Frequency
Setting, Timetabling, Vehicle Scheduling and Crew Scheduling), is another. Allow-
ing variable numbers of routes in our route sets, is also an important investigation to
be carried out, as well as introducing multiple modes of public transport. In addition,
many improvements could be made by changes in the objective functions. This may
include techno-economic aspects such as vehicle crowding or required fleet size for
more realism [see e.g. Jara-Diaz and Gschwender (2003) or Moccia et al. (2018)].
Further, changes to the objective function can also alleviate some of the less realistic
constraints for valid route sets. Most notably is the constraint that all nodes have to
be part of every route set, which forced us to generate a reduced instance in order to
compare our optimisation results against real-world routes.

We provide the instance data as well as the real-world route set, our results and a
python program for route set evaluation alongside this paper to allow other research-
ers to employ their own optimisation algorithm. The material is also available
online under https ://data.mende ley.com/datas ets/kbr5g 3xmvk .

Acknowledgements We are thankful for the very helpful comments and suggestions of three anonymous
reviewers. This work is partly funded by the Leverhulme Programme Grant RP2013-SL-015.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creat iveco mmons .org/licen ses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.

Appendix 1: Script to generate travel time matrix

This section describes the travel time matrix generation, as mentioned in Sect. 2.4.
The process is done in three steps

1. Extracting travel time information from route data.
2. Feasibility check and auto-correction.
3. Final check and output.

We had all three steps executed by a single python script. Its structure can be seen in
the flow diagram in Fig. 10.

Extracting travel time information

Auto‑generate travel times from node positions

The basis for the first step is an ArcGIS network dataset of the available street net-
work. We generated such a dataset from the UK Ordnance Survey integrated net-
work layer with the procedure described in ESRI (UK) Ltd (2007). The described

https://data.mendeley.com/datasets/kbr5g3xmvk
http://creativecommons.org/licenses/by/4.0/

 P. Heyken Soares et al.

1 3

procedure can also be applied to data from other sources, provided these can be
converted to network datasets. Such data should be available from most national
transport authorities or from local authorities. Alternatively, street data from Open-
StreetMap (https ://www.opens treet map.org) can be used as long as it is sufficiently
accurate for the study area.

A network dataset allows us to generate travel time data with ArcGIS using
the Network Analyst function “Closest Facility”. This function generates routes18
between the elements of one set of points (“Incidents”) and the elements of another
set of points (“Facilities”).19 The attribute table of the generated routes contains
information about start and end points as well as the required travel time. By select-
ing the bus routing nodes (see Sect. 2.3.2) as both “Incidents” and “Facilities” we
are able to generate routes from every node to every other node.

We only wish to use the travel times between directly connected nodes. There-
fore, we need to determine which of the above generated routes are valid (connect
two directly connected nodes) and which are invalid (connect two nodes which are
not directly connected).

A route fij between two nodes ni and nj would be considered valid if it does not
pass through any other node. It is therefore possible to check if fij is valid by count-
ing the number of nodes alongside it, defined as Aij . A node nx is considered as
alongside fij , if the path of fij is either directly going over nx , or, in case nx has been
generated by snapping, over a junction represented by nx (see Fig. 2). If only the
starting node ni and its end node nj are alongside fij (Aij = 2), fij is valid. If there are
more nodes alongside fij (Aij ≥ 3), fij is not valid. Nodes are considered alongside fij
if the distance between them and fij is s/2 or less. This is because a node can repre-
sent junction up to s/2 away from it (see Sect. 2.3.2).

