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Abstract

The cornea is the most sensitive structure in thedn body. Corneal
nerves adapt to maintain transparency and congritoutorneal health by
mediating tear secretion and protective reflexesm@ovide trophic support to
epithelial and stromal cells. The nerves destimedie cornea travel from the
trigeminal ganglion in a complex and coordinatedne to terminate between
and within corneal epithelial cells with which thase intricately integrated in a
relationship of mutual support involving neurotrahand neuromediators. The
nerve terminals/receptors carry sensory impulsaesrgéed by mechanical, pain,
cold and chemical stimuli. Modern imaging modasitfeave revealed a range of
structural abnormalities such as attrition of nerieneurotrophic keratopathy and
post-penetrating keratoplasty; hyper-regeneratidteratoconus; decrease of sub-
basal plexus with increased stromal nerves in halleratopathy and changes
such as thickening, tortuosity, coiling and looping host of conditions
including post corneal surgery. Functionally, syomps of hyperaesthesia, pain,
hypoaesthesia and anaesthesia dominate. Morphahatyfunction do not always
correlate. Symptoms can dominate in the absenaayo¥isible nerve pathology
and vice-versa. Sensory and trophic functions toohe dissociated with pre-
ganglionic lesions causing sensory loss despiteepvation of the sub-basal nerve
plexus and minimal neurotrophic keratopathy. Stmat and/or functional nerve
anomalies can be induced by corneal pathology andersely, nerve pathology
can drive inflammation and corneal pathology. Inyeraents in accuracy of

assessing sensory function and imaging nervesymwill reveal more



24  information on the cause and effect relationshigvben corneal nerves and

25 corneal diseases.
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1. Introduction

To serve its principal function of letting light io the eye and providing
two thirds of the eye’s focusing power, the cormaast remain transparent (Meek
and Knupp, 2015). Its anatomy and physiology asptet! towards this end.
Intrinsic transparency of the cornea is relateth&architecture of the stromal
collagen, determined largely by the uniform diamated spacing of the collagen
fibres, the transparency of the keratocytes, whiehthe predominant cell
population by far, the relative state of dehydmai{é8% water content) and the
absence of blood vessels. The cornea also mairdaiok nerve supply with a
high density of nerve fibres located within thetlgeiium, in the sub-basal plexus
and anterior stroma, which do not interfere with ttansmission of light (Al-
Aqgaba et al., 2010b; He et al., 2010; Marfurt et2010). The major nerve
bundles lose their myelin sheath soon after ergehia cornea at the limbus and

become transparent thereafter.

Being largely invisible on conventional examinattechniques their
clinical appearance in diseases of the cornea dtdseen widely remarked on.
The advent of in vivo confocal microscopy (IVCM)shanabled en-face
examination of corneal nerves in health and diseadebespoke software
programmes have allowed quantification of variosisegts of nerve morphology
such as density, fibre length, width, tortuositgabing, branching and reflectivity
(Alzubaidi et al., 2016; Cruzat et al., 2017; Stahet al., 2014).
Immunohistological and microscopy techniques oflgitug whole mount
specimen of normal and diseased corneas have@isabeited vastly to our

knowledge of corneal nerve aberrations (Al-Agabale2011a; Al-Agaba et al.,
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2011b; Al-Agaba et al., 2010b; He et al., 2010; Maret al., 2010). It is not
surprising therefore that a whole range of corneale pathology is now known,
and descriptions and definitions are attributegpecific disease conditions.

Whether the changes are a cause, or an effece aliskase is not always clear.

Corneal nerves serve sensory and trophic funcficaisetoulle et al.,
2019). They release a large number of chemicaltanbss (neuro-mediators) that
preserve the health and integrity of the cornelis deoth epithelial cells and
keratocytes. This ‘nutritional function’ is refed¢o as the ‘trophic’ function of
the nerves. Sensory input is responsible for thenaband protective blink reflex
and are the afferent components driving tear searétiom the tear glands.
Trophic and sensory functions can be independaffidgcted for example in
lesions that affect the pathway between the trigairganglion and the sensory
cortex, the sensory function is compromised butribyhic function is maintained
by the surviving pseudo-unipolar neurons in thegfjan. Distal lesions affect
both sensory and trophic functions. When trophicfion is compromised, the
health of the cells is affected and neurotrophiataathy results. The epithelial
cells and keratocytes in turn release moleculesafyr factors and cytokines) that
maintain the health and regeneration of the nelNesve growth factor is an
important example. There is thus a mutual cycleupiport and dependence of the

nerves and cells.

Assessing corneal nerve function by testing corseasitivity is an age-
old practice with the non-standard use of a ‘cottigp’ as the mainstay.
Touching the cornea with a finely drawn out wisgofton or soft tissue paper is

satisfactory for a ‘yes’ ‘no’ response as assebgdtie blink reflex or withdrawal
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of the head by the patient. By this method, quatiNg estimation of corneal
sensitivity is very subjective to both the patiand the doctor. The Cochet-
Bonnet aesthesiometer is a useful semi-quantit&bivieto measure sensitivity
(Murphy et al., 1998). The filament is subject hwieonmental factors such as
temperature and humidity and it only assesses fpacrhsensations (Lum and
Murphy, 2018). The Belmonte aesthesiometer is madigble and can assess
touch, cold and chemical stimuli but currentlyasgely viewed as a research tool

(Golebiowski et al., 2011).

The cornea also has a significant autonomic, préakmily sympathetic,
innervation. The limbal and perilimbal innervatisressentially vasomotor,
causing the ciliary blush (circumcorneal injectiom)corneal irritation
(Labetoulle et al., 2019). This axonal reflex istpd the corneal defence system
allowing extravasation of immune cells from thebimhvessels, which then
infiltrate the cornea to combat the infectious/iigus agent. As the cornea itself
is avascular, the role of sympathetic nerves withecornea is not clear but
alteration of sympathetic innervation can affedt pmliferation and alter the

behaviour and course of infections and diseasdsetballe et al., 2019).

As our ability to study structure and function ofeal nerves in health
and disease improves, understanding the pathopbggiof specific diseases will
be enhanced and specific targeted therapies wi#ldp. Undoubtedly it will be
established that the causes and consequenceseitoerve damage are integral
to most if not all corneal pathology and addressimage will be important in

managing corneal diseases and restoring cornehhea
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2. Neur oanatomy of the cornea
2.1 Embryology and development of corneal inneovati

The development of the human cornea starts witlioitmeation of
primitive epithelium and lens. The process involwvesgination of surface
ectoderm above the optic vesicles to form the atlysé lens. This primitive lens
induces the formation of the overlying epitheliumoithe corneal epithelium at
approximately one month of gestation. A week laddrj-layered epithelium
appears (O'Rahilly, 1983). The basal layer prodaeo#agen fibrils and
glycosaminoglycans that accumulate as the primamyeal stroma between the
epithelium and the lens vesicle (Dodson and Hayl18lay and Revel, 1969). A
wave of neural crest cells migrates between the Vesicle and primary stroma to
form the embryonic endothelium. A subsequent mignadf neural crest cells, at
around the seventh week of gestation, populateringary stroma to form the
primitive keratocytes that construct the definitsteoma (Cai et al., 1994;
Hayashi et al., 1988). Descemet membrane is seldogtéhe endothelial cells and

can be detected in utero as early 12 weeks of tgmsi@&ghrari et al., 2015).

