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a b s t r a c t 

Characterising brain states during tasks is common practice for many neuroscientific experiments using electrophysiological modalities such as electroencephalog- 

raphy (EEG) and magnetoencephalography (MEG). Brain states are often described in terms of oscillatory power and correlated brain activity, i.e. functional con- 

nectivity. It is, however, not unusual to observe weak task induced functional connectivity alterations in the presence of strong task induced power modulations 

using classical time-frequency representation of the data. Here, we propose that non-reversibility, or the temporal asymmetry in functional interactions, may be more 

sensitive to characterise task induced brain states than functional connectivity. As a second step, we explore causal mechanisms of non-reversibility in MEG data 

using whole brain computational models. We include working memory, motor, language tasks and resting-state data from participants of the Human Connectome 

Project (HCP). Non-reversibility is derived from the lagged amplitude envelope correlation (LAEC), and is based on asymmetry of the forward and reversed cross- 

correlations of the amplitude envelopes. Using random forests, we find that non-reversibility outperforms functional connectivity in the identification of task induced 

brain states. Non-reversibility shows especially better sensitivity to capture bottom-up gamma induced brain states across all tasks, but also alpha band associated 

brain states. Using whole brain computational models we find that asymmetry in the effective connectivity and axonal conduction delays play a major role in shaping 

non-reversibility across the brain. Our work paves the way for better sensitivity in characterising brain states during both bottom-up as well as top-down modulation 

in future neuroscientific experiments. 
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. Introduction 

Characterisation and identification of task induced brain states is

 common and widely applied practice in the field of functional neu-

oimaging as complex cognition from the human brain presumably

merges from the orchestration and evolution of a repertoire of brain

tates. Task induced brain states can loosely be defined as any tran-

ient macroscopic configuration of the brain characterised by a descrip-

ive statistic of choice. Brain states estimated from functional imag-

ng modalities such as functional MRI (fMRI), electroencephalography

EEG), and magnetoencephalography (MEG) are traditionally described

n terms of correlated brain activity, i.e. pairwise functional connectivity
Abbreviations: MEG, magnetoencephalography; AEC, amplitude envelope correla

onnectivity. 
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 Friston, 1994 ). Recent years have seen a shift towards characterisation

f brain states using descriptors that capture higher order statistics of

he data. Examples are higher-order functional connectivity, i.e. connec-

ivity between more than two regions ( Jo et al., 2021; Novelli and Razi,

022 ), and time-varying connectivity, i.e. pairwise interactions that cap-

ure ongoing fluctuations in connectivity ( Hutchison et al., 2013; O’Neill

t al., 2018 ). 

Even though there is theory on the neurobiological underpinning of

airwise functional connectivity through the so-called communication

hrough coherence hypothesis ( Fries, 2015 ), functional connectivity is

ot rooted in a physical theory that is descriptive of the dynamics of

iving systems. One of the hallmarks of any living system is that it op-
tion; LAEC, lagged amplitude envelope correlation; GEC, generative effective 
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rates far away from thermodynamic equilibrium ( Battle et al., 2016 ).

n thermodynamic equilibrium, there is no entropy production as the

ystem has reached its state with maximum entropy. Whenever a sys-

em in equilibrium visits a temporal sequence of states, the probability

f this sequence of states is equally likely to the probability of visiting

he reverse of this sequence of states. An operating point far away from

hermodynamic equilibrium is extremely relevant for the brain. In case

his non-equilibrium principle is violated, the brain’s properties would

ecome stationary in time ( Battle et al., 2016; Lynn et al., 2021; Perl

t al., 2021 ). Non-equilibrium dynamics can be captured by assessing

he asymmetry in the temporal sequences of states, i.e. non-reversibility,

iving rise to the notion of the “arrow of time ” and production of en-

ropy. The concept of non-equilibrium dynamics is not only interesting

or its own sake, but has potential explanatory power to relate to various

ther dynamical properties of the brain, such as time-varying connectiv-

ty and turbulence, and may form a basis as to why the brain is function-

ng at different hierarchical levels ( Deco and Kringelbach, 2020; Deco

t al., 2021b; Escrichs et al., 2022 ). 

Recent fMRI work has demonstrated that the concept of non-

eversibility is superior to conventional functional connectivity in the

dentification of brain states ( Deco et al., 2022a ). It was demonstrated

hat whenever the brain is more engaged in processing information from

he environment during several cognitive tasks, this leads to an increase

n non-reversibility and entropy production compared to the resting-

tate ( Deco et al., 2022b ). A whole-brain computational model was fur-

her used to gain insight into mechanisms underlying non-reversibility

nd entropy production, which showed that an important driving factor

or non-zero non-reversibility is asymmetry in the effective connectivity

hat neuronal populations perceive from one another ( Kringelbach et al.,

023 ). Another study using electrocorticography (ECoG) recordings

emonstrated that while functional connectivity showed striking re-

emblance between several conscious states (e.g. during the awake,

etamine and recovery phase in monkeys), the signature of different

onscious states could be better differentiated using measures of non-

quilibrium dynamics ( Deco et al., 2022a ). 

In order to gain more understanding of the relevance of the “arrow

f time ” in human data, the next step is to analyse non-reversibility

n signals that are characterised by non-stationarity. Therefore, in our

urrent work, we translate concepts of non-equilibrium dynamics to

EG data. We assess whether non-reversibility outperforms conven-

ional functional connectivity in identification of task condition con-

rasted to resting-state. In this context, we study a sensorimotor task, a

orking memory task and a language task. Since there is evidence that

mplitude coupling provides a reliable estimate for functional connec-

ivity ( Colclough et al., 2016 ), we restrict our functional connectivity

nalysis to amplitude coupling, i.e. the amplitude envelope correlation

AEC), ( Brookes et al., 2011a; Hipp et al., 2012 ). Non-reversibility in

EG data is assessed using the lagged version of the amplitude enve-

ope correlation (LAEC) ( Basti et al., 2019 ). As a second step, we analyse

sing surrogate data whether the observed non-reversibility in empirical

ata is a genuine sign of temporal asymmetry. We test our empirical data

gainst surrogate data that possess a symmetric cross-covariance and

ence corresponds to the null-hypothesis of reversibility. Lastly, we in-

estigate the contributing factors for the emergence of non-reversibility

n MEG data using neural mass modelling, with two potential candi-

ates, asymmetry in the effective connectivity and heterogenous axonal

onduction delays. 