The values of Aij can be obtained with the ArcGIS function “Locate Features
Along Routes” which gives out the nodes within a certain distance of a route.20

However, the fact there may be junctions which are represented by more than one
node leads to situations where Aij ≥ 3 although ni and nj are directly connected (see

18 These routes are not related to the public transport routes we talked about in other sections of this
paper. The reason why we use the term again here is to be consistent with the ArcGIS terminology.
19 Parameters used for “Closest Facility” function:
• Analysis settings:
– Impedance: drive (min)
– Facilities to find: as many as possible
– U-Turns at junctions: not allowed
– Output shape type: true shape with measures
– Use hierarchy: yes
– Ignore invalid locations: yes
– Restrictions: MandatoryTurnRestrictions, OneWay, TurnRestrictions
• Accumulation attributes: drive (min)
• Network locations—finding network locations:
– Search tolerance: snapping distance s
– Snap to: closest street-network (shape).
20 Parameters used for locating features along routes function:
– Search radius: half snapping distance s

2

– Keep only the closest route location: no

https://www.openstreetmap.org

1 3

An adaptive scaled network for public transport routes

Fig. 11). To cope with this situation, a third input file is necessary, which states how
many more nodes Bij are allowed alongside a route fij before fij is considered invalid.
This additional input can be generated manually.

With both Aij and Bij known, it is finally possible to classify routes into valid and
invalid. A route fij is called valid if (Aij − Bij) ≤ 2 . If this is the case, the route’s
travel time is inserted in the initial OD matrix. If fij turns out to be invalid, the travel
time between ni and nj is considered as infinite.

Placing extra nodes

The “Closest Facilities” function generates the shortest path between two points.
This, however, creates problems if the shortest path is not the most direct path (see
Fig. 12). In these cases, the travel times for the direct connection has to be gener-
ated separately. In order to do so, we placed a so-called extra node along the direct
connection and used the “Closest Facility” function again to generate routes from
this extra node to the two nodes to be connected.21 By summing up the travel time
of both routes the travel time between the two nodes is generated and stored in the
initial travel time matrix.

Routes

between nodes

Distance between

nodes and routes

Additional node

allowances

Test if

, – , ≤ 2

Get number of nodes

along route: ,

Get number of nodes

allowed along route: ,

for every
route ,

Add travel time

between origin and

destination node to

travel time matrix

Calculate degrees Δ

Extra

routes

Add travel time between

origins to travel time matrix

for every
extra route

Node

information

Extract expected

degrees

Test if

all = Δ
Export

travel time matrix

Initial

travel time

matrix

Output ID, current und

should­be degree of nodes

n with ≠ Δ

Extract travel �mes , and ,

= Δ
= Δ

, ≠ ∞
, ≠ ∞

= Δ
< Δ

, = ∞
, ≠ ∞

< Δ
= Δ

, ≠ ∞
, = ∞

> Δ
= Δ

, ≠ ∞
, = ∞

= Δ
> Δ

, = ∞
, ≠ ∞

No No No No No

Set

, = , = (, + ,)
Keep

, = , = ∞
Set

, = ,

Set

, = ,

Set

, = ∞
Set

, = ∞

Corrected

travel time

matrix

Calculate degrees Δ

No

No

Step 1: Extract travel time information from all routes

Step 1b: Extract travel time information from all extra routes (if necessary)

Step 2: Check every node pair i - j and try autocorrect

Step 3: Final check of all node pairs i - j

Yes Yes Yes Yes Yes Yes

Yes

Yes

= Δ
= Δ

, = ∞
, = ∞

Fig. 10 Algorithm to generate travel time matrix. The process consists of three steps from the input files
generated manually and via ArcGIS. In step 1, the initial travel time matrix is generated from ArcGIS
route information (see Sect. 1). Step 2 is an auto-correction procedure to fix simple mistakes in the route
data based on comparisons with the expected degree of each node. This comparison is repeated in step 3
with the corrected matrix as a final check before outputting the travel-time matrix

21 For the generation of extra routes the same settings for the “Closest Facility” function are used as
before. The only differences are that the extra nodes are used as “Incidents” and the “number of facilities
to find” is set to 2.

