Two-Grid *hp***-DGFEMs on Agglomerated Coarse Meshes**

Scott Congreve^{1,*} and Paul Houston^{2,**}

¹ Faculty of Mathematics, University of Vienna, Oskar-Morgenstern-Platz 1, 1090 Wien, Austria

² School of Mathematical Sciences, University of Nottingham, University Park, Nottingham, NG7 2RD, UK

We generalise the *a priori* error analysis of two-grid *hp*-version discontinuous Galerkin finite element methods for strongly monotone second-order quasilinear elliptic partial differential equations to the case when coarse meshes consisting of general agglomerated polytopic elements are employed.

Copyright line will be provided by the publisher

1 Introduction

We study the hp-version of the two-grid incomplete interior penalty (IIP) discontinuous Galerkin finite element method (DGFEM) using an agglomerated coarse mesh, for the numerical approximation of the following problem: find u such that

$$-\nabla \cdot (\mu(\boldsymbol{x}, |\nabla u|) \nabla u) = f(\boldsymbol{x}) \quad \text{in } \Omega, \qquad u = 0 \quad \text{on } \Gamma,$$
(1)

where Ω is a bounded polygonal/polyhedral Lipschitz domain in $\Omega \subset \mathbb{R}^d$, d = 2, 3, with boundary $\Gamma := \partial \Omega$ and $f \in L^2(\Omega)$. We assume that $\mu \in C^0(\overline{\Omega} \times [0, \infty))$, and there exists positive constants m_μ and M_μ such that $m_\mu(t-s) \leq \mu(\boldsymbol{x}, t)t - \mu(\boldsymbol{x}, s)s \leq M_\mu(t-s), t \geq s \geq 0, \boldsymbol{x} \in \overline{\Omega}$. For ease of notation write $\mu(t)$ instead of $\mu(\boldsymbol{x}, t)$.

The two-grid method was originally introduced by Xu [1,2]. The key idea of this approach, in the context of numerically approximating nonlinear partial differential equations (PDEs), is to first compute a numerical approximation of the nonlinear PDE on a coarse mesh/approximation space, and subsequently employ this solution to linearize the underlying problem on the fine mesh/approximation space; in this way only a linear solve is required on the fine mesh/approximation space. In the context of hp-version DGFEMs, in [3] and [4] we have considered the application of the two-grid approach to both scalar strongly monotone second-order quasilinear PDEs of the form (1) and non-Newtonian fluids, respectively; in both cases the coarse and fine spaces employ standard meshes employing simplices/tensor-product elements. In this article, we generalize this to the case when general polytopic coarse elements, generated by agglomerating fine mesh elements, are employed.

2 Two-grid *hp*-version IIP DGFEM

We write $\mathcal{T}_h = \{\kappa\}$ to denote the fine mesh consisting of simplices/tensor-product elements of local mesh size $h_{\kappa} = \operatorname{diam}(\kappa)$, $\kappa \in \mathcal{T}_h$. Similarly, $\mathcal{T}_H = \{K\}$ denotes the coarse mesh consisting of polytopic elements K constructed by agglomerating elements $\kappa \in \mathcal{T}_h$; $H_K = \operatorname{diam}(K)$, $K \in \mathcal{T}_H$. We assume that \mathcal{T}_h is of bounded local variation. Writing $\mathbf{p} = \{p_{\kappa} : \kappa \in \mathcal{T}_h\}$ and $\mathbf{P} = \{P_K : K \in \mathcal{T}_H\}$ to denote the polynomial orders defined over \mathcal{T}_h and \mathcal{T}_H , respectively, (\mathbf{p} is assumed to be of bounded local variation) we write $V_{hp} = \{v \in L^2(\Omega) : v|_{\kappa} \in \mathcal{P}_{p_{\kappa}}(\kappa), \kappa \in \mathcal{T}_h\}$ and $V_{HP} = \{v \in L^2(\Omega) : v|_{\kappa} \in \mathcal{P}_{P_K}(K), K \in \mathcal{T}_H\}$, where $\mathcal{P}_p(\kappa)$ denotes the space of all polynomials of total degree p on κ .

We write \mathcal{F}_h and \mathcal{F}_H to denote the set of all faces in the meshes \mathcal{T}_h and \mathcal{T}_H , respectively. Furthermore, we write $\{\!\{\cdot\}\!\}$ and $[\![\cdot]\!]$ to denote suitable average and jump operators, respectively, which are defined on either \mathcal{F}_h or \mathcal{F}_H ; see [3] for details. With this notation, we first introduce the following *standard* IIP DGFEM on the fine mesh \mathcal{T}_h , for the numerical approximation of the problem (1): find $u_{hp} \in V_{hp}$ such that $A_{hp}(u_{hp}; u_{hp}, v_{hp}) = \sum_{\kappa \in \mathcal{T}_h} \int_{\kappa} f v_{hp} \, \mathrm{d}x$ for all $v_{hp} \in V_{hp}$, where

