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We develop a one-dimensional (1D) model of jet break-up in continuous inkjet print-

ing to explore the non-linear behaviour caused by finite-amplitude modulations in

the driving velocity, where jet stability deviates from classic (linear) ‘Rayleigh’ be-

haviour. At low driving amplitudes and high Weber numbers the spatial instability

produces drops that pinch-off downstream of the connecting filament, leading to the

production of small satellite droplets between the main drops. On the other hand, we

identify a range of driving amplitudes where pinching becomes ‘inverted’, occurring

upstream of the filament connecting the main drops, rather than downstream. This

inverted break-up is preferable in printing, as it increases the likelihood of satellite

drops merging with the main drops. We find that this behaviour can be controlled by

the addition of a second harmonic to the driving signal. This model is in quantitative

agreement with a full axisymmetric simulation, which incorporates nozzle geometry.

I. INTRODUCTION

Inkjet printing is becoming a powerful

manufacturing tool; it is ideal for a wide

range of applications due to the advantages

of being flexible, non-contact and scalable.

In particular, drop-on-demand (DoD) inkjets

may be used as robotic pipettes to create

micro arrays, fabricate three-dimensional ob-

jects or print electrical and optical devices1.
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However, while DoD technology is highly ver-

satile, it is currently slow compared to direct

printing and continuous inkjet (CIJ) print-

ing. For example, Liu et al2 study the range

of experimental parameters required for sta-

ble drop-on-demand inkjet performance.

CIJ provides high-speed printing, but low

resolution in the final printed text, thus is

ideal for labelling applications. However,

CIJ is impractical for more advanced pro-

cesses requiring high precision. Extending

CIJ to more advanced processes requiring

high precision requires an improved under-

standing of the formation of small drops
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from liquid jets, as well as their in-flight

behaviour. Many studies have contributed

to improving this understanding; for ex-

ample see Refs.3–7. More recently, studies

have investigated droplet formation in step

emulsifiers8 and bifurcating microchannels9,

and new experimental techniques have been

developed to investigate thread breakup10.

In CIJ printing, as the name suggests, a

continuous jet of liquid is ejected from a large

reservoir through a nozzle orifice. Surface

tension renders the jet unstable, creating a

succession of ‘main’ drops connected by thin

filaments. Depending on the nature of the

applied disturbance, these filaments may de-

tach from the main drops at break-up to form

smaller ‘satellite’ drops. The formation of

satellite drops during CIJ printing is prob-

lematic for a number of reasons. If satellites

fail to merge with the main drops, then they

may cause splash on the substrate and com-

promise print quality, or they may migrate

towards the nozzle plate as smaller drops are

deflected further by electrostatic fields and

cross-stream airflows.

Rayleigh11 was first to establish that a liq-

uid jet will be rendered unstable by surface

tension provided that its wavelength exceeds

its circumference. Linear stability analysis of

the Navier-Stokes equations leads to a dis-

persion relation to describe how the growth

rate of a disturbance depends on its wave-

length. Maximising the dispersion relation

reveals that the fastest growing wavelength

is approximately 9 times the jet radius for

low-viscosity liquids. However, linear theo-

ries based on Rayleigh’s stability analysis do

not predict the formation of satellite drops.

Consequently, weakly non-linear theories

have been developed to investigate satellite

formation. In particular, both Yeun et al.12

and Lee et al.13 use the method of strained

coordinates to develop a solution for a sym-

metric infinite jet, based on a temporal dis-

turbance of the free surface. Qualitatively,

satellites appear through two properties of

the Newtonian pinching singularity14. First,

the singularity is localised, causing break-up

at a specific point on the jet free surface. Sec-

ond, for low-viscosity fluids, self-similar thin-

ning is highly asymmetric, with the uniform

filament region joining to a steep main drop

via a connecting neck region at each end of

the filament. In a symmetric flow, break-up

occurs at both necks simultaneously and the

filament region contracts to form a smaller

satellite drop, the mechanism of which has

recently been studied by Eggers et al15.

However, satellites can form in several

ways depending on the nature of the applied

initial disturbance, as shown in the experi-

mental work of Chaudhary et al16. In most

liquid jet applications, including CIJ print-

ing, it is necessary to excite the jet via a
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(a) Downstream break-up

(b) Symmetric break-up

(c) ‘Inverted’ break-up

FIG. 1. Schematic figure showing different

break-up behaviour: (a) downstream pinching;

(b) symmetric pinching; (c) upstream pinching.