 P. Heyken Soares et al.

1 3

Feasibility check and auto‑correction

The “Closest Facility” function sometimes produces nonsensical routes (see Fig. 13)
and it is therefore important to check if the entries in the initial travel time matrix are
correct. In order to do this, we calculate the degree �i , the sum of all direct neigh-
bours, of node ni , and compare to its expected degree �i.22

It is then possible to check for every node pair ni , nj if the calculated and expected
degrees of both nodes match up. The result of this comparison is used for an auto-
correction procedure:

1. If �i = �i and �j = �j and tij ≠ ∞ and tji ≠ ∞:
 Everything correct: Both travel times are averaged to create a symmetrical

matrix tij = tji =
1

2

(
tij + tji

)

2. If �i = �i and �j = �j and tij = tji = ∞:
 Everything correct.
3. If �i = �i and 𝛿j < 𝛥j and tij ≠ ∞ and tji = ∞:
 fji seem to have been wrongly classified as invalid: set tji = tij
4. If 𝛿i < 𝛥i and �j = �j and tij = ∞ and tji ≠ ∞:
 fij seem to have been wrongly classified as invalid: set tij = tji
5. If �i = �i and 𝛿j > 𝛥j and tij = ∞ and tji ≠ ∞:

Fig. 11 ArcGIS generated
routes (green) leading from four
different starting nodes 1, 2, 3 to
node e. The distance of s

2
 around

the nodes displayed (red circle).
Note that the junction between
node e and node 1 is represented
by both nodes. The valid routes
f1,e and f2,e have only two nodes
alongside them. The invalid
route f4,e has three nodes along-
side it (e, 1, and 4). The route
f3,e has to be valid; however, it
has three nodes alongside it (e,
1, and 3). In this case, an addi-
tional node allowance B3,e = 1
has to be used to allow f3,e to be
considered a valid route (colour
figure online)

22 The expected degree �
i
 of a node n

i
 has to be generated manually.

1 3

An adaptive scaled network for public transport routes

 fji seem to have been wrongly classified as valid: set tji = ∞

6. If 𝛿i > 𝛥i and �j = �j and tij ≠ ∞ and tji = ∞:
 fij seem to have been wrongly classified as valid: set tij = ∞

7. If none of the above:
 An issue that has not been caused by ArcGIS but by mistakes in one of the

input files. The script outputs the ID, calculated degree and expected degree of
the nodes where �i ≠ �i to help identify the source of the problem.

Final check and output

Finally the degrees of all nodes are calculated and compared against the expected
degrees. If �i = �i for all nodes i, the final travel time OD matrix is generated. Oth-
erwise, the script outputs the list of nodes with �i ≠ �i which serves as a basis for
adjustments on the inputs for the next run of the script. Further, a lines shape file for

Fig. 12 ArcGIS generated routes (green) between several nodes. The shortest path both between the
nodes 1 and 3 goes over node 2. The street connecting node 1 and node 3 is not used by the “Closest
Facility” function. In order to extract the travel times along this connection an extra node e is inserted.
This allows to generate the routes fe,1 and fe,3 and to sum up their travel time to t1,3 = te,1 + te,3 (colour
figure online)

Fig. 13 ArcGIS generated route (green) from node s to node e leading over node x for no identifiable
reason. (Node s is clipped to a to center of a junction allowing turns in both directions.) (colour figure
online)

 P. Heyken Soares et al.

1 3

all valid connections is generated to allow a separate visual check if all connections
were generated correctly. (These shape files were used in the generation of Fig. 6
and the right side of Fig. 1.)

Appendix 2: Mutation operations

The following sections outline the mutation operations “Delete nodes” and “Add
nodes” as well as the “Add missing nodes” repair operation, all used as part of the
GA. The other mutation operations “Exchange”,“Replace”, and “Merge” as well as
the repair operation “Replace Overlapping” are not described here as our implemen-
tation of these operations does not differ significantly to earlier descriptions of these
algorithms e.g. in John (2016) and Mumford (2013).

As the operators described here are quite complex, we advise following the pro-
vided flow diagrams while reading the explanatory text.

Terminology
Before starting the description of the algorithms we need to introduce some terms

we use during the description:

• “List”: Described is a randomised list of all possible elements (e.g. a route list is
a list of all routes in a route set in a randomised order.)