. Methods 

.1. Diffusion MRI: estimation of structural networks 

The pipeline of the structural network construction has been de-

cribed in Tewarie et al. (2019a, 2022) . We applied the same method

ith a slight adjustment mentioned below. We included diffusion MRI

ata from ten healthy controls (who also underwent MEG recordings)
2 
f the Human Connectome project ( Larson-Prior et al., 2013 ). Diffu-

ion MRI data were obtained from the Human Connectome Project

 Van Essen et al., 2013 ). Full acquisition protocol details are described

n Sotiropoulos et al. (2013) . Briefly, a monopolar Stejskal-Tanner echo

lanar imaging sequence was used in a 3T Siemens Connectom Skyra to

cquire data at (1.25 mm) 3 isotropic resolution. Diffusion-sensitization

as applied with three b-values (b = 1000, 2000 and 3000 s/mm2)

nd along 90 directions per b-shell. Two repeats were obtained with

lip-reversed phase encoding. The minimally processed data were used

 Glasser et al., 2013 ), where susceptibility-induced distortions, eddy

urrents and subject motion were all corrected simultaneously using a

on-parametric framework ( Andersson and Sotiropoulos, 2016 ) based

n Gaussian processes ( Andersson and Sotiropoulos, 2015 ). Fibre ori-

ntations were estimated using a parametric spherical deconvolution

odel and were fed into probabilistic tractography in FSL to estimate

tructural networks ( Behrens et al., 2007; Hernandez-Fernandez et al.,

019 ). In contrast to previous work ( Tewarie et al., 2019a; 2022 ),

treamlines were seeded from 60,000 standard-space vertices in the

hite matter (5000 streamlines per seed). Connectivity was quanti-

ed as the number of streamlines reaching each vertex normalised by

he total number of valid streamlines propagated. Using the automated

natomical labelling (AAL) parcellation ( Tzourio-Mazoyer et al., 2002 ),

his connectivity was reduced to a 78 × 78 parcellated connectome, by

omputing for each pair of regions the mean structural connectivity be-

ween all pairs of vertices that they were comprised of. 

.2. MEG: Data acquistion and pre-processing 

Resting-state and task-based MEG data were obtained from the Hu-

an Connectome Project ( Van Essen et al., 2013 ) as part of the HCP

EG2 release. Briefly, data were collected on a whole-head Magnes

600 scanner (4D Neuroimaging, San Diego, CA, USA) from 89 subjects

 Larson-Prior et al., 2013; Van Essen et al., 2013 ); 95 subjects were in-

luded in the release, but resting-state recordings that passed the quality

ontrol checks (which included tests for excessive SQUID jumps, sensi-

le power spectra and correlations between sensors, and for sufficiently

any well-behaved recording channels) were not available from six.

ll subjects were young (22–35 years of age) and healthy. Resting state

easurements were taken in three consecutive sessions for each subject

ith little or no break in between, for 6 min each. The data have been

rovided pre-processed ( Larson-Prior et al., 2013 ), after passing through

 pipeline to remove any artefactual segments of time from the record-

ngs, identify any recording channels that are faulty, and to regress out

rtefacts which appear as independent components in an ICA decompo-

ition with clear artefactual temporal signatures (such as eye-blinks or

ardiac interference). Task based data was collected in the same way

s resting-state data. We included a motor task (54 subjects), language

ask (77 subjects) and working memory task (76 subjects). 

.3. MEG: Task data 

A detailed description of the tasks can be found in Larson-

rior et al. (2013) . 

1. Motor task. In the motor task participants are instructed to make

imple hand or foot movements after a visual cue. This task is divided

nto task and rest blocks, with more task blocks than rest blocks. During

he task block a participant is instructed to either make a movement of

he right/left foot or hand. This task activates regions in the sensori-

otor network in the alpha (mu), beta and gamma band ( Crone et al.,

998; Pfurtscheller and Da Silva, 1999 ). 

2. Language task. In this task participants listen to auditory narra-

ives (30 s duration) or matched-duration simple arithmetic problems.

his is followed by a 2-alternative forced choice question to which par-

icipants respond by a right hand button press. Previous MEG stud-

es show that the language network and regions adjacent to this lan-

uage network area activate during this task. Renvall et al. (2012) ,
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ulvermüller (2010) . Speech modulation is especially encoded in the

ower frequency bands (theta and alpha band) ( Ding and Simon, 2013 ).

3. Working memory task . A N-back task was performed during the

ecording. Tools or faces are presented to participants in an alternat-

ng 0-back or 2-back fashion. Participants were instructed to press on

 button with their right index or right middle finger for matched or

on-matched responses respectively. This task tests the ability of per-

eption and long term memory ( Baddeley, 2003 ). Electrophysiological

esponses are expected in the theta and alpha band and in prefrontal

nd parietal cortical areas ( Brookes et al., 2011b; Collette et al., 2006;

ensen et al., 2002; Klimesch, 2006 ). 

.4. MEG: Source localisation 

A description of the source localisation of this dataset is provided

n Tewarie et al. (2019a) . An atlas-based beamforming approach was

dopted to project MEG sensor level data into source-space ( Hillebrand

t al., 2012 ). The cortex was parcellated into 78 cortical regions accord-

ng to the AAL atlas (same as for structural network). This was done by

egistering each subject’s anatomical MR image to an MNI template and

abelling all cortical voxels according to the 78 cortical regions of inter-

st ( Gong et al., 2009 ). Subsequently, an inverse registration to anatom-

cal subject space was performed and the centroid voxel for every region

f interest was extracted to serve as representative voxel for every re-

ion ( Hillebrand et al., 2016 ). Pre-computed single-shell source models

re provided by the HCP at multiple resolutions ( Nolte, 2003 ), regis-

ered into the standard co-ordinate space of the Montreal Neuroimag-

ng Institute. Data were beamformed with depth normalisation onto

entroid voxels using normalised lead fields and estimates of the data

ovariance. Covariance was computed for broadband data (1–45 Hz)

ith a time window spanning the whole experiment ( Brookes et al.,

008 ). Regularisation was applied to the data covariance matrix using

he Tikhonov method with a regularisation parameter equal to 5 % of

he maximum eigenvalue of the unregularised covariance matrix. Dipole

rientations were determined using singular value decomposition to se-

ect the source orientation that maximises the output signal-to-noise ra-

io ( Sekihara et al., 2004 ). This complete process resulted in 78 electro-

hysiological timecourses, each representative of a separate AAL region.