Kitano has described the embryology of human comees and the following
course of events has been observed (Kitano, 1895%)e one-month embryo the
cornea has not taken the shape and no nervous tssifound in the future orbit.
At the two-month stage, the primary cornea wasitasd and at this point the
ciliary nerves reached the edge of optic cup. Rere branches began to appear
in the slowly differentiating corneal stroma duriting third month. A large

number of nerves approach the anterior stromaujuder Bowman'’s layer by the
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fourth month. These penetrated Bowman'’s layer awered the epithelium at the
fifth month stage. From the sixth to ninth monttgektation there was a
progressive increase in the density of nerve fibrebstheir fine branches both in

the stroma and epithelium.
2.2 Origin of corneal nerves

The human cornea is one of the most richly innedatructures in the
body and is densely supplied by sensory and autmnoenve fibres (Muller et al.,
2003). It is 40 times more sensitive than dentg pLO0 times more than the
conjunctiva (Wells and Michelson, 2008), and ov@® imes more than the skin

(Bonini et al., 2003b).
2.2.1 Sensory nerves

The trigeminal nerve is the largest of all cramiaives. It is the major
sensory nerve of the head innervating the skihefface, oral mucosa, nasal
cavity, and paranasal sinuses. Its three sensanches, the ophthalmic (V1),
maxillary (V2), and mandibular (V3) nerves, emeafi¢he anterior convex aspect
of the ganglion. The human trigeminal ganglionaas@e-shaped and has an
average number of 27,400 pseudo-unipolar neurogisrdns from which a single
axon emerges and divides into two, one going tedéméral nervous system and
the other to the peripheral end orddihaGuardia et al., 2000). The corneal
sensory fibres, which constitute most of the cdrneave fibres, are mainly
derived from cell bodies of the ophthalmic divisiminthe trigeminal nerve. A
relatively small number of neurons (about 1.5%hef total number of the neurons

of the ganglion), which are located in the medraheural crest component of the
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trigeminal ganglion serve the cornea (Arvidson, ZL%elipe et al., 1999; Keller
et al., 1991; LaVail et al., 1993; Marfurt, 1981aNurt and Del Toro, 1987;
Marfurt and Echtenkamp, 1988; Marfurt et al., 198@rgan et al., 1987b;
Morgan et al., 1978; ten Tusscher et al., 1988 Jdnsory nerves exhibit a
variety of afferent (e.g. pain and temperature agms) and efferent (trophic and
secretory) functiondnlike nerves, the terms afferent and efferenbfood
vessels have the opposite connotdtidechanical, thermal and chemical stimuli
of the corneal nerves produce predominantly a sensaf pain in humans. (Lele
and Weddell, 1959) In some cases the maxillarysdiai of trigeminal nerve can
provide innervation to part of the inferior corf@uskell, 1974; Vonderahe,
1928). A single corneal sensory neuron can sugoextremely large number of
individual nerve endings. This number differs cdesably among different
mammalian corneas e.g. 200 in mouse (de Castiq €088, Felipe et al., 1999)
and 3000 in rabbit (Marfurt et al., 1989; Rozsa Bederman, 1982). Many
retrograde nerve tracing studies have shown th&bB0neurons innervate each
cornea, the real number depending on species (yaetral., 2015; LaVail et al.,
1993; Marfurt et al., 1989; Morgan et al., 1978)e$e neurons are mainly small
or medium size, averaging 20-g61 in diameter in rodents and 31-3® in

larger mammals (Keller et al., 1991; Marfurt et &B89; Nishimori et al., 1986;
Sugimoto et al., 1988). Given that the human cdrediace area is around 123
square millimetres (Dua et al., 1994) this wouldadq to approximately 11,000
nerve endings per square millimetre (based on sdonimammalian (rabbit)

nerve endings).

2.2.2 Autonomic nerves
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All mammalian corneas receive sympathetic nervee§ilthat are derived
from the superior cervical ganglion. The densitjhe sympathetic innervation
varies considerably among different species (Madod Ellis, 1993). For
example, a dense sympathetic innervation that itotest up to 15% of the total
corneal innervation has been demonstrated in rablblitcat corneas (Ehinger,
1966b; Marfurt et al., 1989; Morgan et al., 198Vervo and Palkama, 1978).
However, a sparse corneal sympathetic innervatasfaund in humans and
other primates (Ehinger, 1966b, 1971; Sugiura aachaga, 1968; Toivanen et
al., 1987). They were predominantly located inlitmdal stroma and in a close
proximity to the blood vessels, except capillafigsinger, 1966b). The function
of the adrenergic input to the cornea, which igesally avascular, is not yet
known. Could the sympathetic nerves be an exterditime limbal vasomotor
nerves that respond to corneal stimuli to causgidii of the vessels, as part of a
local axonal reflex arc usually mediated by thessey nerves? Parasympathetic
fibres, originate from the ciliary ganglion, havedgn shown to terminate in the
peripheral part of rat and cat corneal stroma (Ntaet al., 1998; Morgan et al.,
1987a; Tervo et al., 1979). However, this kindrofarvation has not been

confirmed in humans.
2.3 Corneal nerve architecture
2.3.1 Limbal nerve plexus

The sensory nerves reach the eye mainly via theciiesy branch of the
ophthalmic division of the trigeminal nerve. Thimbch gives rise to 2-3 long

ciliary nerves and a communicating branch or ratakimig sensory fibres to the
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201 ciliary ganglion. Six short ciliary nerves from thidiary ganglion and the long

202 ciliary nerves course toward the posterior poléhefglobe, penetrate it around the
203 optic nerve and then pass anteriorly in the summamtial space. Nerves in the

204  suprachoroidal space are of two main groups: 1¥Htioet uveal nerves form the
205 suprachoroidal nerve plexus, which provide branchgplying the ciliary body.
206 They appear as mixed fibres containing sympathetigsympathetic and sensory
207 axons (May, 2004). 2) the long uveal nerves, ac@nming the long posterior

208 ciliary arteries, which provide innervation to teterior segment. Seventy-five
209 percent of these nerves are myelinated, whilegh®aming (25%) are

210 unmyelinated. They contain both sympathetic and@gmerve fibres.

211 Until recently, all the nerve fibres, innervatinigferent structures within
212  the globe, were thought to be postganglionic netdesvever, studies have

213  shown neurons within the uveal tissue of human,aybih are immunoreactive
214  to nitric oxide synthase and vasoactive intestegdtide (May et al., 2004; Tamm
215 etal., 1995). Approximately 2000 of these neuramspresent in the choroid and
216 their postganglionic nerve fibres join the perivdac nerve plexus that supports
217  the vasodilating effect on the choroidal vasculaiiiflugel et al., 1994). A similar
218 number of the neurons are located in the innergdatte ciliary muscle and are

219 Dbelieved to be involved in fine regulation of aceoodation (Tamm et al., 1995).

220 Branches from the long ciliary (uveal) nerves, tbhgewith nerve fibres
221  from the sub-conjunctival plexus, form a complexiqgerneal (limbal) plexus,
222  which is characterised by a dense ring-like netwadnkerve fibres that encircle
223 the entire peripheral cornea (Fig. 1) (He et &1®. Most of the fibres in this

224  plexus are believed to supply vasomotor innervatiotie blood vessels in the
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limbus, while others pass within the limbal stronmaelated to blood vessels

(Marfurt, 2000).
2.3.1.1 Limbal nerve corpuscles

Tortuous nerves fibres have been found to extesrd the superficial
limbal plexus and terminate in round or oval stuwes (Fig. 2), 20 to 100m in
diameter, termed limbal nerve corpuscles (LNCs}A4bba et al., 2018). These
are generally confined to the peripheral 2 mm efdbrnea and are randomly
distributed along the limbal circumference in thepithelial substantia propria.
Their numbers are variable, ranging from 70 upG0 fer eye. They show an
association with the palisades of Vogt and the éihdpithelial crypts (Fig. 3)

(Dua et al., 2005).

On confocal microscopy they appear as bright, hyp#ective ovoid
structures singly or in clusters (Fig. 4) withirethibrous core of the palisades. On
whole mount staining with the Acetylcholinestertesghnique they show
unevenly staining convoluted lamellae covering lated spaces. On scanning
electron microscopy (SEM) of macerated limbal testie LNC show a globular
structure with a ruffled covering (Fig. 5). The &on of the LNC and close
association with the LEC and limbal palisades satg#hat they form part of the
stem cell niche microenvironment that maintainssteenness of the stem cells
interacting with the blood vessels, stromal cefid bbcal immune cells. The
structure and function of the LNC is being studied their exact role needs to be
deciphered. They could also serve as special rexefur pressure and

biomechanical stress at the limbus acting to rediorbal and corneal shape
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following distortions induced by blinks, squeezthg eyelids and rubbing and

globe; external pressures that the eye is congtankijected to.
2.3.2 Corneal stromal nerves