• “Select from list”: takes the first entry from a list and thereby returns the entries
in a pseudo-random order. The selected entries are removed from the list so the
list is empty once all elements have been selected.

• “Reset list”: reinserts all previously selected elements back into the list and
reshuffles it.

• “Reverse route”: Routes are lists of nodes which can be changed to reverse order
(e.g. [n1 , n2 , n3] to [n3 , n2 , n1]). As it is assumed that routes are travelled in both
directions reversing a route does not change the connectivity in the route set.

• “Reaching a terminal in X steps”: “Add nodes”- and “Add missing nodes”-oper-
ation require information about how many steps a node ni is away from the next
terminal node. (Each step means passing another node.) This information can be
calculated from the adjacency matrix in advance.

• The maximal number of steps possible Xmax : Determines the maximal number of
steps allowed in “Add nodes“- and “Add missing nodes”-operation. Xmax is set as
the largest number of steps between any node in and the nearest terminal node in
the instance network.

Delete nodes

The “Delete nodes” operator was first described in Mumford (2013) and used to
delete nodes from the end of randomly selected routes. However, this process needs
to be more complex if a route has to end on a terminal node. Figure 14 shows the
flow diagram of the “Delete nodes” mutation operation adapted for the use with ter-
minal nodes.

1 3

An adaptive scaled network for public transport routes

At the beginning of the operation Z ∈ [0,
lmax

2
] is determined at random. Z is the

minimal number of nodes to be deleted in the entire route set.
After Z is set, the routes in the selected route set are sorted into a random order,

and the first route of this list is selected as r. It is first checked if r includes more
then two terminal nodes, as otherwise deleting one node would make r invalid. If r
includes enough terminals, a copy rorig is made and one node after another is deleted
until r again ends on a terminal node. If len(r) ≥ lmin is still true, the shortened route is
accepted and reinserted into the route set. If r becomes too short, the original route rorig
is restored. If the route has not yet been reversed, it is reversed now and a new attempt
to delete nodes is started with the reversed route. If deleting nodes in the reversed
route again leads to a too short route, the next route in the route list is selected.

This process is repeated until at least Z nodes have been deleted from the total
route set or all routes have been tried out.

Add nodes

The “Add nodes” operator was first described in Mumford (2013) and added adja-
cent nodes at the ends of randomly selected routes. However, this process needs to
be more complex if a route has to end on a terminal node. This new version uses a
guided random walk to connect a given route to the next possible terminal node.
This process ensures that the “Add nodes” operation is balanced with the “Delete
nodes” operation (which deletes nodes at least until it reaches the next terminal).
Figure 15 shows the flow diagram of the “Add nodes” mutation operation.

At the beginning of the operation Z ∈ [0,
lmax

2
] is determined at random. Z is the

minimal number of nodes to be added in the entire route set.
After Z is set, the routes in the route set are arranged in random order, and the

first route of this list is selected as r. A copy rorig made from it, and a step counter
X set to X = 1 . It is then tested if X nodes can be added to r (if len(r) + X ≤ lmax). If
this is true, the algorithm checks if there are terminal nodes Vt (at least one), which
are not yet part of r and which can be reached in X steps from r′s current last node
nl . If no Vt can be found, the step counter is increased to X = X + 1 and, it is again
checked if terminal nodes Vt , fulfilling the above mentioned conditions, do exist.
This process is repeated as long as X ≤ Xmax and len(r) + X ≤ lmax is true.

If nodes Vt do exist, but there is more than one step needed to reach them (X > 1),
it is tried to close the gap by appending other nodes to r. As the success of this pro-
cess is not guaranteed, a copy Xorig is made from X to be able to restore it later.

The nodes to close the gap are selected via a guided random walk: It is tested if
there are nodes Nk adjacent to r’s last node ni , which are not yet part of r and can
reach a node in Vt in X − 1 steps. If node(s) Nk exist, one of them is selected at ran-
dom and is appended to r, thereby becoming the new last node nl and X is reduced by
one. This process is repeated until X = 1 is reached. When this happens, one of the
terminal nodes in Vt which is adjacent to r’s current last node nl is selected at random
and appended to r. Route r is now again valid (it ends again on a terminal node).