$$A_{hp}(\phi; u, v) = \sum_{\kappa \in \mathcal{T}_h} \int_{\kappa} \mu(|\nabla \phi|) \nabla u \cdot \nabla v \, \mathrm{d}\boldsymbol{x} - \sum_{F \in \mathcal{F}_h} \int_{F} \left\{\!\!\left\{\mu(|\nabla_h \phi|) \nabla_h u\right\}\!\!\right\} \cdot \left[\!\!\left[v\right]\!\right] \mathrm{d}\boldsymbol{s} + \sum_{F \in \mathcal{F}_h} \int_{F} \sigma_{hp}\left[\!\!\left[u\right]\!\right] \cdot \left[\!\!\left[v\right]\!\right] \mathrm{d}\boldsymbol{s}$$

and ∇_h is used to denote the broken gradient operator, defined elementwise. Given a face polynomial degree function p_F and a face mesh size function h_F , $F \in \mathcal{F}_h$, the interior penalty parameter σ_{hp} is given by $\sigma_{hp}|_F = \gamma_{hp}p_F^2h_F^{-1}$, $F \in \mathcal{F}_h$, where $\gamma_{hp} > 0$ is a sufficiently large constant, cf. [3]. The two-grid IIP DGFEM is given by:

1. Compute $u_{HP} \in V_{HP}$ such that $A_{HP}(u_{HP}; u_{HP}, v_{HP}) = \sum_{K \in \mathcal{T}_H} \int_K f v_{HP} \, \mathrm{d} x$ for all $v_{HP} \in V_{HP}$.

2. Find $u_{2G} \in V_{hp}$ such that $A_{hp}(u_{HP}; u_{2G}, v_{hp}) = \sum_{\kappa \in \mathcal{T}_h} \int_{\kappa} f v_{hp} \, \mathrm{d}\boldsymbol{x}$ for all $v_{hp} \in V_{hp}$.

Here, $A_{HP}(u; u, v)$ is defined analogously to $A_{hp}(u; u, v)$, but with a modified interior penalty parameter σ_{HP} , cf. [5].

^{*} Corresponding author: e-mail scott.congreve@univie.ac.at

^{**} email: paul.houston@nottingham.ac.uk

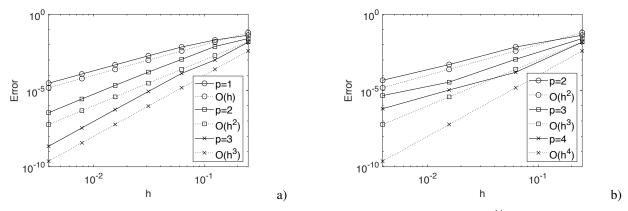


Fig. 1: Plot of $||u - u_{2G}||_{hp}$ against h for uniform fine mesh refinement with: a) $H \approx h/2$; b) $H \approx h^{1/2}$.

3 Error analysis

For the proceeding error analysis, we require the following definitions and assumptions, cf. [5].

Definition 3.1 For $K \in \mathcal{T}_H$ we write \mathcal{F}_b^K to be the set of all possible *d*-simplices contained in *K* and having at least one face in common with *K*; we write K_b^F to denote a simplex belonging to \mathcal{F}_b^K which shares with $K \in \mathcal{T}_H$ the face $F \subset \partial K$.

Assumption 3.2 For any $K \in \mathcal{T}_H$, there exists a set of non-overlapping *d*-dimensional simplices $\{K_b^F\} \subset \mathcal{F}_b^K$ contained within K, such that for all $F \subset \partial K$, the condition $H_K \leq C_s d|K_b^F||F|^{-1}$ holds, where C_s is a positive constant, which is independent of the discretization parameters, the number of faces that the element possesses, and the measure of F.

Definition 3.3 The covering $\mathcal{T}_{H}^{\sharp} = \{\mathcal{K}\}$ related to \mathcal{T}_{H} is a set of open shape-regular *d*-simplices \mathcal{K} , such that, for each $K \in \mathcal{T}_{H}$, there exists a $\mathcal{K} \in \mathcal{T}_{H}^{\sharp}$, such that $K \subset \mathcal{K}$. Given \mathcal{T}_{H}^{\sharp} we denote by Ω_{\sharp} the covering domain given by $\overline{\Omega}_{\sharp} = \bigcup_{\mathcal{K} \in \mathcal{T}_{H}^{\sharp}} \overline{\mathcal{K}}$.