A mixture of sensory and autonomic nerves passesigh the limbus and
enter the cornea at different levels. Nerves ahtrcornea in the middle third of
the stroma in a series of large, radially-oriemedve bundles and run forward
and anteriorly in a radial fashion toward the calndirea, giving rise to branches
that innervate the anterior and mid-stroma (FigA®put 33-90 fascicles,
containing 900-1500 axons, enter the human comleide 20-40 fascicles enter
the cornea of other mammals (Al-Agaba et al., 20Tan-Ling, 1989; He et al.,
2010; Marfurt et al., 2010; Millodot, 1978; Zanderd Weddell, 1951a).
Additionally, other small nerve bundles enter toenea more superficially in the
episcleral and conjunctival planes, to provide magon to the superficial stroma
and epithelium of the peripheral cornea respegtig€han-Ling, 1989; He et al.,
2010; Zander and Weddell, 1951@erve structure: An axon is the cytoplasmic
extension of the neuron cell body. The cytoplasierised the axoplasm and the
cell membrane covering the axoplasm is the axoleniima is covered by myelin,
which is white and relatively opaque. Myelin isreunded by the Schwann cells
that secrete the myelin. The Schwann cell lay&rimed neurilemma. Delicate
connective tissue (endoneurium, endoneurial shelalenle’s sheath)
containing connective tissue cells (endoneuridsiaiurrounds the axon. Bundles
of axons surrounded by a connective tissue sheatperineurium, are called a
fascicle. Bundles of fascicles bound together withnective tissue, the

epineurium constitutes a nerve (nerve bundle).]
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All corneal sensory nerves derive from finely mgated (Aé) and
unmyelinated (C) axons determined by the size aesence of myelin sheaths in
the axon (Felipe et al., 1999N¢rve fibres are of three types. A fibres, which ca
be the A alpha()[13-20 um diameter and conduction velocity cN8&120
metres per second m/s], which carry propriocepsensations from muscles; A
betaf?) [6-12 um diameter and c/v of 6-12 m/s], whidmgmit sensation of
touch and A delta] [1-5 pum diameter and c/v of 5-40 m/s], whichmit pain
and temperature sensations. B fibres, which aeganglionic nerves of the
autonomic system and visceral afferents. Nervedibf types A and B are
myelinated and consequently have a faster condyegiocity. C fibres that carry
sensations generated by pain, thermal and cherstoalli. C fires are
unmyelinated with a slower conduction velocity {@.2 m/s) and are

comparatively thinner (0.2 to 1.5 pifTjubbs et al., 2015)

In the human cornea, central stromal axons are ghnaged and run in
the anterior stroma as large bundles parallel lagen bundles. Most of the
axons in these bundles are about0rbin diameter. However, a few may be as
large as 2..um (Muller et al., 1996; Muller et al., 1997). Oretbther hand, more
than 70% of the axons in rabbit corneas are unmgigd (Beuerman, 1983). The
rest are finely myelinated axons that lose theielnysheath within 1 mm after
penetrating the cornea (Lim and Ruskell, 1978; R@rsl Beuerman, 1982;
Zander and Weddell, 1951a). Interestingly, stubege shown that myelinated
axons are present in the central cornea in somemmadsr(Rodger, 1950; Whitear,

1960).
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295 As soon as they enter the corneal stroma, the fenveles lose their

296  perineurium and continue centrally surrounded dayiyschwann cells. The nerve
297  bundles sub-divide and reconnect in a series afalenbifurcations and

298 trifurcations forming a multi-layered network thdistributes nearly equally

299 throughout all four corneal quadrants (Ishida gt1l#l84). Each single sensory
300 neuron can extend in to the cornea for up to thresters of its diameter and
301 supply as much as 20-50% of the corneal area (ZamteWeddell, 1951a, b).
302 Several studies have shown that corneal stromakadrave a tendency to

303 concentrate in the anterior one third of stromagnetthey form a dense sub-
304 Bowman’s plexus. However, the posterior stroma Seentack innervation and
305 only a few investigators have noticed a sparservation of corneal endothelium

306 (Leon-Feliu et al., 1978; ten Tusscher et al., 1986lter, 1957).

307 Are the stromal nerves merely passing through titeens en route to the
308 sub-basal plexus or are they supplying the stramdekaratocytes? Some nerves
309 are seen to terminate in the stroma, in relaticam keratocyte but such endings are
310 sparse compared to the density of nerves seelhatioreto the epithelial cells.

311 Like epithelial cells, keratocytes too depend aphic support from the nerves
312 implying neurotrophic factors released anteriody percolate through the stroma
313 to support all keratocytes. The increased densityeoves in the anterior stroma
314  corresponds with the increased density of keratsciyt the same location. This
315 could be more than just a co-incidence and reptésergradient of trophic factor

316 being more concentrated anteriorly.

317 The wide area covered by each neuron indicategtibed is considerable

318 overlap of innervation ensuring that no part of tbenea is deprived of nerve
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319 supply following injury or insult to a single ondeneurons or their axons. This
320 probably explains why multiple limbal incisions\arying lengths performed

321  during corneal or cataract surgery do not serioaffsct corneal health.

322 Vascular and nervous systems share considerabilasiies at the

323 anatomical and cellular levels. They often run fpalrto each other, exhibit a

324  similar branching pattern (Ferrari et al., 2013)eTdevelopmental and growth of
325 both networks require an intricate control, whishmaintained by a variety of

326 common molecules and trophic factors (Carmeliei.e2009; Tessier-Lavigne
327 and Goodman, 1996). In healthy physiological stifie densely innervated

328 cornea shows lack of vascular elements. Howevaditions, that promote

329 corneal vascularisation e.g. ocular surface inflatmom, limbal stem cell

330 deficiency, corneal graft rejection, infectiousatéiis and chemical burns, often
331 result in abnormalities of nerve structure and fiomc(Epstein and Paton, 1968;
332 Limetal., 2009). Inflammation seems to be a commssociated factor. A

333 direct inhibitory cross-talk between the sensonyweg and angiogenesis has been
334 confirmed in a relatively recent animal study, wherducing angiogenesis results
335 innerve loss and, conversely, denervation indaoeseal vascularisation (Ferrari
336 etal., 2013). This response appears to be medigteeduced expression of

337 corneal angiostatic molecules such as pigmentegtkderived factor (PEDF)
338 and epithelial vascular endothelial growth faceeptor 3 (VEGFR3).. However,
339 there are contradictions as well. Herpes virustikesas the commonest cause of
340 corneal vascularisation despite reduced corneabsiems (Faraj et al., 2016).

341 Advanced keratoconus is associated with exuberainstgomal nerves yet rarely

342 vascularised in the absence of acute hydrops (Adbacet al., 2011b). In
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acanthamoeba keratitis nerve affection in the fofmadial keratoneuritis is
common yet it is an inflammatory condition least@sated with vascularisation
(Faraj et al., 2016). Stressed cells release chereskhat attract vascular
endothelial cells suggesting that vascularisatsom multifactorial and complex
process. There could also be an anatomical caoelbetween vessels and
nerves. It has been shown that vessels in the @aemel to follow tissue planes
such as suture track and those created by incisiotipenetrating and lamellar
keratoplasty (Faraj et al., 2016). The micro chétigough which nerves
traverse the stroma may also provide channelsdssels to follow both in the

presence or absence of the resident nerve.

Instillation of topical anaesthetic drops that mmedhantly affect the
terminal sensory nerve endings, allows the surgeomake full thickness corneal
incisions near the limbus, transecting the thiokolal nerves without eliciting
pain. The deeper stromal nerves may therefore lve trmphic than sensory, and

the superficial nerves the other way around.

Is pain response related to only the epitheliumth\SMILE (small
incision lenticule extraction, laser refractivegery) and LASIK (laser in situ
keratomileusis) procedures the pain is less wheratiaesthesia wear off
compared to photorefractive keratectomy (PRK) whieeeepithelium is removed
and pain is severe when the anaesthetic wear$hoff.supports the notion that
the sensory element of superficial nerve endingsush greater than in the
stromal nerves/nerve endings. In bullous keratop@i), episodic severe pain is
attributed to rupture of epithelial bullae and esyp@ of nerve endings.

Paradoxically, it has been shown that the sub-ljeals in bullous keratopathy



367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

21

is reduced or absent (see below Section 7.8) pbssible that the stromal nerves
elicit pain response in an environment of chromierea and inflammation. In
‘radial keratoneuritis’ of acanthamoeba infectibe pain is severe. Here the
stromal nerves are directly affected by the inflaation associated with

surrounding edema.