If node(s) Nk do not exist (because all potential nodes are already used within r),
the original route rorig is restored, the step counter is set to X = Xorig + 1).

 P. Heyken Soares et al.

1 3

If either the step counter reaches the maximal level (X > Xmax) or r would get too
long if X nodes would be added to it, the attempts to append nodes to this route are
stopped. If the route has not yet been reversed, it is now reversed and the whole pro-
cess starts again with a new last node nl . However, if the reversed route can not be
extended, a new route is selected.

The entire process is repeated until either at least Z nodes have been added to the
route set or all routes have been tried out.

Add missing nodes

A repair operation which reinserts missing nodes back into the route set was first
introduced in Mumford (2013). However, the original version only added the miss-
ing nodes to randomly selected routes. This process is not sufficient if a route has to
end on a terminal node.

To take the constraint of terminal nodes into account, this version has two phases:
The first phase ensures that all terminal nodes are included in at least one route. It
also tries to reconnect as many other missing nodes as possible in the process. The
flow diagram of the first phase is shown in Fig. 16. The second phase tries to insert
remaining missing non-terminal nodes in randomly selected routes. Its flow diagram
is shown in Fig. 17.

Add missing terminal nodes

The first phase starts with a step counter X set to X = 1 , the generation of a ran-
domised route list and the selection of a route r from that list. It is tested if r can be
extended by X nodes. If yes, it is further tested if there are missing terminal nodes Vt

Fig. 14 Flow diagram of “Delete nodes” mutation operation: the operation begins with the selection of
a route from a randomised route list. If the routes include more then two terminal nodes, the operation
starts to delete nodes until either the route becomes too short or it ends again on a terminal node (box A).
If the resulting route is too short, the original route is restored and reversed and the process started again.
If the attempt fails, a new route is selected

1 3

An adaptive scaled network for public transport routes

which can be reached in X steps from either r’s last node nl or r’s first node nf of r. If
no Vt exists, or if r would become too long, a new route is selected.

If Vt exists but there is more than one step needed to reach a node in Vt , other
nodes are appended to r to close the gap. At this point a copy Xorig is made from
X to be able to restore it later. (If Vt can only be reached from nf r is reversed so
that nf becomes nl.)

It is then tested if there are nodes Nk which are adjacent to r’s current last
node nl and can reach a node in Vt in X − 1 steps. Furthermore, these adjacent
nodes cannot be already part of r. If suitable adjacent nodes exist, one such node
nk is selected at random and appended to r, thereby becoming the now nl , and X
is reduced by one. Missing nodes are preferred to speed up the repair process.
This process is repeated until X = 1 . Now Vt can be reached directly and one
node vt ∈ Vt which is adjacent to nl is selected at random and appended to r.

After a missing terminal node vt has been successfully connected to a route,
it is checked to see if further terminal nodes are missing. If yes, the next route
from the route list is selected and the process starts again. If all routes have been
tried, the step counter X is increased by one and the route list is reset. The pro-
cess then starts again, checking for missing terminals one step further away from
the end nodes of r.

If X reaches Xmax before all terminal nodes could be connected, the process
stops and the route set is returned as not repairable. If all missing terminal nodes
can be connected to routes, it is tested if there are other (non-terminal) nodes

Fig. 15 Flow diagram of the “Add nodes” mutation operation: the operation begins with the selection of
a route r from a randomised route list and then testing if X nodes can be added to r and if there are pos-
sible new terminal nodes Vt within X steps (box A). If node(s) Vt are found but cannot be reached directly,
the additional steps are filled with other nodes nk , each one step closer to the new terminal (box B). If no
suitable nodes can be found, the original route is restored and the step counter is increased. If too many
steps would be required, r is first reversed and the process started again. If this attempt also fails, a new
route is selected