.5. Functional connectivity and non-reversibility in MEG data 

Functional connectivity was estimated using the amplitude enve-

ope correlation metric (AEC) ( Brookes et al., 2011a; Hipp et al., 2012 ).

ource reconstructed data were frequency filtered into five frequency

ands: delta (1–4 Hz), theta (4–8 Hz), alpha (8–13 Hz), beta (13–30 Hz)

nd gamma (30–48 Hz). This was followed by pairwise orthogonalisa-

ion to reduce the effect of signal leakage ( Hipp et al., 2012 ). The am-

litude envelope 𝐴 ( 𝑡 ) for every timecourse was subsequently extracted

rom from these leakage-reduced frequency-filtered timecourses by cal-

ulating the absolute value of their analytical signals. The AEC was es-

imated by computing the Pearson correlation between pairwise am-

litude envelopes. The AEC was computed for a window spanning the

hole experiment and was estimated between all possible pairs of time-

ourses forming an (AEC) functional connectivity matrix. 𝐴𝐸𝐶 𝑖𝑗 and

𝐸𝐶 𝑗𝑖 values were averaged to obtain a symmetric functional connec-

ivity matrix. 

We capture non-reversibility (i.e. the arrow of time) through the de-

ree of asymmetry obtained by comparing pairwise time series of the

orward and the artificially generated reversed backward version of the

mplitude envelopes 𝐴 ( 𝑡 ) . Let us consider two amplitude envelopes from

wo separate brain regions 𝐴 𝑖 ( 𝑡 ) and 𝐴 𝑗 ( 𝑡 ) . By flipping 𝐴 𝑗 ( 𝑡 ) , denoted as

 

𝑟 
𝑗 
( 𝑡 ) = 𝐴 𝑗 (− 𝑡 ) , we obtain the reversed backward version 𝐴 𝑗 ( 𝑡 ) . Now we

an estimate the time-lagged cross-correlation of the forward and back-

ard evolution of the amplitude envelopes (LAEC) 

𝐴𝐸𝐶 𝑓𝑜𝑟𝑤𝑎𝑟𝑑,𝑖,𝑗 (Δ𝑡 ) = corr ( 𝐴 𝑖 ( 𝑡 ) , 𝐴 𝑗 ( 𝑡 + Δ𝑡 )) (1)
3 
𝐴𝐸𝐶 𝑟𝑒𝑣𝑒𝑟𝑠𝑎𝑙,𝑖,𝑗 (Δ𝑡 ) = corr ( 𝐴 

𝑟 
𝑖 
( 𝑡 ) , 𝐴 

𝑟 
𝑗 
( 𝑡 + Δ𝑡 )) . (2)

n order to work with positive values, we use the expression of mutual

nformation for Gaussian variables ( Baker, 1970 ) 

( 𝑋, 𝑌 ) = − 

1 
2 

log (1 − corr ( 𝑋, 𝑌 ) 2 ) (3)

o transform the expression for the LAEC into 

 𝑆 𝑓𝑜𝑟𝑤𝑎𝑟𝑑,𝑖,𝑗 (Δ𝑡 ) = − 

1 
2 

log (1 − 𝐿𝐴𝐸𝐶 𝑓𝑜𝑟𝑤𝑎𝑟𝑑,𝑖,𝑗 (Δ𝑡 ) 2 ) (4)

 𝑆 𝑟𝑒𝑣𝑒𝑟𝑠𝑎𝑙,𝑖,𝑗 (Δ𝑡 ) = − 

1 
2 

log (1 − 𝐿𝐴𝐸𝐶 𝑟𝑒𝑣𝑒𝑟𝑠𝑎𝑙,𝑖,𝑗 (Δ𝑡 ) 2 ) . (5)

e used the abbreviation FS, which stands for functional causal depen-

ency to keep our notation consistent with our recent fMRI work ( Deco

t al., 2022a; G-Guzmán et al., 2023 ). We computed the LAEC using a

indow spanning the whole experiment. However, note that for (rela-

ively) short windows amplitude envelope data are usually not Gaussian.

herefore, in that case, a Fisher transformation should be applied to the

orrelations values obtained from equations 1 and 2 before transform-

ng these values to mutual information (equations 4 and 5). The extent

f non-reversibility is obtained by capturing the asymmetry between

 𝑆 𝑓𝑜𝑟𝑤𝑎𝑟𝑑,𝑖,𝑗 (Δ𝑡 ) and 𝐹 𝑆 𝑟𝑒𝑣𝑒𝑟𝑠𝑎𝑙,𝑖,𝑗 (Δ𝑡 )) . This is expressed as the quadratic

istance between the forward and reversal time-shifted matrices 

(Δ𝑡 ) = ‖𝐹 𝑆 𝑓𝑜𝑟𝑤𝑎𝑟𝑑 (Δ𝑡 ) − 𝐹 𝑆 𝑟𝑒𝑣𝑒𝑟𝑠𝑎𝑙 (Δ𝑡 ) ‖2 . (6)

he notation ‖𝑃 ‖2 is defined as the mean value of the absolute squares

f the elements of the matrix P. Note that we can also obtain non-

eversibility for each brain region by evaluating Equation 6 for every

ow of the difference matrix separately. Lastly, Δ𝑡 that results in the

ighest 𝐼 is chosen for further analysis. 

.6. Insensitivity to field spread 

Due to residual mixing, the reconstructed MEG source signals are

nstantaneous linear mixtures of the true source signals. This phe-

omenon is known as field spread ( Schoffelen and Gross, 2009 ). To

void false positive connections, connectivity measures that are insen-

itive to field spread are desirable. A connectivity measure is insensi-

ive to field spread if the absence of a connection between two signals

mplies the absence of a connection between the observed (i.e. mixed)

ignals. We show that reversibility is insensitive to field spread. Thus,

on-reversibility between the observed signals cannot be explained by

eld spread and hence reflects non-reversibility of the true signals. 