A modest number of sympathetic nerves are mixeld gotneal sensory
nerves. The distribution of corneal sympathetiemation has been studied using
histochemical fluorescence techniques, immunohisimestry and nerve tracing
techniques (Ehinger, 19664, b, c; Ehinger and $jpli®71; Klyce, 1986; Laties
and Jacobowitz, 1964; Laties and Jacobowitz, 1R&6furt, 1988; Marfurt and
Ellis, 1993; Tervo and Palkama, 1976). It has deand that sympathetic nerves
are mainly distributed in the anterior one-thirdloé stroma and there is an inter-
species difference in the overall density (Martitral., 1989). Although it has
been reported that there is insignificant corngaigathetic innervation in adult
primates including human cornea (Ehinger, 1966@11Bhinger and Sjoberg,
1971, Laties and Jacobowitz, 1966; Sugiura and g@ana968)—+ecent other
studies using antibodies against tyrosine hydreeytaveal greater sympathetic
innervation than has been previously identified fMi& and Ellis, 1993; Ueda et

al., 1989).

There is ongoing evidence to support the physicdltaochemical
interaction between the nerves and the cellulasttiments of the cornea. Stromal
keratocytes are frequently found in the close vigiaf the nerves and
occasionally enclose nerve bundles with their dgsmic processes (Fig. 7)

(Muller et al., 2003). Metabolically active stroniddroblasts have been recently
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shown to promote neurite growth in a dose-depena@mniner supporting the
notion that the density of stromal fibroblasts comifluence nerve regeneration
(Yam et al., 2017). Conversely, neurite outgrovalfofving injury appears to be
delayed by scar-forming corneal myofibroblasts iJebal., 2018). This effect is
believed to be mediated by transforming growthdabeta 1 (TGH1) secreted

by myofibroblasts.

Acetylcholinesterase (AChE) is present in both aeal and non-neuronal
tissues, and is usually regarded as a membranedtemayme (Taylor et al.,
1981; Wheeler et al., 1972). AChE activity has beemonstrated in the corneal
epithelium and keratocytes (Fig. 8). Evidence tpg&st possible neuronal
function related role of intracellular AChE withiine cornea include (1) the
association of acetylcholine and true AChE in am&igic nerves; (2) loss of
corneal sensation when AChE synthesis is inhibrigtle cornea; (3) lack of
acetylcholine and AChE content in denervated cqraed, (4) localisation of true
cholinesterase in corneal epithelium by light aletteon microscopy (Howard et

al., 1975).

2.3.3 Bulb-like structures at the junction of thie@sal and sub-basal nerves

The junction of the stromal nerves and the subibesaes at the sub-
basal plane demonstrate interesting anatomicalriestAs they approach the
anterior stroma, the unmyelinated nerves subdividecharacteristic branching
pattern. After passing through Bowman'’s layer ttegyninate in bulb-like
structures from which a leash of sub-basal nervessa(Fig. 9). The perforation

sites are predominantly located in the mid-peripheornea. Relatively fewer
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perforation sites are found in the central corfidee average number of
perforation points is 185 per cornea (Al-AqabaletZz®10b). The bulb-like
structures do not show any nuclei and probablyesgnt the termination of the
endoneurium which appears to be folded upon itdétiwever, the demonstration
of neurons in the choroid should prompt anothek laiothese structures in greater
detail. Interestingly, the epithelial cells surrdiunrg these structures differ from
the remaining epithelium in that they often shodeaser nuclear staining with
AChE (Fig. 10). While the unmyelinated nerves mamtheir Schwann cell
sheath throughout the stroma, the sub-basal neregsct for several millimetres
within the sub-basal and intraepithelial planesaitt Schwann cell support.
Corneal epithelial cells function as surrogate Satmwcells for the sub-basal and
intraepithelial nerves during homeostasis and $poese to injury (Stepp et al.,
2017). The morphological similarity between the-balsal nerves and
intraepithelial nerve plexus and the dendriticdasof herpes simplex keratitis
suggests the latter is determined by the formeigchwvould not be surprising
given the affinity of the virus for the nerves. Bdedendrites are seen in
acanthamoeba keratitis and with healing corneasans. The mechanisms of
these lesions are different. In the former theyesent the migration path taken
by acanthamoeba as they infect and ingest theeadipiticells and in the latter they
represent the meeting sites of healing epithetiaets. Though sub-basal nerve
changes have been described with acanthamoeb#onf@&urbanyan et al.,

2012) the nerves are unlikely to determine the ggdendritic pattern.

The appearance of the bulbous end of the strommaésdas been

confirmed using a variety of techniques includinGhk staining, Nanozoomer
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scanning, (Fig. 10) (Al-Agaba et al., 2010b), SH¥M (Fig. 11) and IVCM

(Fig. 12). The morphological features revealedediffith the stain used. AChE
staining demonstrated the blub-like terminationthefnerves as they emerge
anterior to the Bowman'’s layer but these are notwshby staining with anti-Beta
[l tubulin immunohistology. This is most probabiglated to the intracytoplasmic
location of this neuron-specific major cytoskelepyotein, which would show the

axons but not the surrounding sheath (He et alL.O02Marfurt et al., 2010).

2.3.4 Sub-basal nerve plexus

The corneal epithelium receives sensory nervedibrther from the sub-
Bowman'’s nerves via the sub-basal plexus or irpgr@heral cornea, directly
from the conjunctival nerves (Marfurt, 2000). Thajarity of these nerve fibres
are of C type (Richter et al., 1997). The sub-baeale plexus is situated between
the basal epithelial cells and Bowman'’s layer (Eig). Morphologically, each
nerve consists of non-beaded straight nerve filorése centre and beaded fibres
located in the periphery of the nerve (Fig. 13\e3al electron microscopy
studies have shown that these beads representl &tfarant and sensory
terminals with accumulations of mitochondria angcghen (Matsuda, 1968;

Muller et al., 1997; Ueda et al., 1989).

These nerves have a highly characteristic appeeraren viewed by
SEM and IVCM, as sharply defined linear structuwuEsomogenous reflectivity
with Y shaped bifurcating branches and H shapeth#riconnecting nerve fibre
bundles (Fig. 13 & Fig. 14) (Oliveira-Soto and Eff@001). At their point of

origin, the sub-basal nerves project downward (8ap# inferior) for fibres
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arising from perforation sites in the superior aedtral cornea and upward
(inferior to superior) for those originating in thrderior cornea. The nerves fibres
then converge towards the infero-central corndarna a characteristic clockwise
whorl pattern (Al-Agaba et al., 2010b; Patel and@¥%ee, 2005). The whorl is
located at the junction of the upper two thirds kowder one third of the cornea
and has been demonstrated by IVCM and AChE stafffiigg 15) (Al-Agaba et

al., 2010b; Patel and McGhee, 2005). In vortextog@athy and hurricane keratitis
the epithelial lesions replicate the pattern ofuhderlying nerves. The epithelial
whorls, like the underlying whorl of the sub-baglxus are almost always
‘clockwise’ in disposition and are believed to beegponse to the electromagnetic

fields of the eye (Dua and Gomes, 2000; Dua ef886; Dua et al., 1993).

The response of the migrating corneal epitheliallscéo ocular
electromagnetic fields generated by the dipoléhefaye along its antero-posterior
axis has been suggested as the likely driving fiocéhe whorl appearance (Dua
et al., 1993). A difference in electric potentidlnearly 6 mV exists between the
cornea and the back of the eye, with the cornediy®s$o the posterior segment
(Berson, 1981). The resultant flow of electricitpwid generate electro-magnetic
forces that are disposed in a clockwise directibime directional movement of
epithelial cells is known to be influenced by et@c{galvanotaxis) and magnetic
(magnetotaxis) fields. During epithelial cell tumeo e.g. wound healing
following corneal abrasion, the radial centripetidle of corneal epithelial cells
from the limbal region together with the tendenéyhe electric field to arrange
them in concentric circles would eventually resnlthe formation of clockwise

whorls (Dua et al., 1993). As the sub-basal newyige rise to intra-epithelial
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nerve branches which are perpendicular to the sshibplane, during the
centripetal movement of the corneal epithelium bibid intra-epithelial nerves
and epithelial cells must advance in the same tiime@nd velocity. This would
also explain the whorl-like configuration of thebsbasal nerves (Patel and

McGhee, 2005).

Furthermore, by virtue of the vertically orientettaepithelial nerves and
nerve endings there is an intricate associatidhegpithelial sheet with the
nerves. This would necessitate the two tissueste A complementary
configuration. Whether the former determines thietaor vice versa is unknown.
In epithelial defects, the epithelial sheet comiésvidh the corresponding
intraepithelial nerves. Both epithelium and nemrasst regenerate. Whether this
occurs concurrently, which is more likely, or secfigdly, with the nerves

following the epithelial healing, is also unknown.

