

Figure S1. Maximum likelihood phylogenetic tree of the Stylommatophora based on concatenated sequences of 5782 unambiguously aligned nucleotides from the combined dataset of the LSU (and 5.8S) gene, the SSU gene, the H3 gene and the 1st and 2nd codon positions of the CO1 gene. The optimal model GTR+ $\Gamma$  was used. The phylogeny is rooted on the siphonariid *Siphonaria pectinata*. Values on the nodes represent bootstrap support (1000 replicates). Bootstrap support values less than 50% are not shown. The scale bar represents 1 substitutional change per 100 nucleotide positions.



Figure S2. Neighbor-joining phylogenetic tree of the Stylommatophora based on concatenated sequences of 5782 unambiguously aligned nucleotides from the combined dataset of the LSU (and 5.8S) gene, the SSU gene, the H3 gene and the 1st and 2nd codon positions of the CO1 gene. The phylogeny is rooted on the siphonariid *Siphonaria pectinata*. Values on the nodes represent bootstrap support (1000 replicates). Bootstrap support values less than 50% are not shown. The scale bar represents 1 substitutional change per 100 nucleotide positions.



Figure S3. Bayesian phylogenetic tree of the Stylommatophora based on concatenated sequences of 5782 unambiguously aligned nucleotides from the combined dataset of the LSU (and 5.8S) gene, the SSU gene, the H3 gene and the 1st and 2nd codon positions of the CO1 gene. The phylogeny also incorporates all published partial rRNA sequences (431bp) of the Scolodontidae from Ramirez et al. (2012) shown as dotted lines. The accession numbers of the published taxa are (*Systrophia eatoni* = HM067823.1, *Systrophia helicycloides* 1= JN604723.1, *Systrophia helicycloides* 2= JN604724.1, *Entodina jekylli* = HM067824.1, *Scolodonta sp.* = HM067825.1 and *Scolodonta sp.* 2 =HM116227.1). The optimal model GTR+ $\Gamma$  was used. The phylogeny is rooted on the siphonariid *Siphonaria pectinata*. Values on the nodes represent bootstrap support (1000 replicates) for ML, NJ and posterior probabilities for BI (based on last 75% of trees), respectively. Bootstrap support values less than 50% and posterior probabilities less than 0.7 are not shown. The scale bar represents 1 substitutional change per 100 nucleotide positions.

Table S1: Genbank sequence accessions of all sequences used in this study.

| Таха                                       | LSU rRNA gene (also<br>incorporating partial<br>5.8S and complete ITS-2) | SSU rRNA | Н3                    | CO1                   |
|--------------------------------------------|--------------------------------------------------------------------------|----------|-----------------------|-----------------------|
| Ferussacia foilliculus                     | MF444871 <sup>1</sup>                                                    | MN022689 | MF4153381             | MF4153481             |
| Subulina striatella                        | MF444888 <sup>1</sup>                                                    | MN022690 | MF415330 <sup>I</sup> | MF415358 <sup>1</sup> |
| Glessula ceylanica                         | MF4448721-MF4448731                                                      | MN022691 | MF415337 <sup>1</sup> | MF4153471             |
| Lissachatina fulica<br>[= Achatina fulica] | MF4448641                                                                | MN022692 | MF415320 <sup>1</sup> | MF41534 <sup>1</sup>  |
| Coeliaxis blandii                          | MF444867 <sup>1</sup> - MF444868 <sup>1</sup>                            | MN022693 | MF415335 <sup>1</sup> | MF415345 <sup>1</sup> |
| Thyrophorella thomensis                    | MF444891 <sup>1</sup>                                                    | MN022694 | MF415339 <sup>1</sup> | MF4153491             |
| Gonaxis quadrilateralis                    | MF4448931                                                                | MN022697 | MN022760              | MN022729              |
| Cochlicopa lubrica                         | KU341313 <sup>2</sup>                                                    | MN022682 | MN022751              | MN022720              |
| Vallonia excentrica                        | MN022656                                                                 | MN022683 | MN022752              | MN022721              |
| Chondrina clienta                          | MN022657                                                                 | MN022684 | MN022753              | MN022722              |
| Buliminus labrosus                         | MN022658                                                                 | MN022685 | MN022754              | MN022723              |
| Albinaria xantostoma                       | MN022659                                                                 | MN022686 | MN022755              | MN022724              |
| Drymaeus discrepans                        | MN022660                                                                 | MN022687 | MN022756              | MN022725              |
| Gaeotis nigrolineata                       | MN022661                                                                 | MN022688 | MN022757              | MN022726              |
| Euglandina rosea                           | MN022662                                                                 | MN022695 | MN022758              | MN022727              |
| Haplotrema vancouverense                   | MN022668                                                                 | MN022702 | MN022765              | MN022734              |
| Rhytida stephenensis                       | MN022667                                                                 | MN022701 | MN022764              | MN022733              |
| Megalobulimus oblongus                     | MN022664                                                                 | MN022698 | MN022761              | MN022730              |
| Dorcasia alexandri                         | MN022665                                                                 | MN022699 | MN022762              | MN022731              |
| Caryodes dufresnii                         | MN022666                                                                 | MN022700 | MN022763              | MN022732              |
| Euconulus fulvus                           | MN022670                                                                 | MN022704 | MN022767              | MN022736              |
| Cryptozona bistrialis                      | AY014106 <sup>3</sup> & MN022671                                         | MN022705 | MN022768              | MN022737              |
| Vitrina pellucida                          | MN022672                                                                 | MN022706 | MN022769              | MN022738              |
| Oxychilus alliarius                        | MN022673                                                                 | MN022707 | MN022770              | MN022739              |
| Satsuma japonica                           | MN022674                                                                 | MN022708 | MN022771              | MN022740              |
| Trochulus striolata                        | MN022675                                                                 | MN022709 | MN022772              | MN022741              |
| Bradybaena similaris                       | MN022676                                                                 | MN022710 | MN022773              | MN022742              |
| Monadenia fidelis                          | MN022677                                                                 | MN022711 | MN022774              | MN022743              |
| Arion hortensis                            | KU341315 <sup>2</sup>                                                    | MN022712 | MN022775              | MN022744              |
| Meghimatium bilineatum                     | MN022678                                                                 | MN022713 | MN022776              | MN022745              |
| Testacella scutulum                        | MN022663                                                                 | MN022696 | MN022759              | MN022728              |
| Corilla adamsi                             | AY014091 <sup>3</sup> & MN022669                                         | MN022703 | MN022766              | MN022735              |
| Guestieria sp.                             | MN022679                                                                 | MN022714 | MN022777              | MN022746              |
| Systrophia sp.                             | MN022680 & MN022681                                                      | MN022715 | MN022778              | MN022747              |
| Laemodonta sp.                             | KU341316 <sup>2</sup>                                                    | MN022716 | MN022779              | KM281112 <sup>4</sup> |
| Carychium tridentatum                      | KU341318 <sup>2</sup>                                                    | MN022717 | MN022780              | MN022748              |
| Laevicaulis alte                           | KU341319 <sup>2</sup>                                                    | MN022718 | MN022781              | MN022749              |
| Siphonaria pectinata                       | AY014149 <sup>3</sup> & KU341320 <sup>2</sup>                            | MN022719 | MN022782              | MN022750              |