Assumption 3.4 We assume a covering \mathcal{T}_{H}^{\sharp} of \mathcal{T}_{H} and positive constant \mathcal{O}_{Ω} exists, independent of the mesh, such that $\max_{K \in \mathcal{T}_{H}} \operatorname{card} \{ K' \in \mathcal{T}_{H} : K' \cap \mathcal{K} \neq \emptyset, \mathcal{K} \in \mathcal{T}_{H}^{\sharp} \text{ such that } K \subset \mathcal{K} \} \leq \mathcal{O}_{\Omega}, \text{ and } h_{\mathcal{K}} := \operatorname{diam}(\mathcal{K}) \leq C_{D}H_{K}, \text{ for each pair } K \in \mathcal{T}_{H}, \mathcal{K} \in \mathcal{T}_{H}^{\sharp} \text{ with } K \subset \mathcal{K}, \text{ for a constant } C_{D} > 0, \text{ uniformly with respect to the mesh size.}$

We now state the main result of this article; see [6] for details.

Theorem 3.5 Let \mathcal{T}_H be a coarse agglomerated mesh satisfying Assumptions 3.2 and 3.4, with $\mathcal{T}_H^{\sharp} = \{\mathcal{K}\}$ an associated covering of \mathcal{T}_H consisting of d-simplices; cf. Definition 3.3. If the analytical solution $u \in H^1(\Omega)$ to (1) satisfies $u|_{\kappa} \in H^{l_{\kappa}}(\kappa)$, $l_{\kappa} \geq 2$, and $u|_{\kappa} \in H^{L_{\kappa}}(K)$, $L_K \geq 3/2$, for $K \in \mathcal{T}_H$, such that $\mathfrak{E}u|_{\kappa} \in H^{L_{\kappa}}(\mathcal{K})$, where $\mathcal{K} \in \mathcal{T}_H^{\sharp}$ with $K \subset \mathcal{K}$; then, writing $\|v\|_{hp}^2 = \|\nabla_h v\|_{L^2(\Omega)}^2 + \sum_{F \in \mathcal{F}_h} \int_F \sigma_{hp} |[v]|^2 ds$, the solution $u_{2G} \in V_{hp}$ satisfies the error bound

$$\|u - u_{2G}\|_{hp}^{2} \leq C \sum_{\kappa \in \mathcal{T}_{h}} \frac{h_{\kappa}^{2s_{\kappa}-2}}{p_{\kappa}^{2l_{\kappa}-3}} \|u\|_{H^{l_{\kappa}}(\kappa)}^{2} + C \sum_{K \in \mathcal{T}_{H}} \frac{H_{\kappa}^{2S_{K}-2}}{P_{K}^{2L_{K}-2}} (1 + \mathcal{G}_{K}(H_{K}, P_{K})) \|\mathfrak{E}u\|_{H^{L_{K}}(\mathcal{K})}^{2},$$

where $\mathcal{G}_K(H_K, P_K) := (P_K + P_K^2)H_K^{-1}\max_{F \subset \partial \kappa} \sigma_{HP}^{-1}|_F + H_K P_K^{-1}\max_{F \subset \partial K} \sigma_{HP}|_F$, $S_K = \min(P_K + 1, L_K)$, for $K \in \mathcal{T}_H$, $s_\kappa = \min(p_\kappa + 1, l_\kappa)$, for $\kappa \in \mathcal{T}_h$, and C is a positive constant independent of u, h, H, p, and P, but depends on the constants m_μ , M_μ from the monotonicity properties of $\mu(\cdot)$. Finally, \mathfrak{E} denotes the extension operator defined in [7].

To confirm Theorem 3.5, we set $\Omega = (0,1)^2 \subset \mathbb{R}^2$, $\mu(|\nabla u|) = 2 + (1 + |\nabla u|^2)^{-1}$, and select f so that $u(x,y) = x(1-x)y(1-y)(1-2y)e^{-20(2x-1)^2}$. Firstly, we consider a sequence of uniform fine meshes consisting of $n \times n$, n = 4, 8, 16, 32, 64, 128, 256, square elements with a coarse mesh containing elements constructed by agglomerating 4 fine elements, i.e., $H \approx \mathcal{O}(h)$ for all meshes; see Figure 1(a) which confirms the optimal convergence rate of $\mathcal{O}(h^p)$, for p fixed. By selecting $H \approx \mathcal{O}(h^{1/2})$, cf. Figure 1(b), we observe a deterioration in the order of convergence to $\mathcal{O}(h^{p/2})$, as expected.

References

- [1] J. Xu, SIAM J. Sci. Comp. 15, 231–237 (1994).
- [2] J. Xu, SIAM J. Numer. Anal. 33, 1759-1777 (1996).
- [3] S. Congreve, P. Houston, and T. P. Wihler, J. Sci. Comput. 55(2), 471–497 (2013).
- [4] S. Congreve and P. Houston, Int. J. Numer. Anal. Model. 11(3), 496–524 (2014).
- [5] A. Cangiani, Z. Dong, E. H. Georgoulis, and P. Houston, hp-version Discontinuous Galerkin Methods of Polygonal and Polyhedral Meshes, Springer Briefs in Mathematics (Springer, Cham, Switzerland, 2017).
- [6] S. Congreve and P. Houston (In Preparation).
- [7] E. M. Stein, Singular Integrals and Differentiability Properties of Functions (Princeton University Press, Princeton, NJ, 1970).