2.3.5 Corneal nerve endings

Nerve fibres arising from the sub-basal plexus inai the corneal
epithelium through all its layers. The intra-eplihkfibres closer to the basal
epithelium run in a more or less horizontal direetand those that terminate more
superficially are vertically oriented and terminatehree different ways: Simple
terminals, that do not branch after leaving thelsakal plexus and present a
bulbar swelling at their termination within or beléhe superficial squamous
cells. Ramifying terminals, where the single infisieelial nerve fibre arising
from the sub-basal plexus divides into 3 - 4 braschvhich run horizontally for a

hundred microns or less and end with a bulbouslsgdike the simple
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terminals. Complex terminals, from nerve fibred theve multiple branches
starting in the wing cells and terminating with tple larger bulbous endings
within the wing or squamous cells of the epithelidrhe nerve endings are not
fixed structures as they change and regeneratecordance with epithelial
turnover (lvanusic et al., 2013; Marfurt et al. 1RQRozsa and Beuerman, 1982).
It is often believed that corneal free nerve teatsrof C- and A-neurons could
only be differentiated through their function. Hoxge, immunofluorescent study
on pig corneas suggest that these nerve termiaalalso be distinguished
morphologically (Alamri et al., 2018). TRPM8 immuiabelled cold
thermoreceptors have more complex endings than TIRRvhuno-labelled

polymodal nociceptors. (Alamri et al., 2018).
2.3.6 Corneal neural receptors

Corneal receptors can be categorized into polyiuataceptors
(receptors that respond to more than one noxiaomikts), cold thermoreceptors
and selective mechano-nociceptors, based on tleetr@physiological and

functional properties (Belmonte et al., 2017).
2.3.6.1 Polymodal nociceptors

Polymodal nociceptors are most abundant type afeadreceptors. They
normally fire in response to a wide range of nogienternal stimuli including
mechanical energy, heat, and chemical irritantgyTdan also be activated in
response to endogenous chemical mediators relégsatlammation and trauma
(Maclver and Tanelian, 1993). Polymodal nociceplage been shown to be

excited by temperatures over 37°C and exhibit §eatibn to repeated heating
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531 (Gallar et al., 1993). They can also respond teahanical stimulus of slightly
532 lower threshold than pure mechano-nociceptors.ofopged mechanical

533 indentation of the cornea can produce a sustairsetharge of polymodal

534 nociceptors (Belmonte et al., 1997). It has beemd that acidic solutions of pH
535 5.0-6.5 or gas jets containing €&lso excite corneal polymodal nociceptors,
536 supporting the hypothesis that excitation of nquioes by low pH is the cause of

537 pain following injury (Chen et al., 1995).
538 2.3.6.2 Mechano-nociceptors

539 They represent 20—-30% of the corneal nerve tersiffddey respond only
540 to strong mechanical stimuli that can potentiadlguit in damage to corneal

541 epithelial cells (Belmonte et al., 2017). In costrid polymodal nociceptors, brief
542  or persistent indentations of the corneal surfaodyce a single or a few

543 impulses from the mechano-nociceptors. This phesisory response helps to
544  signal the presence of a stimulus and to produeétimediate, sharp sensation of
545 pain induced by touching or scratching the corsediace (Belmonte et al.,

546 2017).
547 2.3.6.3 Cold thermoreceptors

548 Cold thermoreceptors account for 10-15% of the tmaanber of corneal
549 sensory neurons (Belmonte et al., 2017). They @anérauously firing when the
550 temperature of the ocular surface is at its nomawade (34-35°C). Moderate

551 cooling or heating can alter the electrical acyiwat these receptors (Brock et al.,
552  2006; Tanelian and Beuerman, 1984). In additiocemeevidence has shown that

553 abnormal activity of corneal cold thermoreceptavjales a plausible
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explanation for the unpleasant sensations in deydegsease (Kovacs et al., 2016).
Increased tear osmolarity, as a result of oculgasa dryness, enhances cold
thermoreceoptors activity and eventually resultsampensatory changes in

lacrimation and blink rate (Kovacs et al., 2016rRa&t al., 2014).

3. Neurochemistry of the cornea (Neurotrophins, Neurotransmitters and

Neuropeptides)

Like all tissues in the body corneal innervatiomssociated with
neurotrophins, neuropeptides and neurotransmifiées neurotrophins are growth
factors, produced by neurons and by the tissuesddry the nerves that play
important roles in the development, maintenanceyj\gi, regeneration and
integration of neuronal function. They activate f7® and Trk tyrosine kinase
receptors, which through several signalling pathssMayng about the diverse
aspects of neural function (Huang and Reichardil2Mastropasqua et al., 2017,
Muller et al., 2003). Nerve growth factor is th@fmtype neurotrophin, which has
gained prominence with regard to the cornea asambkinant NGF is now
available as eye drops for clinical use (Dua ¢t28118). Clinical trials have
shown that it is effective in inducing healing ofrceal epithelial defects in stage
2 (moderate) and stage 3 (severe) neurotrophi¢dgathy (Bonini et al., 2018b;
Dua et al., 2018). Brain derived neurotrophic fa¢RDNF), Glial-derived
neurotrophic factor (GDNF), NT3, NT4 are other rrophins that have been
demonstrated in the cornea (You et al., 2000).d&sssupporting neurons in both

the central and peripheral nervous systems, neyoitns also modulate functions
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in the immune and reproductive systems. They aeiaiplicated in

neurodegenerative diseases, neoplasia, inflammatidmpain.

Neurotransmitters and neuropeptides are polypeptdeatives that serve to
transmit the nerve impulse from one neuron to aotla the synaptic junction.
Examples of neurotransmitters are acetylcholinpadune, serotonin and
histamine. These are small molecular weight motcthat are synthesised at the
synaptic junction in relatively high concentratiphang about their effect over a
short period of time and are rapidly metabolisdueylinduce acute short-term
response and act on specific receptors. Neurompélso have neurotransmitter
function. They have a slow release, bring aboubéopged effect and act on
multiple receptors. Unlike neurotransmitters, tlagition extends beyond the
immediate vicinity of their site of release. Exasgpbf neuropeptides are
Substance P (SP) and calcitonin gene-related pe@@i@RP), which are the most
abundant neuropeptide in the mouse cornea (He andrB2016). In humans, a
relationship between CGRP in tears and cornealengewsity and sensitivity has
been demonstrated (Golebiowski et al., 2017). Qoigtovasopressin, insulin and
glucagon are other examples of neuropeptides. SBden shown to modulate

corneal vascularisation in humans and murine mg@sldariga et al., 2018).

The list of neurochemicals associated with corimearvation is large and
growing (Shaheen et al., 2014). A wide range ofogeptides (SP and
neurokinin A), neurotransmitters (Ach, adrenaliner-adrenaline and dopamine)
and their receptors are expressed by human ketatbygth in vitro and in vivo
(Sloniecka et al., 2015). CGRP and vasointespeptide but not SP were found

in significantly higher concentrations in keratoaercorneal extracts compared to
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normal and scarred (leucoma) corneas suggestih@lteeed corneal innervation
and consequent trophic effects can contribute tnead pathology (Sacchetti,
2014). Involvement of neuropeptides and neurotréitesrs in cell proliferation,
migration and vascularisation show that they pigdite in wound healing

responses as well.

Evidence suggests that these chemical mediatarsreé responses have
biological effects that extend beyond the transioissf a nerve impulse,
affecting corneal health and disease. Given thensxte ramification of nerves in
corneal stroma and their association with keratggind epithelial cells, it is not
surprising that they contribute to physiologicahtemstasis of the cornea and are
involved in pathogenesis of disease, responsquoyiand repair, regeneration
and recovery therefrom. For many years, the rednéti corneal sensitivity was
the only objective (and subjective) measure of eadr@alth. It was the surrogate
measure of all nerve functions. It is now knowrt tin@phic functions, mediated
by the chemical mediators, can be dissociated Bensory functions and in vivo
confocal microscopy has enabled direct visualisabionerve morphology
revealing a range of alterations in corneal patipl®Vhile all the above sounds
logical and is supported by reasonable evideneegtiestion that remains
unaddressed is how these effects translate toa$tenor cornea, which is almost
completely devoid of nerves? Lack of innervationdamply lack of sensitivity
yet the need for trophic support would be no Idsirotrophins and
neuropeptides produced in neurons and releasexha terminals anteriorly

could diffuse posteriorly and support the postecimmea. Equally, non-neuronal
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cells (keratocytes) could produce the chemical ateds in the absence of nerves

or respond via their receptors, to chemical rel@as¢he anterior stroma.