Let 𝑋 𝑖 ( 𝑡 ) and 𝑋 𝑗 ( 𝑡 ) be the analytic signals from brain regions 𝑖 and 𝑗

nd suppose that they are reversible, that is, their covariance function 

𝑖,𝑗 (Δ𝑡 ) = 

⟨
𝑋 𝑖 ( 𝑡 ) 𝑋 𝑗 ( 𝑡 + Δ𝑡 )) 

⟩
, 

s symmetric: 𝛾𝑖,𝑗 (Δ𝑡 ) = 𝛾𝑖,𝑗 (−Δ𝑡 ) . In the above definition of the covari-

nce function, the brackets denote averaging over time. Let 

 = 

[ 
𝑎 𝑏 

𝑐 𝑑 

] 
e a matrix that models the mixing of two signals due to field spread.

ote that because field spread is instantaneous, the entries of the matrix

 are real-valued. The observed signals 𝑋 

′
𝑖 
( 𝑡 ) and 𝑋 

′
𝑗 
( 𝑡 ) are related to the

rue signals by 
 

𝑋 

′
𝑖 
( 𝑡 ) 

𝑋 

′( 𝑡 ) 

] 
= 

[ 
𝑎 𝑏 

𝑐 𝑑 

] [ 
𝑋 𝑖 ( 𝑡 ) 
𝑋 𝑗 ( 𝑡 ) 

] 
. 

Using the fact that 𝛾𝑗,𝑖 (Δ𝑡 ) = 𝛾𝑖,𝑗 (−Δ𝑡 ) , the covariance function be-

ween the observed signals can be written as 

′
𝑖,𝑗 
(Δ𝑡 ) = 𝑎𝑐𝛾𝑖,𝑖 (Δ𝑡 ) + 𝑏𝑑𝛾𝑗,𝑗 (Δ𝑡 ) + 𝑎𝑑𝛾𝑖,𝑗 (Δ𝑡 ) + 𝑏𝑐𝛾𝑖,𝑗 (−Δ𝑡 ) . 

ince the functions 𝛾𝑖,𝑖 and 𝛾𝑗,𝑗 are symmetric, it follows that the co-

ariance function between the observed signals is symmetric as well:
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𝑖,𝑗 
(Δ𝑡 ) = 𝛾 ′

𝑖,𝑗 
(−Δ𝑡 ) . This shows that if the true signals are reversible, the

bserved signals are reversible as well and it implies that observed non-

eversibility between two signals cannot be explained by signal leakage,

ut reflects non-reversibility between the true signals. 

The situation is a bit more complicated when working with ampli-

ude envelopes instead of the signals proper. In particular, reversibility

f the true amplitude envelopes does not necessarily imply reversibility

f the observed amplitude envelopes. However, a sufficient condition

or reversibility of the observed amplitude envelopes is that the multi-

ariate process 

 𝑋 𝑖 ⊗𝑋 𝑗 )( 𝑡 ) = 

⎡ ⎢ ⎢ ⎢ ⎢ ⎣ 
𝑋 𝑖 ( 𝑡 ) 𝑋 𝑖 ( 𝑡 ) ∗ 
𝑋 𝑖 ( 𝑡 ) 𝑋 𝑗 ( 𝑡 ) ∗ 
𝑋 𝑗 ( 𝑡 ) 𝑋 𝑖 ( 𝑡 ) ∗ 
𝑋 𝑗 ( 𝑡 ) 𝑋 𝑗 ( 𝑡 ) ∗ 

⎤ ⎥ ⎥ ⎥ ⎥ ⎦ 
s reversible. The first and fourth entries of ( 𝑋 𝑖 ⊗𝑋 𝑗 )( 𝑡 ) are the ampli-

ude envelopes of the 𝑖 th and 𝑗th brain region, respectively, and the sec-

nd and third entries are the “cross-amplitude envelope ” 𝑋 𝑖 ( 𝑡 ) 𝑋 𝑗 ( 𝑡 ) ∗ and

ts complex conjugate, respectively. Reversibility of the process 𝑋 𝑖 ⊗𝑋 𝑗 

eans that the covariance function between any pair of its entries is

ymmetric. Since the observed process is related to the true process via

 𝑋 

′
𝑖 
⊗𝑋 

′
𝑗 
)( 𝑡 ) = ( 𝐴 ⊗𝐴 )( 𝑋 𝑖 ⊗𝑋 𝑗 )( 𝑡 ) , 

here 𝐴 ⊗𝐴 denotes the Kronecker product of 𝐴 with itself, it follows

hat reversibility of 𝑋 𝑖 ⊗𝑋 𝑗 implies reversibility of 𝑋 

′
𝑖 
⊗𝑋 

′
𝑗 
. In particu-

ar, non-reversibility of the observed amplitude envelopes implies non-

eversibility of at least one pair of entries in 𝑋 𝑖 ⊗𝑋 𝑗 . 

.7. Machine learning classification and statistics 

We employed a random forest algorithm to classify task data from

esting-state data. We used the in-built implementation in MATLAB, the

o-called ’TreeBagger’ function, which is based on Breiman’s random

orests ( Breiman, 2001 ). Classification was performed for functional

onnectivity and non-reversibility separately. We used five features as

nput to the random forest classifier, which included mean AEC for ev-

ry frequency band or non-reversibility per frequency band. Input data

ere divided into a training (80%) and test set (20%). Based on the out-

f-bag error we set the number of trees to 100 for every classification

one classification for every of the three tasks). We report the area un-

er the curve (AUC) of the receiver operating characteristic curve of the

lassification obtained from the test set. 

Testing for significant difference between connectivity or non-

eversibility distributions was assessed using the Wilcoxon rank sum

est. Correction for multiple tests was performed using the false discov-

ry rate ( Benjamini and Hochberg, 1995 ). 