 P. Heyken Soares et al.

1 3

Fig. 16 Flow diagram of the first phase of “Add missing nodes”: the process starts a step counter set to
X = 1 and the selection of a route r from a route list. It is tested if there are missing terminal nodes Vt
within X steps from either the first or last node of r (box A). If at least one such node is found, it is either
inserted directly, or, in case of X > 1 , the additional steps are filled with other nodes, each one step closer
to the missing terminal node. Other missing nodes are prioritised in this process (box B). If at least one
missing terminal node cannot be connected to any route within X steps, X is increased by one and the
routes are tried again. Once there are no missing terminal nodes the second phase starts, or, if there are
no other missing nodes left, the repair process ends (box C)

Select route r

from route list

Test:

len(r) + 1 ≤

Still routes in

route list?

Select node

n from A list

n is not �irst

or last node

of r

Is the node n

directly before n in r

also in A

Are nodes

in A list?

Insert n in r

between n and n

Are there still

nodes missing?

Select node

n from missing node list

Return

repaired

route set

Stop repair

process

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes No

No

No

No

No

NoNo

A) Select potential routes

B) Trying insert missing node

No

Generate route list

Generate A list

Insert n in r

between n and n

Is the node n

directly before n in r

also in A

Generate

missing node

list

Are there nodes A:

• adjacent to nj

• part of r, at least 2

Fig. 17 Flow diagram of the second phase of “Repair nodes”: the process starts with selecting a missing
node nj and a route r from randomised lists. It is tested if the route could take another node and if there
is an overlap of at least two nodes between the nodes currently in r and the once adjacent to nj (box A).
If yes, it is tested if two of these nodes are consecutive nodes in r so nj can be inserted in between them
(box B). If such a combination cannot be found, a new route is selected until either all missing nodes are
inserted in routes or there are no routes that were not tried

1 3

An adaptive scaled network for public transport routes

missing. If yes, the second phase of the repair procedure is started. If not, the
repaired route set is returned to the GA.

Add remaining missing nodes

The second phase starts with the generation of a randomised route list and the selec-
tion of one node nj at random from the missing nodes. Next, a route r is selected
from the route list and is tested if it got too long if one node was inserted. If insert-
ing a node is possible, it is tested if there is a group A of at least two nodes which is
part of r and also adjacent to nj . If no overlap can be found or r would get too long, a
new route is selected.

If A can be found, one node na ∈ A is selected at random. If na is neither the first
nor the last node of r, it is tested if either the node nb which is in r directly before na ,
or the node nc which is in r directly after na is also in A. If one of these is the case,
the node nj is inserted into r either in between na and nb or between na and nc . If
there are further nodes missing, a new node nj is selected and the route list is reset.
Otherwise the route set is returned as repaired.

If there is one node nj that cannot be inserted into any route, the route set is
returned as not repairable.

References

Ahmed L, Mumford CL, Kheiri A (2019) Solving urban transit route design problem using selection
hyper-heuristics. Eur J Oper Res 274(2):545–559

Amiripour SM, Ceder AA, Mohaymany AS (2014) Designing large-scale bus network with seasonal vari-
ations of demand. Transp Res Part C Emerg Technol 48:322–338

Ammons DN (2001) Municipal benchmarks: assessing local perfomance and establishing community
standards, 2nd edn. SAGE Publications, Thousand Oaks

Arbex RO, da Cunha CB (2015) Efficient transit network design and frequencies setting multi-objective
optimization by alternating objective genetic algorithm. Transp Res Part B Methodol 81:355–376

Baaj MH, Mahmassani HS (1991) An ai-based approach for tansit route system planning and design. J
Adv Transp 25:187–209

Bagloee SA, Ceder AA (2011) Transit-network design methodology for actual-size road networks. Transp
Res Part B Methodol 45(10):1787–1804

Bielli M, Caramia M, Carotenuto P (2002) Genetic algorithms in bus network optimization. Transp Res
Part C Emerg Technol 10(1):19–34

