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Scott Congreve'-* and Paul Houston”**

! Faculty of Mathematics, University of Vienna, Oskar-Morgenstern-Platz 1, 1090 Wien, Austria
% School of Mathematical Sciences, University of Nottingham, University Park, Nottingham, NG7 2RD, UK

We generalise the a priori error analysis of two-grid hp-version discontinuous Galerkin finite element methods for strongly
monotone second-order quasilinear elliptic partial differential equations to the case when coarse meshes consisting of general
agglomerated polytopic elements are employed.
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1 Introduction

We study the hp-version of the two-grid incomplete interior penalty (IIP) discontinuous Galerkin finite element method
(DGFEM) using an agglomerated coarse mesh, for the numerical approximation of the following problem: find u such that

-V ((z, |Vu|)Vu) = f(x) in £, u=0 onT, ()

where  is a bounded polygonal/polyhedral Lipschitz domain in Q@ C R?, d = 2, 3, with boundary I' := 92 and f € L?(f).
We assume that € C°(Q x [0,00)), and there exists positive constants 1, and M, such that m,(t — s) < p(x,t)t —
pw(x,s)s < M, (t—s),t > s >0,z € Q. For ease of notation write /(t) instead of u(x, t).

The two-grid method was originally introduced by Xu [1,2]. The key idea of this approach, in the context of numerically
approximating nonlinear partial differential equations (PDEs), is to first compute a numerical approximation of the nonlinear
PDE on a coarse mesh/approximation space, and subsequently employ this solution to linearize the underlying problem on
the fine mesh/approximation space; in this way only a linear solve is required on the fine mesh/approximation space. In the
context of hp-version DGFEMs, in [3] and [4] we have considered the application of the two-grid approach to both scalar
strongly monotone second-order quasilinear PDEs of the form (1) and non-Newtonian fluids, respectively; in both cases the
coarse and fine spaces employ standard meshes employing simplices/tensor-product elements. In this article, we generalize
this to the case when general polytopic coarse elements, generated by agglomerating fine mesh elements, are employed.

2 Two-grid hp-version IIP DGFEM

We write T;, = {x} to denote the fine mesh consisting of simplices/tensor-product elements of local mesh size h,, = diam(x),
k € Tp. Similarly, Ty = {K} denotes the coarse mesh consisting of polytopic elements K constructed by agglomerating
elements x € Tp; Hx = diam(K), K € Ty. We assume that 7}, is of bounded local variation. Writing p = {p, : & € Tp}
and P = {Px : K € Ty} to denote the polynomial orders defined over 7, and Tz, respectively, (p is assumed to be
of bounded local variation) we write V,, = {v € L*(Q) : v|, € P, (k),k € Tpn} and Vgp = {v € L*(Q) : v|x €
Ppy (K), K € T}, where Pp(x) denotes the space of all polynomials of total degree p on «.

We write ), and F; to denote the set of all faces in the meshes 7;, and Ty, respectively. Furthermore, we write {-} and
[-] to denote suitable average and jump operators, respectively, which are defined on either F,, or F;; see [3] for details. With
this notation, we first introduce the following standard 1IP DGFEM on the fine mesh 7}, for the numerical approximation of
the problem (1): find up, € Vj,, such that App(wnp; Unp, Vnp) = E%Th fﬁ fonp de for all vy, € V), where

Anp(5u,0) = 3 / WV Vu - Vodz — 3 /F (u(IVhe) Vru} - [l ds+ 3 /F ouplu] - [] ds

weT, Uk FeF, FeF,

and V}, is used to denote the broken gradient operator, defined elementwise. Given a face polynomial degree function py and
a face mesh size function hp, F' € F,, the interior penalty parameter oy, is given by op,|r = 'yhpp%hgl, F € F,, where
Ynp > 01is a sufficiently large constant, cf. [3]. The two-grid IIP DGFEM is given by:

1. Compute ugp € Vyp suchthat Ayp(ugp;ugp,vgp) = ZKETH fK fogpdxforallvygp € Vyp.

2. Find uag € Vi, such that Ay, (upp;uag, vhp) = Y [ fonp de for all vy, € Vi,

~€Th

Here, Ay p(u;u,v) is defined analogously to Ay, (u; u, v), but with a modified interior penalty parameter oy p, cf. [5].
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Fig. 1: Plot of ||u — u2c ||, against A for uniform fine mesh refinement with: a) H ~ n/2; b) H ~ h'/2.