Upstream pinching produces ‘inverted’ break-up

that is preferable for CIJ printing.

velocity perturbation, which creates a distur-

bance wave that grows with distance from the

nozzle exit, rather than time. Keller et al17

show that this disturbance is only equivalent

to a temporally growing Rayleigh wave in the

limit of infinite Weber number.

In light of this result, Pimbley & Lee18

conduct a non-linear analysis of the drop for-

mation problem via a spatial instability anal-

ysis. They find that the two most relevant

parameters controlling satellite formation are

the amplitude and wavelength of the initial

perturbation. For certain values of these pa-

rameters, the first pinching event can oc-

cur downstream of the connecting filament,

on both sides simultaneously, or upstream of

the connecting filament, as shown schemati-

cally in Figure 1. In this paper, we call the

phenomenon of upstream pinching ‘inverted’

break-up.

The theory of Pimbley & Lee18 agrees

qualitatively with the experimental findings

of Chaudhary et al.16, in that there is a tran-

sition from downstream to upstream pinch-

ing for increasing perturbation amplitude

and the amplitude defining the transition in-

creases with wave number. Similar break-up

patterns have also been observed in large-

scale CIJ experiments and industrial CIJ

systems6. Furthermore, Chaudhary et al.19

show experimentally that this break-up be-

haviour can be controlled by forcing the jet

with a suitable harmonic component added

to the initial velocity profile. However, these

studies do not explore the effect of chang-

ing Weber number, which has been shown by

Vassallo et al.20 to have a significant effect.

In order to control break-up and increase

printing speed, CIJ printing exploits the ef-

fects of finite-amplitude modulations in the

driving velocity profile. In particular, the

driving amplitude for which inverted break-

up is achieved is considered optimal for CIJ

printing, since satellite drops can be elimi-

nated by forward merging of the filament re-

gion into the leading main drop. However,

this optimum operation window is not well

defined. Although a full axisymmetric jet-
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ting model has been previously applied to

the CIJ problem to investigate the transi-

tion from downstream to inverted break-up,

with quantitative agreement to experimental

data6, the implementation of this technique

is computationally expensive.

In this paper, we develop a model based

on the slender-jet approximation to explore

the stability and break-up of a continuous jet

for a parameter range typical of CIJ printing.

Despite operating at large Weber numbers,

jet stability deviates from linear Rayleigh be-

haviour due to finite amplitudes imposed on

the driving velocity, which are usually em-

ployed to encourage break-up. This causes

the growth of non-linear interactions that sig-

nificantly influence break-up behaviour, and

is in contrast to growth of disturbances forced

by perturbations of the jet diameter.

We identify the critical amplitude range

for which break-up becomes inverted and

present a Fourier analysis to identify the har-

monic responsible for this transition. Finally,

we show that inverted break-up can be con-

trolled by the addition of a second harmonic

to the driving signal. The results of our one-

dimensioanl (1D) model are shown to be in

qualitative agreement with full axisymmetric

simulations that include a simplified nozzle

geometry, which is absent from the 1D model.

II. 1D JETTING MODEL

A. Governing Equations

A simplification to the full Navier-

Stokes equations is to assume a slender-jet

approximation21 where the wavelength is as-

sumed to be sufficiently long that the jet ve-

locity and stress are independent of the cross-

sectional area, but retain the nonlinear terms

in the surface curvature.

The kinematics of motion are therefore

approximated as one-dimensional, depend-

ing only on the axial z-direction and time t.

Thus, this 1D approximation assumes a plug-

flow velocity profile. Although flow through a

nozzle generates a Poiseuille flow, it has been

shown that for a sufficient distance down-

stream of the nozzle exit, the figure velocity

profile of a continuous jet relaxes to a plug

flow22. Hence, a 1D model is expected to be

sufficient to model the downstream dynamics

of a continuous inkjet.

Denoting jet radius h(z, t) and velocity

v(z, t), conservation of mass and momentum

are given respectively by

∂h2

∂t
+

∂

∂z
(h2v) = 0,

∂

∂t
(h2v) +

∂

∂z
(h2v2) =

∂

∂z

(
h2
(
K + 3Oh

∂v

∂z

))
.

(1)

The (full nonlinear) curvature term is given
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by

K ≡ 1

h(1 + h2z)
1/2

+
hzz

(1 + h2z)
3/2
, (2)

where the subscript denotes differentiation

with respect to z and the dimensionless

Ohnesorge number is

Oh =
µ√
ργR

, (3)

for viscosity µ, density ρ and surface tension

γ.