4. Theroleof corneal nerves
4.1  Sensory and reflex function

The cornea is considered as the most densely iateghand most
sensitive structure in the human body. A ‘blinkaisapid closure and opening of
the eyelid involving the orbicularis and levatotgebrae muscles. Spontaneous
blinking, occurring about 15-20 times a minutegesitrally driven in the pre-
motor brain stem. It occurs without any externahati and is involuntary. Reflex
blinking is a protective response to external slitfiat can be tactile, optical or
auditory. It occurs faster than a normal blink @&dlso ‘involuntary’. Corneal
nerves carry afferent impulses generated by taeohperature (cold), pain and
chemical stimuli (McKay et al., 2018). Light touththe cornea causes rapid
bilateral blink response by contraction of the odtaris muscle. This a protective
reflex mediated between the ophthalmic divisiotheftrigeminal nerve and the
facial nerve(s). Afferent fibres from the corneaayse in the spinal trigeminal
nucleus or the main sensory nucleus and neurofecpiirectly to the facial
nuclei on both sides. Efferent fibres from the &daiuclei innervate the orbicularis
oculi muscle. Affection of the trigeminal nervageminal nucleus or brainstem
(cerebello-pontine angle or posterior fossa tumaursgtiple sclerosis or brain
stem strokes), slow down the reflex response (Hrasd Galetta, 2007). A

general belief is that afferent pathway lesionsdcifthe blink reflex bilaterally



647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

33

while efferent (VII nerve) lesions affect the blirdflex unilaterally. However, it

is absent on one side in 8% of normal individubdsGee, 2017).

The blink reflex is considered to have two compasgeone that can be
elicited by touching the cornea (corneal reflex) #me other by stimulating the
supraorbital region (Blink reflex, R2 Componenjferent nerves for the reflex
have been identified in the supraorbital nerve hBmtmponents are regarded as
cutaneous reflexes but could have different nezoahections as the latency and
duration of the corneal reflex have been showrettohger than the R2

component (Berardelli et al., 1985).

The sensory nerves of the ocular surface also geoafferent impulses for
the reflex tear arc. Lacrimation reflexes invollese nerves, thés 7" and
parasympathetic, and three ganglia, the genic(Ndtg spheno-palatine and the
Gasserian (V). The efferent pathway is throughpds@asympathetic fibres from
the superior salivary nucleus in the pons. The obkbe sympathetic nervous
system in lacrimation is ill understood. Lacrimatiwo is a protective reaction to
wash out or dilute noxious agents and irritantar$dring with them a whole
range of antimicrobial molecules that prevent attimesf organisms, destroy

organisms and avert infection.
4.2  Axonal reflex and neurogenic inflammation

A classic reflex arc involves a sensory receptathatpoint of contact of
the nerve terminal with an exciting stimulus (th@argng point), an effector
terminal at the destination (the end point) andiraagration centre, usually a

synapse, connecting the two (orthodromic transmigs{Yaprak, 2008). Unlike
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the classic reflex, the axonal reflex does not passa synapse. The stimulus
propagates an impulse that travels centrally altrg nerve to the point of
bifurcation from where it reverses direction andrensmitted down the nerve
branch to an end organ (antidromic transmissiooh €1 a blood vessels or gland
(Langley, 1923). Early evidence to support this rmgmenon came from
experiments on the conjunctiva; which showed thataxon reflex was abolished
by instillation of topical anaesthesia and remaimgdct after trigeminal nerve

transection (Bruce, 1913).

The triple response of Lewis involves the appeaari@ared line within a
few seconds of injury to skin with a sharp objegiresenting immediate capillary
dilatation in response to release of histamindp¥eéd in a few minutes with
surrounding redness or flare due to neurogenicialde dilatation, which is
followed by a whitevhealresulting from exudation of plasma from the capia
(Mtui, 2015). The axonal reflex is responsible ttoe wheal and flare responses.
The pathophysiology involves a sequence of eveaattrgy with the stimulation
of polymodal nociceptors by a stimulus, which gates impulses that are
transmitted to both the central nervous systenodribmically and to the
neighbouring skin or conjunctiva (limbus) antidraally. Antidromic stimulation
induces a release of neuropeptides, mainly CGRFS&navhich act directly on
vascular endothelial and smooth muscle (Chiu eR@all2; McCormack et al.,
1989). CGRP induces vasodilation by binding to pémes on the arteriolar walls
producing the flare response and SP binds to reeph mast cells inducing
release of histamine (Columbo et al., 1996), wimcineases capillary

permeability causing the wheal response. Whentiimeiks is sustained the
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neuropeptides can mediate neurogenic inflammaktioough attraction and
subsequent activation of the innate (mast cellsddtc cells) and adaptive

immune cells (T cells) (Ansel et al., 1993; Mikagtial., 2011).

Neurogenic inflammation is a term used to desanfbammation mediated by
neuropeptides and neuromediators released fromeatfébres of sensory nerves
and also from autonomic, mainly sympathetic posgianic nerves. The key
substances are tachykinins, CGRP and proinflammatgokines especially IL6
(van der Kleij et al., 2009). These mediators a&tatly on the adjacent blood
vessels to promote vasodilation and extravasafiamflammatory cells. Such a
mechanism has been shown to drive joint, colorg lumd bladder inflammation.
Interestingly, neurogenic inflammation can be ceved by neurogenic
cholinergic anti-inflammatory response mediatedpasasympathetic efferents
for example of the vagus nerve. Acetylcholine garract with nicotinic
receptors on macrophages and monocytes to inhidoitflammatory cytokine

release (Basbaum, 2009; Labetoulle et al., 2019).

A strong body evidence point to the fact that ocid@amune privilege is
under neural control (Streilein et al., 2000). Salvaeuropeptides e.g. vasoactive
intestinal peptides (VIP) and CGRP, that are cating in the aqueous humour,
have been demonstrated to inhibit the functions Toflymphocytes and
macrophages (Taylor, 2007). Transection of the earnerves have been shown
to disable corneal CD11c+ T regulatory cells (T)elg converting them into
contrasuppressor (CS) cells and also to suppress phoduction of
immunomodulatory factors in the anterior chambezgldm et al., 2018; Streilein

et al., 1996). CD11c+ Tregs cells normally inhiBiD8+ Tregs cells, which are
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induced by introducing antigens into the anterioarober. Nerve regeneration is

associated with improved level of these factors.
4.3 Trophic function

In addition to their well-known sensory and refferctions, corneal
nerves also have important trophic effects on traea and play a significant role
in the maintenance of a healthy ocular surfaceutjindhe stimulation of corneal
wound healing after corneal injuries. Damage ofuysion of the corneal
sensory innervation produces a degenerative conditiown as neurotrophic
keratopathy (NK) (Duke-Elder, 1965) characterisgdilb mild or stage 1 NK,
decreased epithelial thickness, varying degreepitiielial degradation,
decreased epithelial cell mitosis, and impaired webliealing after corneal
injuries (Beuerman and Schimmelpfennig, 1980; Boeiiral., 2003b; Lim, 1976;
Sigelman and Friedenwald, 1954; Sugiura and Matsl@iy). This leads on to
moderate or stage 2 NK where there is a frank reaiiig epithelial defect
extending to stromal involvement (severe or stafjgKBwith melting and
eventual perforation of the cornea. A large nundferonditions, both ocular and
systemic, can be associated with NK. Peripherabamneal causes, wherein the
pathology is largely confined to the cornea suchapetic viral infection and
corneal surgery; corneal sensations are impaireddmjunctival sensations and
those of the surrounding skin are preserved. éightral’ damage to the
trigeminal nerve for example with head trauma,aatanial surgery, aneurysms or
tumours (Davis and Dohiman, 2001) sensitivity & tornea, conjunctiva and
facial skin is impaired. Certain types of lens agiihal surgery, and some

ophthalmic laser treatments (e.g. panretinal plaatgalation and cycloablation)
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can also cause NK by damaging the ciliary nerveefilas they pass anteriorly
within the globe between the sclera and the chddmtinson, 1998; Menchini et

al., 1990; Weigt et al., 2002).