Ceder A, Wilson NHM (1986) Bus network design. Transp Res B 20B(4):331–344
Cipriani E, Gori S, Petrelli M (2012) Transit network design: a procedure and an application to a large

urban area. Transp Res Part C Emerg Technol 20(1):3–14
Deb K, Pratap A, Agarwal S, Meyarivan T (2002) A fast and elitist multiobjective genetic algorithm:

NSGA-II. IEEE Trans Evol Comput 6(2):182–197
ESRI (UK) Ltd (2007) Using OS MasterMap Integrated Transport Network (ITN)TM Layer with ArcGIS

. ESRI (UK) White Paper
Fan L, Mumford CL (2010) A metaheuristic approach to the urban transit routing problem. J Heuristics

16(3):353–372
Feng C, Hsieh C, Peng S (2010) Optimization of urban bus routes based on principles of sustainable

transportation. J East Asia Soc Transp Stud 7:1137–1149
Golding J (2018) Best practices and methodology for OD-matrix creation from CDR-data. Technical

report, University of Nottingham, Business School, N-LAB

 P. Heyken Soares et al.

1 3

Gutierrez-Jarpa G, Laporte G, Marianov V, Moccia L (2017) Multi-objective rapid transit network design
with modal competition: the case of Concepción, Chile. Comput Oper Res 78:27–43

Jara-Diaz SR, Gschwender A (2003) Towards a general microeconomic model for the operation of public
transport. Transp Rev 23(4):453–469

John MP (2016) Metaheuristics for designing efficient routes & schedules for urban transportation net-
works. Ph.D. thesis, University of Cardiff

John MP, Mumford CL, Lewis R (2014) An improved multi-objective algorithm for the urban transit
routing problem. In: Blum C, Ochoa G (eds) Evolutionary computation in combinatorial optimisa-
tion. Springer, Berlin, pp 49–60

Kiliç F, Gök M (2014) A demand based route generation algorithm for public transit network design.
Comput Oper Res 51:21–29

Leblanc LJ (1975) An algorithm for the discrete network design problem. Transp Sci 9(3):183–199
Mandl CE (1979) Applied network optimization. Academic Press, Cambridge
Mauttone A, Urquhart ME (2009) A route set construction algorithm for the transit network design prob-

lem. Comput Oper Res 36(8):2440–2449
Moccia L, Allen DW, Bruun EC (2018) A technology selection and design model of a semi-rapid transit

line. Public Transp 10(3):455–497
Mumford CL (2013) New heuristic and evolutionary operators for the multi-objective urban transit rout-

ing problem. In: 2013 IEEE congress on evolutionary computation. IEEE, pp 939–946. https ://ieeex
plore .ieee.org/abstr act/docum ent/65576 68

Nayeem MA, Rahman MK, Rahman MS (2014) Transit network design by genetic algorithm with elit-
ism. Transp Res Part C Emerg Technol 46:30–45

Nielsen G, Nelson J, Mulley C, Tegner G, Lind G, Lange T (2005) HiTrans Best Practice Guide 2: Public
transport – planning the networks. HiTrans. https ://www.crow.nl/downl oads/docum ents/13359

Pattnaik S, Mohan S, Tom V (1998) Urban bus route network design using genetic algorithm. J Transport
Eng 124(4):368–375

Perugia A, Moccia L, Cordeau JF, Laporte G (2011) Designing a home-to-work bus service in a metro-
politan area. Transp Res Part B Methodol 45(10):1710–1726

Poorzahedy H, Safari F (2011) An ant system application to the bus network design problem: an algo-
rithm and a case study. Public Transp 3(2):165–187

Shih M, Mahmassani H (1994) A design methodology for bus transit networks with coordinated opera-
tions. Technical report, University of Texas, Center for Transportation Research

Silman LA, Barzily Z, Passy U (1974) Planning the route system for urban busses. Comput Oper Res
1(2):201–211

Soehodo S, Koshi M (1999) Design of public transit network in urban area with elastic demand. J Adv
Transp 33(3):335–369

Turfitt R (2018) Statutory Document No. 14 Local bus services in England (outside London) and Wales.
Technical report, Senior Traffic Commissioner (UK)