The jet velocity is non-dimensionalised

with respect to the nozzle radius R and

Rayleigh capillary time
√
ρR3/γ so that the

dimensionless velocity is defined in terms of

the Weber number

We =
ρU2R

γ
, (4)

for mean jet velocity U . That is, the mean

initial dimensionless velocity at the nozzle

exit is given by

v(0, 0) = v0 =
√
We. (5)

The Reynolds’ number is then given by

Re =

√
We

Oh
. (6)

Performing a linear stability analysis on

Eqs. 1 yields the dispersion relation

α2 + 3Ohk2α− k2

2
(1− k2) = 0 (7)

for dimensionless growth rate α and

wavenumber k. The maximum growth rate

is given by

α∗ = (2
√

2 + 6Oh)−1. (8)

Thus, in the limit of small Ohnesorge number

α∗ ≈ 1/3, and corresponds to wavenumber

k∗ ≈ 0.7 or equivalently wavelength λ∗ ≈ 9,

as shown in Ref.23.

The governing equations (1) are solved us-

ing a semi-implicit numerical scheme on a

Eulerian grid for a range of boundary con-

ditions chosen to replicate different driving

methods, as discussed in the next section.

Further details of the numerical method are

given in Ref.23. We then compare our results

to Rayleigh’s dispersion relation (Eq. 7).

B. Driving Profiles

In the frame-work of our 1D model, the

details of the nozzle geometry are neglected

and we consider dynamics outside the noz-

zle. In order to drive an instability, we can

impose two different driving profiles: either a

perturbation of the cross-sectional area at the

nozzle exit, or a perturbation of the velocity

profile at the nozzle exit.

Perturbations to the cross-sectional area

mimic thermal fluctuations in the nozzle1,

and a similar approach has been taken by

van Hoeve et al.7. In our model, the cross-

sectional area is perturbed at the nozzle exit

(z = 0) via

h2(0, t) = (1 + ε sin(2πft)), (9)

to induce a free-surface perturbation. Here ε

is the driving amplitude and f is the driving
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frequency. In this case, the velocity profile

is constant (unperturbed) at the nozzle exit,

such that

v(0, t) = v0 (10)

where v0 is given by Eq. 5.

For small amplitudes (ε ≤ 0.01), a (si-

nusoidal) Rayleigh instability wave is propa-

gated downstream from the nozzle exit, pro-

vided that the Weber number is sufficiently

large17. The jetting frequency is defined as

f =

√
We

λ
, (11)

for dimensionless wavelength λ. By choosing

λ = λ∗ ≈ 9, the fastest growing disturbance

dominates the flow, in the limit of small am-

plitude disturbances and low viscosity.

On the other hand, perturbations in the

velocity profile mimic jets driven by a pres-

sure modulation. In our model the velocity

profile is perturbed at the nozzle exit via

v(0, t) = v0(1 + ε sin(2πft)), (12)

where v0 is given by Eq. 5 and the jet radius

fixed at

h(0, t) = 1. (13)

Perturbations of the velocity profile do not

necessarily translate to a sinusoidal variation

in the free-surface height and so the insta-

bility is not necessarily related to a typical

Rayleigh wave. Furthermore, industrial CIJ

printers also typically operate at large mod-

ulation amplitudes (ε > 0.01) meaning that

non-linear interactions are important.

C. Break-up Criterion

We define a break-up criterion to be when

h becomes less than a cut-off radius hc, which

we typically set at 1% of the nozzle radius.

When h = hc, the fluid ahead of the break

point is separated from the remaining jet and

evolves to form a drop. However, since the

slender-jet approximation ceases to be valid,

the shape of the drop is not well described

and so separated drops are removed from the

simulation. The distance from the nozzle exit

to the point of break-up is defined to be the

the break-up length, L.

III. RESULTS

In this section, we illustrate the jetting

and break-up behaviour of a velocity-driven

continuous jet (i.e. Eq.12). Equivalent

predictions for an instability induced by a

surface-perturbation (i.e. Eq.9) are deferred

to the discussion. Model parameters are set

to We = 338, Oh = 0.122, λ = 9.