.8. Construction of null-data 

We construct surrogate data in order to test the null-hypothesis

f reversibility in MEG data. We follow the method described in

indriks et al. (2018) . Let us consider two time-series 𝑥 = [ 𝑥 1 , 𝑥 2 , … , 𝑥 𝑛 ]
nd 𝑦 = [ 𝑦 1 , 𝑦 2 , … , 𝑦 𝑛 ] , which are transformed into the Fourier domain

o 𝑋 and 𝑌 . We now adjust the Fourier coefficients by taking their real

arts and multiplying these by phases that are uniformly distributed in

he interval [0 , 2 𝜋] . Thus, the adjusted Fourier coefficients 𝑋̂ 𝑛 and 𝑌 𝑛 are

iven by 

̂
 𝑛 = Re ( 𝑋 𝑛 ) exp ( 𝑖𝜙𝑛 ) , (7)

nd 

̂
 𝑛 = Re ( 𝑌 𝑛 ) exp ( 𝑖𝜙𝑛 ) , (8)

here 𝜙𝑛 is random on [0 , 2 𝜋] and independent for different 𝑛 . Trans-

orming back to the time-domain yields surrogate signals 𝑥̂ and 𝑦̂ .

sing the same phase for both 𝑋 and 𝑌 ensures that the auto- and
4 
ross-correlation functions of 𝑥 and 𝑦 are retained ( Schreiber and

chmitz, 2000 ). Taking the real parts of the Fourier coefficients ensures

hat the auto-covariance function between 𝑥̂ and 𝑦̂ is symmetric, corre-

ponding to the null hypothesis of reversibility. 

.9. Whole-brain computational models for non-reversibility 

We constructed a whole-brain model to reveal causal mechanisms of

on-reversibility in MEG data. To this end, we fit the empirical AEC

nd non-reversibility by creating the generative effective connectiv-

ty (GEC) and by introducing axonal conduction delays. Whole-brain

odels have three main constituents: the structural connectivity, the

oupling function and the local model. 1) We use the average struc-

ural connectivity matrix across subjects as described in section “Dif-

usion MRI: estimation of structural connectomes ”, connecting 78 cor-

ical brain regions. 2) We use a standard additive coupling function

 Pietras and Daffertshofer, 2019 ). 3) The Wilson-Cowan model is used

s local model and mimic for MEG data ( Wilson and Cowan, 1972 ). This

ode has been widely used for modelling electrophysiological brain ac-

ivity ( Daffertshofer et al., 2018; Deco et al., 2008; Izhikevich, 2007 ). 

Our local model consists of two distinct neuronal populations, an

xcitatory and an inhibitory neuronal population. The dynamics of a

ocal excitatory and inhibitory population 𝑖 are characterised in terms

f their mean firing rates ( 𝐸 𝑖 ( 𝑡 ) = excitatory, 𝐼 𝑖 ( 𝑡 ) = inhibitory), which

volve due to local interactions between the excitatory and inhibitory

nits within the populations, as a consequence of some unaccounted ex-

ernal input 𝑃 𝑒𝑥𝑡 , and due to excitatory influence from connected nodes

hrough additive coupling. The sum of all inputs is converted using a sig-

oid function 𝑆( 𝑥 ) = (1 + 𝑒 − 𝑥 ) −1 , with threshold 𝜃. The dynamics of a

ystem of Wilson-Cowan oscillators with excitatory and inhibitory pop-

lations with additive coupling is described by 

𝑑𝐸 𝑖 ( 𝑡 ) 
𝑑𝑡 

= − 𝐸 𝑖 ( 𝑡 ) + 𝑆 

[ 

𝑐 𝑒𝑒 𝐸 𝑖 ( 𝑡 ) − 𝑐 𝑖𝑒 𝐼 𝑖 ( 𝑡 ) − 𝜃𝐸 + 𝑃 𝑒𝑥𝑡 

+ 

𝑐 

𝑁 

𝑁 ∑
𝑗=1 ,𝑖 ≠𝑗 

𝐺 𝑖𝑗 𝐸 𝑗 ( 𝑡 − 𝑡 0 𝑖𝑗 ) 

] 

(9) 

𝑑𝐼 𝑖 ( 𝑡 ) 
𝑑𝑡 

= − 𝐼 𝑖 ( 𝑡 ) + 𝑆[ 𝑐 𝑒𝑖 𝐸 𝑖 ( 𝑡 ) − 𝑐 𝑖𝑖 𝐼 𝑖 ( 𝑡 ) − 𝜃𝐼 ] . (10)

arameters 𝑐 𝑎𝑏 , with 𝑎 ∈ { 𝑖, 𝑒 } and 𝑏 ∈ { 𝑖, 𝑒 } , refer to coupling strength

etween local populations, 𝐺 corresponds to the generative effective

onnectivity between regions 𝑖 and 𝑗 rather than the structural connec-

ivity. The generative effective connectivity is the effective weighting

f the structural connectivity (see next paragraph for an explanation).

arameter 𝜏 (in 𝑠 −1 ) refers to a relaxation time constant which is as-

umed to be equal between excitatory and inhibitory populations. The

ncoming firing rates from distant excitatory populations are tuned by

he global coupling strength parameter 𝑐 and incoming firing rates are

elayed by a Euclidean distance dependent delay 𝑡 0 𝑖𝑗 . Time series of 𝐸 𝑖 ( 𝑡 )
ere used as mimic for MEG signals. The external input 𝑃 𝑒𝑥𝑡 is tuned

uch that the working point of the model is just before a Hopf-bifurcation

n the linear regime 𝑃 𝑒𝑥𝑡 = 4 (see Tewarie et al., 2019b for a bifurcation

iagram). Implementation of the model and model parameters are ex-

ctly the same as in Tewarie et al. (2020) and differential equations were

umerically solved using a 4th-order Runge-Kutta scheme with a suffi-

iently small time step ( 1 × 10 −4 s) ( Lemaréchal et al., 2018 ). 