UK Department for Transport (2015) National public transport data repository. https ://data.gov.uk/datas
et/nptdr . Accessed 6 June 2019

UK Office for National Statistics (2016a) Census geography. http://www.ons.gov.uk/ons/guide -metho d/
geogr aphy/begin ner-s-guide /censu s/index .html. Accessed 6 June 2019

UK Office for National Statistics (2016b) Census output areas population weighted centroids 2011. https
://geopo rtal.stati stics .gov.uk/datas ets/ba64f 679c8 5f456 3bfff 7fad7 9ae57 b1_0. Accessed 6 June 2019

Wills M (1986) Gravity-opportunities trip distribution model. Transp Res Part B Methodol 208(2):89–111
Wilson AG (1969) The use of entropy maximising models, in the theory of trip distribution, mode split

and route split. J Transp Econ Policy 3(1):108–126
Zhang Y, Qin X, Dong S, Ran B (2010) Daily O-D matrix estimation using cellular probe data. In: TRB

89th annual meeting compendium of papers DVD, Transport Research Board. http://odd.topsl
ab.wisc.edu/publi catio ns/2010/Daily %20O-D%20Mat rix%20Est imati on%20usi ng%20Cel lular
%20Pro be%20Dat a%20(10-2472).pdf

Zhao F, Gan A (2003) Optimization of transit network to minimize transfers. Technical report, Florida
International University, Department of Civil and Environmental Engineering, Transport Research
Board. https ://trid.trb.org/view/69797 8

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

https://ieeexplore.ieee.org/abstract/document/6557668
https://ieeexplore.ieee.org/abstract/document/6557668
https://www.crow.nl/downloads/documents/13359
https://data.gov.uk/dataset/nptdr
https://data.gov.uk/dataset/nptdr
http://www.ons.gov.uk/ons/guide-method/geography/beginner-s-guide/census/index.html
http://www.ons.gov.uk/ons/guide-method/geography/beginner-s-guide/census/index.html
https://geoportal.statistics.gov.uk/datasets/ba64f679c85f4563bfff7fad79ae57b1_0
https://geoportal.statistics.gov.uk/datasets/ba64f679c85f4563bfff7fad79ae57b1_0
http://odd.topslab.wisc.edu/publications/2010/Daily%20O-D%20Matrix%20Estimation%20using%20Cellular%20Probe%20Data%20(10-2472).pdf
http://odd.topslab.wisc.edu/publications/2010/Daily%20O-D%20Matrix%20Estimation%20using%20Cellular%20Probe%20Data%20(10-2472).pdf
http://odd.topslab.wisc.edu/publications/2010/Daily%20O-D%20Matrix%20Estimation%20using%20Cellular%20Probe%20Data%20(10-2472).pdf
https://trid.trb.org/view/697978

	An adaptive scaled network for public transport route optimisation
	Abstract
	1 Introduction
	2 Generating a scaled instance network for bus route optimisation
	2.1 Problem description
	2.2 Definitions
	2.3 Constructing the network
	2.3.1 Defining the street network
	2.3.2 Placing nodes

	2.4 Generating links
	2.5 Determining terminal nodes
	2.6 Assigning travel demand

	3 Optimisation procedure
	3.1 Initial definitions
	3.1.1 Passenger and operator objectives
	3.1.2 Optimisation constraints

	3.2 Heuristic construction of route sets
	3.2.1 First step: constructing a shortest path usage map and transforming it
	3.2.2 Second step: generating candidate routes
	3.2.3 Third step: forming route sets by combining routes from the palette of candidate routes

	3.3 Genetic algorithm
	3.3.1 Outline of our implementation of NSGAII
	3.3.2 The genetic operators

	4 Comparison of optimisation result and real bus routes
	4.1 Necessary network reduction
	4.2 Extracting real-world routes
	4.2.1 Filtering journey patterns by starting time
	4.2.2 Converting stop point lists to node lists
	4.2.3 Filtering out overlaps

	5 Experimental results
	6 Conclusion
	Acknowledgements
	References