Fig.2 shows the dimensionless break-up

length L achieved in a velocity-driven jet for

a range of amplitudes ε. Since the amplitude

of a linear instability increases exponentially
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FIG. 2. Dimensionless break-up length L of a

velocity-driven jet (Eq.12) for a range of modula-

tion amplitudes ε. Inverted break-up behaviour

is indicated in green. The model parameters are

We = 338, Oh = 0.122 and λ = 9.

with downstream distance, the break-up

length decreases logarithmically with driving

amplitude for small values. In particular, for

sufficiently small amplitudes, the model re-

sults are in quantitative agreement with the

linear theory of Garcia et al.24, which de-

rives a simple transfer function using disper-

sion relation (Eq.7) to predict the break-up

length of a pressure-modulated capillary jet.

However, once the driving amplitude exceeds

ε = 0.015, we observe a deviation from this

logarithmic decay, indicating that non-linear

interactions contribute to the jetting dynam-

ics.

Fig.3 shows the free-surface profiles pre-

dicted by the 1D model for amplitudes ε =

0.05, 0.1, 0.15. As predicted by the theory of

Pimbley & Lee18, the position of the first

pinch-off event, within a single jet wave-

length, is very much dependent on the driving

amplitude.

For ε = 0.05, rather than a sinusoidal in-

stability wave, we observe the development

of non-linear bulges on the free surface that

eventually form main droplets. The connect-

ing filament thins, and the break position

is located on the front side of the connect-

ing filament, so that pinching occurs down-

stream of the main drop. Increasing the

amplitude to ε = 0.1 causes the bulging

to become more pronounced and, with suffi-

ciently large non-linear interactions, inverted

break-up is achieved. A similar transition

from downstream to upstream break-up has

been observed in large-scale CIJ experiments

and industrial CIJ systems6. However, for

ε = 0.15 the break-up behaviour predicted

by the one-dimensional model reverts back

to downstream pinching, despite larger non-

linear interactions, suggesting that a stabil-

ising mechanism is introduced at very large

amplitudes.

Evidently, there exists a critical window

in the modulation amplitude that generates

the desired break-up behaviour. In this case,

we find that the optimum operation win-

dow for CIJ printing is restricted to 0.08 ≤

ε ≤ 0.12. This operation window is high-

lighted in Fig.2 where break-up length is

plotted against modulation amplitude; the
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FIG. 3. Velocity-driven free-surface profiles predicted by 1D model with driving amplitudes: (a)

ε = 0.05; (b) ε = 0.1; (c) ε = 0.15. The model parameters are We = 338, Oh = 0.122 and λ = 9.

region of inverted break-up is indicated by

the green ‘x’ data points, whereas red ‘+’

data points correspond to downstream pinch-

ing. In the region of inversion, the break-

up length increases with driving amplitude, a

phenomenon also observed in the data gener-

ated by industrial jetting systems25,26. How-

ever, when the break-up behaviour reverts

back to the downstream position, the break-

up length again decreases with amplitude.

Moreover, this window of preferable

break-up is sensitive to a number of param-

eters, including Ohnesorge number, Weber

number and wavelength23. In particular, in-

creasing the Ohnesorge number shifts the in-

verted regime to a higher modulation range.

Since larger Ohnesorge numbers are stabilis-

ing, it is more difficult to drive the jet forward

and therefore larger driving amplitudes are

required to induce the non-linear interactions

required for the break-up to become inverted.

For sufficiently large Ohnesorge numbers, in-

verted break-up is not achieved. In contrast,

increasing the Weber number makes it eas-

ier to drive the jet forward and so the in-

verted regime occurs at lower driving ampli-

tudes. For sufficiently small Weber numbers,

inverted break-up is not achieved. Further-

more, in agreement with the theory by Pim-

bley & Lee18, the inverted break-up regime

also depends on the wavelength of the initial

disturbance and is shifted to a larger range

of amplitudes by decreasing the wavelength.
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(b) Velocity-driven jet

FIG. 4. Free-surface profiles predicted by 1D model for driving methods: (a) perturbing the free

surface (Eq.9) and, (b) perturbing the velocity (Eq.12) at the nozzle exit. The model parameters

are We = 81, Oh = 0.122, λ = 9 and ε = 0.01.

IV. DISCUSSION

A. Linear (ε ≤ 0.01) behaviour

In this section, we compare the results

of our 1D jetting model with Rayleigh’s lin-

ear stability theory (Eq.7) for driving meth-

ods given by Eqs.9 and 12, respectively, with

small driving amplitudes. Model parameters

are chosen to be We = 81, Oh = 0.122, λ = 9

and ε = 0.01.