We optimised generative effective connectivity 𝐺 between brain ar-

as by comparing the output of the model with the empirical measures

f forward and reversed cross-correlations of the amplitude envelopes

s well as the empirical AEC. Using a heuristic gradient algorithm, we

roceed to update the generative effective connectivity such that the fit
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s optimised: 

 

𝑛 +1 
𝑖𝑗 

= 𝐺 

𝑛 
𝑖𝑗 
+ 𝜖( 𝐹 𝑆 𝑒𝑚𝑝𝑖𝑟𝑖𝑐𝑎𝑙 

𝑖𝑗 
− 𝐹 𝑆 

𝑚𝑜𝑑𝑒𝑙,𝑛 

𝑖𝑗 
) 

− 𝜖′
[
( 𝐹 𝑆 𝑒𝑚𝑝𝑖𝑟𝑖𝑐𝑎𝑙 

𝑓𝑜𝑟𝑤𝑎𝑟𝑑,𝑖𝑗 
( 𝑇 ) − ( 𝐹 𝑆 𝑒𝑚𝑝𝑖𝑟𝑖𝑐𝑎𝑙 

𝑟𝑒𝑣𝑒𝑟𝑠𝑎𝑙,𝑖𝑗 
( 𝑇 )) 

−( 𝐹 𝑆 𝑚𝑜𝑑𝑒𝑙,𝑛 
𝑓𝑜𝑟𝑤𝑎𝑟𝑑,𝑖𝑗 

( 𝑇 ) − ( 𝐹 𝑆 𝑚𝑜𝑑𝑒𝑙,𝑛 
𝑟𝑒𝑣𝑒𝑟𝑠𝑎𝑙,𝑖𝑗 

( 𝑇 )) 
]
. 

(11) 

ere 𝐹 𝑆 
𝑒𝑚𝑝𝑖𝑟𝑖𝑐𝑎𝑙 

𝑖𝑗 
and 𝐹 𝑆 𝑚𝑜𝑑𝑒𝑙,𝑛 

𝑖𝑗 
correspond to a AEC transformed mutual

nformation measure 

 𝑆 𝑖,𝑗 = − 

1 
2 

log (1 − 𝐴𝐸𝐶 𝑖,𝑗 ) 2 (12)

quations 9,10 and 11 are solved recursively until the fit converges to a

table value. Note that for optimization, we also used the forward and

eversed cross-correlations of the model simulated amplitude envelopes

s well as the model simulated AEC. The generative effective connectiv-

ty is initialised using the structural connectivity and the update of G is

nly restricted to existing connections of the structural connectivity ma-

rix. The only exception are homologuous connections between mirrored

egions in each hemisphere given the a-priori information that tractog-

aphy is less sensitive to identify these connections. We set 𝜖 = 0 . 05 and
′ = 0 . 01 . 

. Results 

.1. Functional connectivity or non-reversibility based classification in 

EG 

We quantified the AEC and non-reversibility derived from the LAEC

n task and resting-state MEG data. As an illustration, Fig. 1 A shows

or all subjects separately, the non-reversibility averaged across brain

egions in different frequency bands as a function of the lag or delay

or the motor task. For all subjects, we observe clear peaks for the non-

eversibility, with for some subjects a second peak corresponding to a

ocal or global maximum. The data shows a clear frequency dependency

f the delay corresponding to the maximum non-reversibility. This delay

s relatively long for the delta, theta and alpha band compared to the

eta and gamma band, with lags of 200 ms for delta, theta, alpha and

ags of 30-40 ms for beta and gamma bands. For subsequent analysis,

e selected the non-reversibility for the the lag that corresponded to the

rst maximum of non-reversibility for a subject. This first maximum is

or most subjects also the global maximum. Note from Fig. 1 A that there

s limited variability in this lag (or delay) between subjects. 

1. Motor task. Figure 1 B shows whole-brain non-reversibility values

first maximum of non-reversibility) for every condition and frequency

and along with the whole-brain average AEC for every condition and

requency band. For the motor task we see strong task induced effects

or non-reversibility in all frequency bands, with a very strong effect in

he gamma band. The direction of change of non-reversibility for the

otor task was as expected, with an increase in gamma and beta non-

eversibility. For whole-brain functional connectivity, we observed sig-

ificant effects in fewer frequency bands. For all frequency bands that

howed significant differences between resting-state and motor task con-

ition, we observed the same change of direction for non-reversibility

nd functional connectivity. Also note that a global increase in func-

ional connectivity in the beta band for the motor task was not present,

s this is usually restricted to sensorimotor areas. Figure 1 C shows brain

egions with significant effects in non-reversibility in the beta band.

hough the effect for sensorimotor regions was most pronounced, a clear

ncrease in non-reversibility is also observed in the visual areas and pre-

otor areas. The same was true for both the theta and alpha band (see

igure S1). For the gamma band, significant increase in non-reversibility

as predominantly found in bitemporal regions. Lastly, using a random

orest classifier and data from all frequency bands, we demonstrate that

lassification of task condition by functional connectivity was outper-

ormed by non-reversibility based classification ( 𝑝 < 0 . 001 ; Fig. 1 D). 
5 
2. Language task. For the language task (shown only for the audi-

ory narratives), we also observed strong effects for whole-brain non-

eversibility in different frequency bands (delta, alpha and gamma;

ig. 1 B). Similarly as for the motor task, non-reversibility is more sen-

itive to detect task induced effects as difference in whole-brain func-

ional connectivity between task and resting-state condition was only

ound for the alpha and gamma band and not for the delta band. Again

he direction of the effect is similar for functional connectivity and non-

eversibility. The language task activates temporal and frontal language

elated brain areas and regional analysis indeed shows significant effects

n non-reversibility in these areas ( Fig. 1 C). At the same time, there is

eactivation in regions corresponding to the posterior default mode in

he alpha band (Figure S1). Especially in the gamma band, widespread

ncreases in non-reversibility are observed in bilateral frontotemporal

egions. Finally, classification for task condition did not show superior

lassification accuracy for non-reversibility compared to functional con-

ectivity ( 𝑝 > 0 . 05 ; Fig. 1 D). A potential explanation is that language

nduced effects are restricted to fewer frequency bands for both non-

eversibility and functional connectivity compared to other tasks, which

ould result in similar classification accuracy for non-reversibility and

unctional connectivity to identify the task. 