1. Fontanilla, I.K., Naggs, F. and Wade, C.M., 2017. Molecular phylogeny of the Achatinoidea (Mollusca: Gastropoda). Mol. Phylogenet. Evol. 114, 382-385.

2. Davison, A., McDowell, G.S., Holden, J.M., Johnson, H.F., Koutsovoulos, G.D., Liu, M.M., Hulpiau, P., Van Roy, F., Wade, C.M., Banerjee, R. and Yang, F., 2016. Formin is associated with left-right asymmetry in the pond snail and the frog. Curr. Biol. 26, 654-660.

3. Wade, C.M., Mordan, P.B., Clarke, B., 2001. A phylogeny of the land snails (Gastropoda: Pulmonata). Proc. Roy. Soc. Lond. B Bio. 268, 413–422.

4. Romero, P.E., Pfenninger, M., Kano, Y. and Klussmann-Kolb, A., 2016. Molecular phylogeny of the Ellobiidae (Gastropoda: Panpulmonata) supports independent terrestrial invasions. Mol. Phylogenet. Evol. 97, 43-54.

Table S2: Three possible alternative phylogenetic trees showing the possible position of the Scolodontina within the Stylommatophora (tree one: 'non-achatinoid clade' clusters with Scolodontina, tree two: 'non-achatinoid clade' clusters with 'achatinoid clade' with Scolodontina falling as a sister group to both clades, tree three: 'achatinoid clade' clusters with Scolodontina. The reliability of the inferred trees was tested by bootstrap resampling of maximum likelihood (ML), neighbor-joining (NJ), minimum-evolution (ME), Fitch-Margoliash (FM) and differences in the number of supporting parsimony informative sites. The number of supporting parsimony informative sites were calculated based on four taxon trees incorporating *Siphonaria pectinata*, *Guestieria sp.*, *Lissachatina fulica* and *Monadenia fidelis*.

|                                     | [Non-achatinoid Scolodontina [Achatinoid clade] Out-gruop<br>clade] | [Non-achatinoid [Achatinoid clade] Scolodontina Out-gruop<br>clade] | [Achatinoid clade] Scolodontina [Non-achatinoid Out-gruop<br>clade] |
|-------------------------------------|---------------------------------------------------------------------|---------------------------------------------------------------------|---------------------------------------------------------------------|
|                                     | Tree1                                                               | Tree 2                                                              | Tree 3                                                              |
| ML bootstrap                        | 3                                                                   | 93                                                                  | 4                                                                   |
| NJ bootstrap                        | 22                                                                  | 75                                                                  | 3                                                                   |
| ME bootstrap                        | 8                                                                   | 88                                                                  | 4                                                                   |
| FM bootstrap                        | 5                                                                   | 84                                                                  | 11                                                                  |
| Parsimony                           | 11                                                                  | 22                                                                  | 11                                                                  |
| informative sites                   |                                                                     |                                                                     |                                                                     |
| Parsimony<br>transversion/<br>sites | 0                                                                   | 10                                                                  | 2                                                                   |