Fig.4 shows that the free-surface profiles

predicted for each driving method are al-

most identical. In this case, a small per-

turbation in the driving velocity profile in-

duces a sinusoidal-like variation in the jet ra-

dius (Fig.4(b)), producing a profile similar to

the free-surface-driven jet shown in Fig.4(a);

pinching occurs downstream of the connect-

ing filament for both driving methods. Simi-

lar downstream break-up behaviour has been

observed experimentally and compared to a

one-dimensional model by van Hoeve et al.7.

The main difference between the two driv-

ing methods is that driving the velocity pro-

file generates a significantly shorter jet com-

pared to driving the free-surface at the noz-

zle exit. It has been shown that the break-up

length L of the fastest growing mode is given

by11

L = Aα∗
√
We, (14)

where α∗ is the growth rate of the fastest

mode (Eq. 8). The prefactor A is con-

firmed to depend on the initial disturbance,

as demonstrated here, and is usually deter-

mined experimentally. (Note that the model

results have been shown to be in agreement

with Eq. 14 for increasing Weber number in

other work23.)

In this case, we find that the break-up

length of the velocity-driven jet is half that
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FIG. 5. Free-surface height and velocity pro-

files near to the nozzle exit for (a) a free-surface

driven jet (Eq.9) and (b) a velocity-driven jet

(Eq.12). Driving the velocity profile results in

a larger surface disturbance and consequently a

shorter break-up length. The model parameters

are We = 81, Oh = 0.122, λ = 9 and ε = 0.01.

of the surface-driven jet (Fig.4). Thus, the

prefactor A in Eq. 14 differs by a factor

∼ 2 depending on the driving mechanisms.

In fact, the predicted break-up length of the

velocity-driven jet is equal to that obtained

with a cross-sectional area perturbation of

amplitude ε ∼ 0.15.

From linear stability analysis of the fastest

growing mode, the prefactor A is determined

by

A = ln

(
h̄

h′

)
, (15)

where h̄ = 1 is the mean jet radius, and h′ is

the amplitude of the disturbance wave. Fur-

thermore, for a velocity perturbation of am-

plitude v′, it is found that the amplitude of

the resulting free-surface disturbance is given

by

|h′| = π

α∗λ∗
v′. (16)

(For full details see Ref.23.)

In this case, driving the velocity at z =

0 with amplitude ε = 0.01 yields a velocity

perturbation of the size v′ = ε
√
We = 0.09.

Thus, by Eq.16 it is expected to induce a free-

surface disturbance of size h′ ≈ 0.1 (for Oh =

0.122 and λ∗ ≈ 9). This is equivalent to a

cross-sectional-area disturbance of size h′2 ≈

0.13. On the other hand, driving the cross-

sectional area with amplitude ε = 0.01 yields

a smaller disturbance of h′ ≈ 0.005 (since

h′ =
√

1 + ε − 1 from Eq. 9). Consequently

by Eq.15, the prefactor A and the resulting

break-up length L differ for the two driving

mechanisms by approximately a factor of 2.

To test this theory, Fig. 5 contrasts the

free-surface height and velocity profiles found

near to the nozzle exit (i.e. within the first

three wavelengths of the disturbance wave)

for each driving method with ε = 0.01. We

find that a velocity perturbation v′ = ε
√
We
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induces a smaller free-surface disturbance

than predicted by Eq.16 in the vicinity of the

nozzle. However, this disturbance increases

rapidly with distance from the nozzle, result-

ing in the shorter break-up length we find.

Nevertheless, the variation in break-up

length L with wavelength λ is the same for

both driving methods and can be predicted

from the growth rates obtained from the

Rayleigh dispersion relation (Eq.7), as shown

in Fig. 6.

For both driving methods, we find that

the shortest break-up length is generated by

the most unstable wavelength λ∗ ≈ 9 and

that longer jets can be generated by impos-

ing a different frequency due to the decreased

growth rate of the disturbance wave. We ob-

serve a small discrepancy from the disper-

sion relation when driving the velocity com-

ponent, since an exact sinusoidal height pro-

file is not achieved. However, it is clear that

the jet stability is dominated by linear dy-

namics in this parameter range for both driv-

ing methods. We now consider the effect of

increasing the perturbation amplitude.