3. Working memory task. For the working memory task we also ob-

erved significant effects for non-reversibility across frequency bands

delta, alpha, beta, gamma; Fig. 1 B), while whole-brain alterations in

unctional connectivity were restricted to the delta and alpha band,

ith an increase in functional connectivity in the delta band and a de-

rease in functional connectivity in the alpha band. Again, the direction

f change in non-reversibility is consistent with the direction of change

f functional connectivity, and all task induced effects captured by func-

ional connectivity are also identified using non-reversibility. Working

emory usually elicits activation of frontal regions in the theta band. Al-

hough a significant effect between task and resting-state was not appar-

nt in whole-brain non-reversibility or whole-brain functional connec-

ivity for this frequency band, regional analysis revealed strong presence

f increased non-reversibility in frontal theta regions ( Fig. 1 C). For the

lpha band, there was a strong decrease in alpha band non-reversibility

n occipital areas as expected. For the beta band, we observed higher

on-reversibility in the left sensorimotor regions due to right hand but-

on press involved in the task (Figure S1). Similarly as for the motor

ask, task condition was better classified using non-reversibility than

unctional connectivity ( 𝑝 < 0 . 001 ; Fig. 1 D). 

.2. Non-reversibility in MEG reconstructed null-data 

Our second step was to test the null-hypothesis of reversibility in

EG data using null-data. We observe for all tasks and frequency bands

hat the null-hypothesis of reversibility could be rejected ( Fig. 2 ). This

ndicates that the temporal asymmetry in the cross-correlation of the

mplitude envelopes is a genuine feature of the data and does not re-

ect statistical noise. For resting-state data, the null-hypothesis of re-

ersibility could also be rejected for all frequency bands, however, the

ifferences in the distributions between the non-reversibility in the ob-

erved data and the surrogate or null data were less pronounced for

esting-state data compared to task data. 

.3. Whole-brain modelling of non-reversibility in MEG 

We lastly investigated contributing factors to non-reversibility in

EG data using neural mass modelling, with two potential candidates,

symmetry in the effective connectivity and heterogeneous axonal con-

uction delays. Individual Wilson-Cowan oscillators were coupled using

he effective connectivity rather than the structural connectivity. We

rst did not include axonal conduction delays and ran our optimisation

f effective connectivity with 𝜖′ = 0 as benchmark. Effective connectiv-

ty is in this case merely optimised by functional connectivity, and hence

o asymmetry is introduced. Figure 3 A shows that although simulated
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Fig. 1. Classification of functional connectivity vs non-reversibility . Whole-brain non-reversibility is depicted as a function of lag or delay for different frequency bands 

for the motor task (Panel A). Every line depicts the behaviour of non-reversibility for one subject. Note clear peaks with frequency specific maxima for the delays. 

Panel B shows the whole-brain non-reversibility for the lag corresponding to the maximum non-reversibility for every subject (dot in the distribution). ∗ refers to 

𝑝 < 0 . 01 and ∗ ∗ refers to 𝑝 < 0 . 001 . Panel C shows non-reversibility for brain regions that showed significant difference or contrast between task and resting-state 

(FDR corrected). Non-significance is depicted by grey regions. Random forest based classification of task condition is depicted in panel D with whole-brain functional 

connectivity or whole-brain non-reversibility as features or input for the classification. 

6 
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Fig. 2. Non-reversibility in MEG reconstructed null-data . Whole-brain non-reversibility for the lag corresponding to the first maximum of non-reversibility for every 

subject (dot in the blue distribution) is shown. The same is depicted for null-data (in red). A star ∗ refers to significance of 𝑝 < 0 . 001 . (For interpretation of the 

references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 3. Whole-brain modelling of non-reversibility . We simulated whole brain non-reversibility using Wilson-Cowan oscillators and by making use of generative effective 

connectivity. Panel A shows the Pearson correlation between the simulated FC (AEC) and empirical FC (red), and the Pearson correlation between the simulated 

non-reversibility (NR) and empirical non-reversibility (blue) as the function of iterations during the optimisation. Panel B shows the empirical NR matrix and the 

simulated NR matrices. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

7 
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C can adequately match empirical FC when ignoring asymmetry in the

ffective connectivity in the simulations (Pearson correlation between

imulated and empirical FC reaches 0.85), non-reversibility is poorly re-

onstructed. This can also be visually inspected by the lack of structure

n the simulated non-reversibility matrix for this case and its lack of

esemblance with the empirical non-reversibility matrix ( Fig. 3 B). 

After introducing asymmetry in the effective connectivity (by set-

ing 𝜖′ ≠ 0 ), we see a similar level of fit for empirical FC. The Pear-

on correlation between simulated and empirical FC again approxi-

ates 0.85. In contrast to the previous case, the level of fit for em-

irical non-reversibility deviates from zero and reaches approximately

.2 ( Fig. 3 A). This can also be observed from visual inspection of the

mpirical and simulated NR matrices ( Fig. 3 B). A similar goodness-of-

t can be observed when heterogeneous axonal conduction delays are

ncluded. When introducing both asymmetry and heterogeneous axonal

onduction delays, again no improvement on the level of fit for FC could

e observed. However, there was a clear effect on the level of fit for em-

irical non-reversibility that reaches 0.25 (see also the visual similarity

etween the empirical and corresponding simulated NR matrix). Hence,

hese results show that both asymmetry in the effective connectivity

nd heterogenous axonal conduction delays contribute to non-zero non-

eversibility. 

. Discussion 

We adopted a recently introduced model-free framework to study

reaking of temporal symmetry of MEG amplitude envelope data to

dentify task condition in comparison to conventional functional con-

ectivity. This framework characterises breaking of detailed balance, a

allmark of any living system and is rooted in thermodynamics. Indeed,

on-reversibility derived from the lagged amplitude envelope correla-

ions (LAEC) outperformed conventional connectivity in characterisa-

ion of task condition. Non-reversibility revealed rich spatiotemporal

tructure across different task conditions and resting-state. Well-known

ask-induced spatial and frequency specific signatures were retrieved

or non-reversibility such as activation of sensorimotor cortices during

 motor task in the beta band, orbitofrontal cortices during a work-

ng memory task in the theta band and language related temporal and

rontal areas during a language task in the delta band. Moreover, using

ull-data we identified that non-reversibility was a genuine character-

stic of MEG data and could not be obtained from a symmetric or re-

ersible system. Lastly, using neural mass simulations we demonstrate

hat asymmetry in effective connectivity and heterogenous axonal con-

uction delays play a major role in shaping non-reversibility in MEG

ata. 