3 Error analysis

For the proceeding error analysis, we require the following definitions and assumptions, cf. [5].
Definition 3.1 For K € Ty we write ]-'bK to be the set of all possible d-simplices contained in K and having at least one
face in common with K'; we write KbF to denote a simplex belonging to }“bK which shares with K € Ty the face F' C 0K.
Assumption 3.2 For any K € Ty, there exists a set of non-overlapping d-dimensional simplices { K bF }C ]—'bK contained
within K, such that for all F' C 9K, the condition Hx < C’Sd|Kf ||F]~! holds, where Cy is a positive constant, which is
independent of the discretization parameters, the number of faces that the element possesses, and the measure of F'.
Definition 3.3 The covering 7}3 = {K} related to Ty is a set of open shape-regular d-simplices K, such that, for each
K € Ty, there exists a K € T}, such that K C K. Given ’7}3 we denote by Qy the covering domain given by Qy = J KeTh K.

Assumption 3.4 We assume a covering 7}3 of Ty and positive constant O, exists, independent of the mesh, such that
maxpe7y, card{K' € Ty : K'NK # (,K € ’Tfﬁl such that K C K} < Ogq, and hx := diam(K) < CpH, for each pair
KeTy,Ke 7}3 with K C K, for a constant C'p > 0, uniformly with respect to the mesh size.

We now state the main result of this article; see [6] for details.

Theorem 3.5 Let Ty be a coarse agglomerated mesh satisfying Assumptions 3.2 and 3.4, with 7}3 = {K} an associated
covering of Ty consisting of d-simplices; cf. Definition 3.3. If the analytical solution v € H*(Q) to (1) satisfies u|,, € H'= (k),
lo > 2, andu|x € H'%(K), Ly > 3/2, for K € Ty, such that Culx € HV%(K), where K € ’Tfﬁl with K C K, then, writing
||UH}2LP = ||th||%2(m + EFE]—'h [ onp|[V]|? ds, the solution uae € Vi, satisfies the error bound

p2sn =2 H25K—2
|\U*U2G||hp c Z 3l,.-3 ||UHHZ’”(R)+C Z 2L -2 1JrgK(HK’PK))H@“HHLK Ky
k€TH Pr KETH
where G (Hk, Pr) := (Px + PIQ()H;(1 Maxpgcox UEHF + HKPI; maxpcor ogp|r, Sk = min(Px + 1, Lk), for

K € Ty, s, = min(p, + 1,1,), for k € Ty, and C is a positive constant independent of u, h, H, p, and P, but depends on
the constants m,,, M,, from the monotonicity properties of u(-). Finally, € denotes the extension operator defined in [7].

To confirm Theorem 3.5, we set © = (0,1)? C R?, u(|Vul) = 2 4 (1 + |[Vu|?*)™!, and select f so that u(z,y) =
2(1 — 2)y(1 — y)(1 — 2y)e~20@==D° " Firstly, we consider a sequence of uniform fine meshes consisting of n x n,
n = 4,8,16, 32,64, 128, 256, square elements with a coarse mesh containing elements constructed by agglomerating 4 fine
elements, i.e., H ~ O(h) for all meshes; see Figure 1(a) which confirms the optimal convergence rate of O(h?), for p fixed.
By selecting H ~ O(h'/?), cf. Figure 1(b), we observe a deterioration in the order of convergence to O (h*/?), as expected.
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