B. Non-linear (ε > 0.01) behaviour

As shown earlier (Fig.3), large-amplitude

velocity perturbations can significantly alter

the break-up profile, as well as the break-up

length. In particular, Fig. 7 compares the
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FIG. 6. Break-up length L predicted by free-

surface (9) and velocity (12) driving for a range

of wavelengths λ compared to the inverse of

Rayleigh’s dispersion relation (7). The model

parameters are We = 81, Oh = 0.122 and

ε = 0.01.

free-surface profile predicted for each of the

two driving methods Eq.9 and Eq.12 with ε =

0.1. Although applying a large perturbation

to the cross-sectional area to drive break-up

(Eq.9) demonstrates the same downstream

pinching we observed in the previous section,

the pinch position is inverted to upstream

when break-up is driven by modulations of

the velocity profile.

In order to highlight this non-linear be-

haviour, Fig.8 shows how the predicted

break-up length of a velocity-driven jet with

ε = 0.05 diverges from the inverse of

Rayleigh’s dispersion relation (Eq.7); break-

up length increases with wavelength, rather

than obeying the linear theory as seen for

smaller driving amplitudes (Fig.6). More-
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FIG. 7. Free-surface profile predicted by the one-dimensional model for driving methods: (a)

modulating the cross-sectional area at the nozzle exit given by Eq.9; (b) modulating the driving

velocity as given by Eq.12. The model parameters are We = 338, Oh = 0.122, λ = 9 and ε = 0.1.
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FIG. 8. Break-up length L of a velocity-driven

(Eq.12) for a range of wavelengths λ compared

to the inverse of Rayleigh’s dispersion relation

(Eq.7). The model parameters are We = 338,

Oh = 0.122 and ε = 0.05.

FIG. 9. Schematic figure showing how the veloc-

ity profile evolves into a sawtooth wave causing

isolated bulges to form on the uniform thread.

over, the fastest growing disturbance wave is

found to have wavelengths smaller than the

classic Rayleigh wave (λ∗ ≈ 7, rather than

λ∗ ≈ 9). This non-linear effect has also been

observed in experiments27.

It is also worth noting that if we apply

enough forcing this non-linear jet does not

appear to stabilise at λ ≈ 2π. Furthermore,

the model predicts a similar deviation from

the linear theory for larger amplitudes ε = 0.1

and 0.15 (not shown). Finally, the stabil-

ity of a surface-driven jet also deviates from

Rayleigh’s theory. However in contrast to

the the velocity-driven instability the fastest

growing disturbance wave shifts to slightly

larger wavelength λ∗ ≈ 10 (Fig.8).
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At this large amplitude, the surface varia-

tion produced by modulating the driving ve-

locity is not similar to a sinusoidal wave; the

jet velocity is distorted due to the non-linear

advection term appearing in conservation on

momentum: (
v − 6Oh

h

∂h

∂z

)
∂v

∂z
. (17)

Due to this non-linearity, the peak of the ve-

locity profile travels faster than the trough, so

that the pulse becomes accumulatively more

like a sawtooth wave and generates a ‘shock’

in the velocity profile, as sketched in Fig.9.

Consequently, fluid upstream of the shock

moves faster than the fluid downstream caus-

ing steep bulges to form on the uniform

thread. This behaviour is evident is the free-

surface predicted by the 1D model shown in

Fig.7(b). Due to this distortion, other fre-

quency components are introduced, which we

investigate later via a Fourier analysis, and

it is possible to invert the pinching from the

downstream position to upstream for suffi-

ciently strong non-linear interactions. How-

ever, the generation of this preferable in-

verted break-up behaviour in velocity-driven

jets is restricted to a narrow operating win-

dow, as discussed earlier (Fig.2).

C. Full axisymmetric simulations

Full axisymmetric simulations were per-

formed using the method of Harlen et al28

to validate the 1D model. The code uses a

Eulerian-Lagrangian finite-element method29

to capture the evolving free-surface shape

and has previously been used to study jet

break-up in drop-on-demand printing for

both Newtonian30 and viscoelastic fluids28

and CIJ printing of Newtonian fluids6.