Key result in our work is the notion that we could reject the null-

ypothesis of reversibility in MEG data. This was not only the case for

ifferent task conditions, but also for resting-state MEG data. Estima-

ion of non-reversibility in our data and in previous work ( Deco et al.,

022a; Kringelbach et al., 2023 ) comes with small magnitudes. Our sur-

ogate data could provide information about the lower limit for these

mall non-reversibility values. In addition, non-reversibility showed task

nduced modulations, which were both frequency specific and in agree-

ent with expected spatial activation maps. Cognitive neuroscience has

 long tradition to study bottom-up and top-down processes in the brain

 Sarter et al., 2001 ). This very much relates to the concepts of extrinsic

nd intrinsic brain dynamics that can be captured using non-reversibility

i.e. the former is the effect of the extrinsic environment on the brain

nd the latter internally driven brain dynamics) ( Deco et al., 2022a ).

he advantage of MEG measurements is that top-down and bottom-up

rocesses usually involve spatiotemporal activation in distinct frequency

ands, such as top-down processes in the alpha band and bottom-up pro-

esses in the gamma band ( Jensen et al., 2014 ). Our work shows that

on-reversibility is more sensitive to bottom-up processes in the gamma

and than conventional functional connectivity. Overall, it seemed that

he more a task enforces a participant to be engaged with the environ-
8 
ent, the higher the non-reversibility, especially for the gamma band.

urthermore, our results showed that classification of task condition was

ore accurate using non-reversibility than conventional functional con-

ectivity, and hence, non-reversibility could pave the way for a more

etailed characterisation of top-down and bottom processes, which re-

ains challenging using conventional functional connectivity. 

Similar as in previous fMRI work ( Kringelbach et al., 2023 ), asym-

etry in effective connectivity is an important causal entity for the

mergence of non-reversibility in MEG data. Even though correlations

etween simulated and empirical non-reversibility were only moder-

te after introducing asymmetry in effective connectivity, these corre-

ations were absent when asymmetry in effective connectivity was ig-

ored. While it can be hypothesized that temporal asymmetry in am-

litude envelopes could partially be induced by heterogeneous axonal

onduction delays, addition of this entity to the simulations also re-

ulted in a good the level of fit between empirical and simulated non-

eversibility. Also note that previous work using the same functional

onnectivity metric and conventional structural connectivity informed

odelling did not reach this level of fit between simulated and empirical

unctional connectivity ( Cabral et al., 2014; Tewarie et al., 2019a ). One

otential way to further improve the fit for empirical non-reversibility

atterns is to include regional heterogeneity in the simulations. Recent

ork has demonstrated that regional heterogeneity in large scale brain

odels can greatly improve the fit of empirical functional connectivity

nd future work could analyse whether the same would hold for non-

eversibility ( Deco et al., 2021a ). 

A few methodological issues should be acknowledged. First, non-

eversibility has only been assessed on amplitude envelope data rather

han phase data. Applying non-reversibility to phase locking or coher-

nce methods is straightforward as it does not require the transforma-

ion of coupling values to mutual information. However, we leave the

mplementation implementation of non-reversibility to phase locking

nd coherence methods for future work. Second, trials for task data

ere not divided into pre- and post-stimulus periods as task induced

ffects on non-reversibility were clearly visible even without this sepa-

ation. Third, we left out time-frequency representation of the data as

e consider these to be well-known for the general reader. Fourth, we

ave compared functional connectivity and non-reversibility in terms

f classification accuracy for specifying task condition. However, from

 mechanistic or electrophysiological viewpoint it could well be the case

hat these different concepts contain complementary information. Fifth,

e have compared functional connectivity to non-reversibility as a first

tep and proof of concept. However, future work could compare clas-

ification accuracy for task condition based on non-reversibility versus

ther lag-based measures such as Granger causality or transfer entropy

 Friston et al., 2013; Vicente et al., 2011 ). We would like to stress that

he standard implementation of these lag-based measures are unlike

on-reversibility insensitive to temporal asymmetry in functional inter-

ctions. Lastly, recent work shows that the power envelope of neuronal

scillations is characterised by positive kurtosis and positive cokurto-

is (Hindriks et al., 2023). We have therefore used the Wilson-Cowan

odel rather than the normal form of the supercritical Hopf bifurcation

s it is more straightforward to capture this empirical phenomenon of

ositive cokurtosis when additive coupling is used. 

We showed that non-reversibility is insensitive to residual mixing of

he source-reconstructed MEG signals. Hence, there is no need to ap-

ly pairwise orthogonalisation prior to calculation of non-reversibility.

his makes it an ideal measure for assessing interactions, not only for

EG signals, but for electroencephalographic (EEG) and electrocortico-

raphic (ECoG) signals as well, which suffer from the same mixing prob-

em ( Schoffelen and Gross, 2009 ). Non-reversibility can hence be added

o the list of mixing-insensitive interaction measures that are relatively

nsensitive to primary leakage (though not secondary leakage), such as

he imaginary coherence ( Nolte et al., 2004 ) and the (weighted) phase-

ag index ( Stam et al., 2007; Vinck et al., 2011 ). Unlike these measures,

hich can only be applied to complex signals, non-reversibility can be
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pplied to real signals as well and this allows to study functional con-

ectivity in broadband signals. Thus, non-reversibility is likely to be a

seful measure for analysing interactions in different experimental sce-

arios. 

In conclusion, we have adopted the new non-reversibility framework

erived from the lagged amplitude envelope correlation (LAEC) to anal-

se task-induced brain states in MEG data. Non-reversibility is a genuine

haracteristic of MEG data and outperforms conventional functional

onnectivity in classification of task conditions. Whole-brain computa-

ional modelling demonstrates that non-reversibility emerges when two

euronal populations are exposed to asymmetry in connection strengths.

urthermore, this new framework opens avenues to investigate bottom-

p and top-down process in cognitive neuroscience. 
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