Laser refractive surgery has focused intense @teon corneal
innervation and consequence of damage to corneaséhat is inevitable with
any type of laser refractive surgery both by th@sions made to prepare a
corneal flap mechanically with a blade or with fesgcond laser; and by the
excimer laser applied to achieve the refractivengealt has been reported that
procedures like radial keratotomy, photorefrackeeatectomy, and LASIK
produce localised injury of thick stromal nervesl éime sub-basal plexus resulting
in transient mild to severe epithelial changes withrotrophic and/or dry eye

features (Tervo and Moilanen, 2003; Wilson, 2001ls@ and Ambrosio, 2001).

Several studies have been conducted to investilgatexact mechanism
by which the corneal nerve fibres maintain a hgatttrnea and promote wound
healing after corneal injuries. The results of éhswdies suggest that there is a
trophic relationship between corneal nerves anthelml cells and each one
supports the other. Corneal nerves can stimulatieedial cell growth,
proliferation, differentiation and type IV collagéormation through the release of
neurotrophins and neuropeptides (Baker et al., 1@ versely, corneal
epithelial cells can affect nerve survival and gitowirrough the release of certain

factors (e.g. NGF and GDNF) (Emoto and Beuerma87).9

The clinical presentation of nerve damage, bothmgms and signs, can

be diverse and result from consequences of sedsonage affecting tear
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secretion with features of dry eye disease; all@gnd hyperaesthesia due to
nerve inflammation, aberrant firing and aberrantypwer regeneration. Corneal
sensations may correspondingly be decreased @ased though there is no
clinical means yet of measuring hyperaesthesiaoine instances this might
represent different ends of the spectrum of theesemndition, starting with
increased sensitivity and ending in complete ahass. Affection of trophic
function can lead to a cycle of epithelial and eedamage with frank NK
progressing through the three stages. The clisigal of superficial punctate
keratitis (SPK), which are essentially tiny epithktiefects, is generally more
centrally located in post-laser corneal refractuegery compared to classical dry
eye disease where SPK affect the inferior thirthefcornea. The former is more
likely to be a direct manifestation of the nervendae in the corresponding area
with symptoms and signs of dry eye disease beswrandary occurrence (Dua et

al., 2018).

Interestingly, several experimental and clinicabdgts have shown that
there is a bidirectional control of corneal epithwel proliferation: sensory
neurotransmitters enhance epithelial cell mitoslsle sympathetic mediators,
epinephrine and norepinephrine, decrease epitteaibinitosis (Bonini et al.,
2003a; Cavanagh and Colley, 1989). This is sup@diyethe finding in animal
studies that cervical sympathetic denervation redworneal epithelial changes

induced by lesions of sensory nerves (Fujita etlaiB7).

5. Manifestations of corneal nerve dysfunction
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5.1 Definitions

The International Association for the Study of P@KSP) defined pain as
“an unpleasant sensory and emotional experienceiassd with actual or
potential tissue damage, or described in termsict samage.” (Loeser and
Treede, 2008). Pain syndromes can be classifiedwwd main categories:
neuropathic pain (NP) and nociceptive pain (NcH.idinduced by a disease or
lesion of the peripheral or central somatosenseryaous system. Typical
examples of peripheral NP are post-herpetic nelaaliiabetic neuropathy,
chemotherapy induced neuropathy and trigeminalaigiar NP syndromes of
central origin include multiple sclerosis pain, pssoke pain and following
spinal cord injury. Syndromes such as atypical cieréatigue, irritable bowel,
facial pain, interstitial cystitis and fiboromyalgiare types of neuropathic pain

where the primary underlying pathophysiology is fudlyy understood.

Patients with NP can present with positive andégative sensory
symptoms. Positive symptoms are usually due tosskee neuronal activity, for
examples allodynigsub threshold or a normally non-painful stimulu®yokes
pain], hyperalgesifincreased response from a stimulus that normaltwpkes
pain] and paraesthesjilon-painful ongoing sensationNegative symptoms are
the result of deficit of nerve function and maylute hypoesthesi@ecreased
sensitivity to stimulation]anaesthesi@bsent sensitivity to stimulation]
hypoalgesidDiminished pain in response to a normally pairgtimulus]and
analgesidgAbsence of pain in response to a normally paisfirhulus] Patients

with NP often experience a combination of thesagaxical symptoms.
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NcP is defined as a pain that results from actuthr@atened damage to
non-neural tissue and is due to the activationoafaeptors. It occurs in the

setting of tissue inflammation, acute trauma ogsty.
5.1.1 Corneal pain representation in the somatosgnsortex

The human cornea has a high density of nociceftatgransduce
noxious stimuli. Painful stimulation of the humasrmea induces neural activity
in the contralateral primary somatosensory cortaximculus (S1); a region
consistent with the location of the eye represeoriat the mid-cortical region
(Moulton et al., 2012). It is believed that it augh these nociceptive fibres that
the somatotopic representation of the human cameanveyed. Localisation of
the site of pain in the cornea is not as refinedlsswhere. It is difficult for any
patient to tell which part of the cornea is paimgiorates form, i.e. whether is it
central, superior, inferior, nasal or temporal.sTisilikely related to the extensive

overlap of innervated areas from single neurons.
5.2 Corneal pain in the absence of ocular surfaiseakse “Pain without stain”

Dry eye disease is a complex, multifactorial, aatelogeneous diagnosis
that covers a wide variety of clinical presentasig@alor et al., 2018). Symptoms
includes ocular sensations of dryness, discompaity, and ocular surface
abnormalities such as reduced tear productionmeréased tear evaporation
(Smith et al., 2007). Dry eye symptoms are comnmnpiaints in the general
population. They are more frequently encounterdénmales than in males (Moss
et al., 2000), and with advancing age (Schaumbteag,€2003). In the US, it was

found that 14.4% of people between the ages ohdi®4 years reported dry eye
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symptoms (Schaumberg et al., 2003). Most casesyad\ye disease have
associated clinical signs on slit-lamp examinattaat resolve following
appropriate therapy. However, there remain a suddgstients that demonstrate
gross disparity between the scale of symptoms hmidal signs on examination
(Hamrah et al., 2017). Such patients are troubligal profound ocular discomfort
and pain despite having a clinically unremarkabx@neination. Due to the
chronicity of the pain and its subsequent effecthenquality of life, these patients
end up being labelled as having “chronic pain sgnw”. Anti-neuropathic and
antidepressant medications are commonly presctibdlp with the ocular
symptoms. These factors add to the complexitidschallenges around the

management of these cases.

In our experience such patients with longstandymgpoms of ocular pain,
discomfort and burning without obvious clinical issgon examination, who were
referred with a diagnosis of central neuropathiglacpain show evidence of
subclinical corneal pathology on IVCM [Ross A, Atjaba A, Said D and Dua
HS, unpublished observations] (Fig. 16). The cleangclude keratocyte
activation with swelling and enlargement of synalytiell bodies of the
keratocytes, giving rise to a honeycomb-like patiarthe anterior stroma (Fig. 16
A to C). Dendritic-like cells are seen closely asated with stromal nerves (Fig.
16 D-F), which show segments of hyper-reflectivegoowths and hypo-reflective
darker bands along their course. These findingsfgig form of subclinical
inflammatory corneal neuropathy of unknown aetigldgamrah et al. have
recently reported significant nerve alterationpatients with severe neuropathic

corneal pain. The changes include reduction irtdted length and number of
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nerves, increased reflectivity and tortuosity db-¢asal nerves and the presence
of sub-basal microneuromas (Aggarwal et al., 2G#mrah et al., 2017).
Interestingly, treatment with autologous serumdeéaduces nerve regeneration,

which correlates with improvement in patient synmpsa/Aggarwal et al., 2019).

Despite, the ocular pain symptoms, corneal senmsatas paradoxically
reduced in some of the patients. These findinggtheer with the prompt
alleviation of the ocular symptoms upon instillatiof topical anaesthetic, suggest
that the cause of the pain symptoms is likely tp&epheral i.e. corneal, in
origin. The precise mechanism and the pathophygyodd these microstructural
alterations are still unknown. Hormonal and metabiofluences may play a role
in the development of the corneal nerve patholaggch (Auro et al., 2014).
Another possible explanation is central sensitisatif pain pathways as a result
of prolonged periods of unexplained damage to grgperal somatosensory
system (Galor et al., 2018). Furthermore, corngfdinmation has been shown to
induce activation of a specific neuronal pathwathwi sensory trigeminal
complex, which might play a priming role in the t@hsensitisation of ocular
related brainstem circuits and the developmeneafopathic corneal pain
(Launay et al., 2016). The use of topical antianflmatory medications e.qg.
NSAIDs and ciclosporin result only in partial restidn of the subclinical
inflammation and ocular pain (unpublished data) eWhain becomes ‘central’ in

origin, topical anaesthesia does not alleviatgtteent’'s symptoms.