The software uses a moving-mesh, finite-

element method to solve the Navier-Stokes

equation

ρ

(
∂u

∂t
+ u(∇ · u)

)
= −∇p+∇ · σ (18)

for axisymmetric jet velocity u = (ur, 0, uz),

pressure p and stress tensor σ along with the

incompressibility condition

∇ · u = 0. (19)

By allowing the finite elements to deform

with the fluid velocity, the Newtonian con-

FIG. 10. Initial grid used in CIJ simulations for

nozzle aspect ratio 1.The simplified print head

geometry is assumed to be axisymmetric.
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FIG. 11. Free-surface profile predicted by the one-dimensional CIJ model compared to the full

axisymmetric simulation with nozzle aspect ratio Γ = 1 for (a) ε = 0.1 and (b) ε = 0.15. The

parameters are We = 338, Oh = 0.122, ε = 0.15 and λ = 9. The color bar indicates the cross-

sectional jet velocity in the axisymmetric case. The one-dimensional and full simulation results are

plotted with the same aspect ratio and length scale.

stitutive equation

σ = µ(K +KT ), (20)

is solved in the co-deforming frame for viscos-

ity µ and velocity gradient tensor Kij = ∂ui

∂xj
.

At the fluid-air interface the boundary con-

dition is defined to be

[σ · n̂]inkair = −γ
(

1

R1

+
1

R2

)
n̂, (21)

where n̂ is the unit vector normal to the

interface, γ is surface tension and R1, R2

are the principle radii of curvature. For

free-surface problems such as inkjet print-

ing, this method naturally captures the free-

surface shape. Further details of the numeri-

cal scheme can be found in Refs.28,29,31.

The shape of the simulated print head is

chosen to replicate the shape of nozzle used

in experiments6, which is similar to that of

a CIJ nozzle, while simplifying the interior

of the actual print head behind the nozzle

by assuming axisymmetry (real print heads

14



are typically non-axisymmetry). The initial

finite-element grid, with a nozzle aspect ratio

1, is shown in Fig. 10 and has previously been

described by Casterjon-Pita et al.6. For an

unmodulated jet with mean velocity U at the

nozzle outlet, the magnitude of the velocity

applied at the inlet is

u0 =
πR2U

Ain

, (22)

where R is the nozzle radius and Ain is the

surface area of the print head inlet surface.

To simulate a jet with modulation of fre-

quency f and amplitude ε, the inlet velocity

is prescribed in terms of time t as

unoz(t) = u0(1 + ε sin(2πft)). (23)

Again, while this is not expected to fully

represent the experimental flow throughout

the entire print head, it is designed to pro-

duce sufficiently similar flow conditions in the

vicinity of the nozzle. The possible presence

of higher harmonics in the jet actuation is ne-

glected and no method of coalescence is im-

plemented in the simulations.

Fig. 11 compares the free-surface profiles

predicted by the 1D model to that predicted

by the full axisymmetric simulation. Typical

CIJ parameters are chosen to be Oh = 0.122

and We = 338; the frequency is determined

by the Rayleigh wavelength λ∗ ≈ 9 and the

amplitude of the modulation is set to ε = 0.1

and ε = 0.15, respectively. The nozzle aspect

ratio of the full simulation, defined by

Γ =
Lnoz

R
, (24)

for nozzle length Lnoz, is set to Γ = 1.

The colour scale red-to-pink, shown for

the full simulation, indicates minimum-to-

maximum jet velocity. The Poiseuille flow

generated by the simplified nozzle geome-

try in the full simulation has a stabilising

influence on the jet, increasing the break-

up length compared to the one-dimensional

model, and also elongates the shape of the

main drops. However, qualitatively the

break-up behaviour of the two models are in

agreement for both driving amplitudes; for

ε = 0.1 we observe the preferable inverted

break-up, whereas for ε = 0.15, pinching re-

verts to the downstream position.

D. A secondary instability wave

As first suggested by Pimbley & Lee18,

large modulations in the driving velocity in-

duce non-linear interactions that generate a

secondary instability wave. Indeed, if a com-

ponent with a shorter wavelength has the

chance to grow sufficiently with respect to

the fundamental, it will produce an addi-

tional growth of surface perturbations across

the connecting filament and cause inverted

pinching, as suggested in Ref.21.

To understand this secondary instability

wave, we decompose the free-surface profile
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FIG. 12. Magnitude of Fourier coefficients ci at

z = 50 plotted as a function modulation ampli-

tude ε.

into its Fourier components. In this way, the

jet is divided into a series of simpler func-

tions and we are able to identify the impor-

tance of the second harmonic, relative to the

fundamental mode, at amplitudes that give

inverted break-up.

The time-dependent height at z = 50,

where the pinch location is established, is ap-

proximated by a Fourier series of the form

h50(t) = a0 +
5∑

i=1

ai cos(2πift)+bi sin(2πift),

(25)

where f is the Rayleigh frequency. The mag-

nitude of the Fourier coefficients

ci =
√
a2i + b2i , i = 1, . . . 5,

enables the magnitude of the secondary har-

monic to be compared over a range of ampli-

tudes.

In particular, Fig.12 suggests that the first

four Fourier components are the most im-

portant, as suggested by the second-order,

non-linear analysis given by Chaudhary et

al.19. The fundamental solution is clearly the

largest and increases as jet modulation is in-

creased. The second harmonic is the second-

largest component, although the relative size

depends on the modulation amplitude. The

third, fifth and sixth harmonics remain small,

whereas the fourth harmonic although small,

grows with increasing amplitude.

In the region of inverted break-up (0.08 ≤

ε ≤ 0.12), the magnitude of the second har-

monic is shown to be significantly larger than

in the regions of downstream pinching (Fig.

12). Thus, the growth of a secondary insta-

bility wave causes a transition at ε = 0.08

from downstream pinching to inverted break-

up, in agreement with the theory of Pimbley

& Lee18. The transition at ε = 0.12 from in-

verted break-up back to downstream pinch-

ing can be explained as follows.

At this large amplitude the filament region

becomes ‘frustrated’ - a term used by Pimb-

ley Lee18 to describe the reduction in growth

rate at higher amplitudes. This behaviour is

due to the growth of higher-order harmon-

ics that are stable to the Rayleigh instability,

since kihf > 1, where ki is the wave number

of the ith-order harmonic and hf is the fila-

ment radius. In particular, Fig.12 shows how

the magnitude of the fourth-order harmonic

(k4 = 2.8) increases with modulation ampli-
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FIG. 13. Free-surface profile predicted by 1D model for (a) original driving profile (Eq.12) with

ε = 0.04, and (b) second harmonic added to the driving profile (26) with ε = 0.04 and θ = π/4.

The model parameters are We = 338, Oh = 0.122, λ∗ = 9.

tude, becoming relatively large for ε > 0.12.

Moreover, for the case ε = 0.15 the filament

radius is hf ≈ 0.5 (Fig.3). Thus, the sta-

bility criterion k4hf > 1 is satisfied, causing

break-up to occur downstream of the filament

region.

The addition of harmonics to the initial

velocity profile can have a significant effect

on the break-up behaviour of a continuous

inkjet. In particular, Chaudhary et al19 have

shown theoretically that the formation of

satellites can be controlled by forcing the jet

with a suitable harmonic added to the fun-

damental.

As an example, we examine the effect of

adding a secondary harmonic to the driving

velocity profile such that

v(0, t) = v0(1 + ε sin(2πft)

+ ε sin(4πft+ θ)).
(26)

The phase of this second harmonic is given

by θ and its amplitude is equal to that of

the fundamental ε, as in the work of Chaud-

hary et al.19. We observe a distinct change

from the usual downstream pinching, gener-

ated by the fundamental driving profile, to

inverted break-up behaviour when forcing the

jet in this way (Eq.26), as shown in Fig.13 for

driving amplitude ε = 0.04 and phase shift

θ = π/4.

This phase shift is crucial to achieving this

transition23, although the reason remains un-

clear. We choose θ = π/4 to coincide with the

phase angle of the second harmonic i.e.

θi = tan−1
(
bi
ai

)
for i = 2 (27)

that is found during inversion relative to the

fundamental solution (see Fig.14).
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FIG. 14. Phase angle θi = tan−1(bi/ai) of the

second harmonic component i = 2 calculated at

z = 50, plotted as a function modulation ampli-

tude ε.

V. CONCLUSION

We have developed a one-dimensional

model to explore the break-up behaviour of

a liquid jet. Driving the jet via a velocity

perturbation, rather than a surface pertur-

bation, has important consequences for the

evolution of the free surface shape; for suf-

ficiently larger amplitudes non-linear inter-

actions can cause pinching to be inverted

from the downstream to the inverted posi-

tion. Furthermore, in this non-linear regime,

we find that the the most unstable jets are

generated at frequencies larger than the clas-

sic Rayleigh mode.

We find that preferable upstream break-

up behaviour is restricted to a narrow op-

eration window. Due to a significant re-

duction in computation time, compared to

full axisymmetric simulations, we have been

able to extend the parameter space consid-

ered in previous studies, and show that this

narrow operation window is sensitive to fre-

quency, driving speed and viscosity. Finally,

a Fourier analysis has demonstrated that the

growth of a second harmonic is responsible

for inverted break-up, so that addition of a

secondary component to the driving signal

can artificially induce inverted break-up at

smaller driving amplitudes.
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