5.3 Anaesthetic cornea with intact corneal nerny@e-ganglionic damage)
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Corneal anaesthesia or hypoesthesia in the preséitact corneal
nerves (sub-basal plexus) can be observed in pateth damage to the pre-
ganglionic nerve fibres of the ophthalmic divisi®i) of the trigeminal nerve or
its CNS nucleus (Dhillon et al., 2014; Dhillon &t 2016). This phenomenon can
be seen following surgical interventions for trigeai neuralgia and
cerebellopontine angle tumours or post-brainsteokst Corneal sensation is
impaired as the afferent conduction to the corsetisrupted. However, the
surviving neurons within the trigeminal gangliorspibly continue to produce
neurotrophic factors, which may sustain and prontoteoutgrowth of distal
axons and also help to maintain the integrity althgy ocular surface. Therefore,
clinically significant symptoms or signs of neuagihic keratitis are less likely to
develop in preganglionic V1 lesions (Dhillon et 2016). This is in contrast to
the postganglionic nerve damage that occurs foliguaser surgery or corneal
transplantation, in which the distal axons degeeendth subsequent loss of both
the sensory and trophic nerve functions. This ssiggat the sensory and trophic
functions of V1 are independent and can be distatiay injury or disease
(Dhillon et al., 2016). Anaesthesia dolorosa iar@ f‘positive” pain phenomenon,
which can also be observed after traumatic or safgnjury to trigeminal nerve.

It is characterised by a persistent “deafferentétentral neuropathic pain with
numbness along the territory of the respected ndaweage. (Elahi and Ho,
2014). In relation to the cornea this can also fieahas pain in an eye with no

corneal sensation but an intact sub-basal plexugl@D et al., 2014).

5.4 Anaesthetic/hypoesthetic cornea with absenveseland abnormal ocular

surface “neurotrophic keratopathy, stain withoutpa
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Pain is regarded as a manifestation of active desaad resolution of pain
is an indicator of improvement of the underlyingndiion. This is true from the
patient's perspective where pain is indicative aftive disease. However,
clinically and pathologically this can be a sinistecurrence indicating further
nerve damage and risk of corneal melting. Neupdii® keratopathy (NK) has
been defined as a disease related to alterationsiineal nerves leading to
impairment in sensory and trophic function with sequent breakdown of the
corneal epithelium, affecting health and integofythe tear film, epithelium and
stroma (Dua et al., 2018). Three stages or grades been described (section
4.3), which can progress from one to the otherifaithe pathology or insult is

severe may manifest directly in the moderate oeseyrade (stage 2 or 3).

From the evidence in the literature and experientepatients and
clinicians alike, it would be reasonable to coneldldat corneal nerve disease is a
spectrum representing hyperaesthesia or paraesthesine end and complete
anaesthesia with loss of sensory and trophic fansti at the other.
Symptomatically it can progress along this pathesirat any one point for a
prolonged period or indefinitely or manifest at gmoint in the path at first insult
and progress thereafter. The precise pathophystalloghanges that correspond
to these clinical manifestations and subjective mypms need to be better

understood.

6. Visualisation of corneal nerves

6.1 In vitro/ex vivo techniques
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Most of the knowledge of corneal nerve morpholadjgtribution and
ultrastructure in the last century was the resulight and electron microscopic
studies of corneas processed with different typesains (Jones and Marfurt,
1991; Schimmelpfennig and Beuerman, 1982; Zand&Méaddell, 1951a).
Corneal axons appear morphologically homogeneoeh ey are demonstrated
using routine histological methods or electron wscopy techniques. However,
immunocytochemical staining shows the presencéfiairent neuropeptides
within the cytoplasm and peripheral axonal fibréesaneal neurons (Belmonte et
al., 2004). For example, about 58% of corneal nesiese immunoreactive to
Calcitonin gene-related peptide; 20% of them atsttain Substance P (Felipe et

al., 1999; Muller et al., 2003; Stone et al., 198érvo et al., 1981).

There are several staining techniques for the dstration of corneal nerve
distribution (Table 1). Some of these stains aeglus demonstrate corneal
sensory nerves while others are used specificalggdin corneal autonomic

nerves.
6.1.1 Whole mount Acetylcholinesterase stainingrtege

This is an enzyme histochemical staining technighieh has been proven
to be excellent for the histological demonstratibicholinesterase containing
corneal nerves (Ishida et al., 1984). The cholarase enzymes are found along
the corneal nerve axons and believed to be redperfsr the maintenance of the
ionic gradient along the axons during propagatibiine nerve impulse
(Morishige et al., 2009). Whole mount preparatibase allowed excellent in

vitro three-dimensional visualisation of the distiion and spatial arrangement of
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the nerve bundles and characterisation of thetstreiof certain individual nerves

within large trunks (Robertson and Winkelmann, 1970

In general, this technique is relatively simple gredds reproducible
results. Its reaction product is constant and statdking it ideal for reliable
quantitative studies (Ishida et al., 1984). Bdbicthere are two types of
reactions; specific and non-specific cholinesterasetions. The latter can
demonstrate Acetylcholinesterase as well as Botylinesterase (Karnovsky and
Roots, 1964) and so allow adequate visualisatiandd¥idual axons and their

terminations, as well as large nerve fibre bundles.

Specific inhibitors are used with the former reactand can differentially
demonstrate any of the above enzymes dependingedye of inhibitor used
(Robertson and Winkelmann, 1970). The non-spegfiction is preferred in
quantitative studies for two reasons. Firstly ahademonstrate as much of the
total nerve population as possible and therefare;specificity is an
advantageous feature. Secondly, it allows for apamaon with other methods
used for quantification of corneal nerves suchad ghloride impregnation and
methylene blue which are also non-specific (Isketlal., 1984). Several studies
have been conducted to investigate the corneaésemvdifferent mammalian
corneas qualitatively (Chiou et al., 1999; Linnalet 1998; Morishige et al.,
2009; Robertson and Winkelmann, 1970; Tervo, 18n@)quantitatively

(Hernandez-Quintela et al., 1998; Ishida et al84)9

Using this modified technique several novel findirg corneal

innervation in health and disease have been dised\and presented (Al-Agaba
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et al., 2011a; Al-Agaba et al., 2012a; Al-Agqabalet2018; Al-Agaba et al.,
2011b; Al-Agaba et al., 2010b; Al-Agaba et al., 281 Tervo and Palkama, 1978;
Tervo et al., 1983). The other popular techniguelieen the neuronal class Il
beta-tubulin technique(lI-tubulin). The latter technique has largely bees®ed to
demonstrate normal innervation patterns in anirnadleas and some in normal
human corneas (Chucair-Elliott et al., 2015; Halgt2010; Kubilus and
Linsenmayer, 2010; Marfurt et al., 2010). The meogensive studies on human
corneal pathologies have used the AChE techniqistinbt features
demonstrated by the AChE technique were not visigleheplll-tubulin. For
example, the bulb like termination of sub-Bowmaesves at the perforation sites
have been shown using AChE technique (Al-Agab& e2@10b) and confirmed
by IVCM (Al-Agaba et al., 2010a) but were not se@@éth plli-tubulin. Similarly,
two recent studies on the architecture of corneales usinglll-tubulin failed to
show the limbal nerve corpuscles (He et al., 204#xfurt et al., 2010). This is
most probably related to the intracytoplasmic lmgabf this neuron-specific
major cytoskeleton protein, which would be staiimethe axons but not in the
surrounding sheath. We, however, were able to dstraie these large structures
both en face and on cross section (light and trégssam electron microscopy)
using AChE method (Al-Agaba et al., 2018) and aoméid by IVCM (Al-Agaba

et al. Clinical and In Vivo Confocal Microscopicateires of Neuropathic Corneal
Pain, Revision under review, BJO 2019). Featurakate visible by both
techniques, AChE anlll-tubulin, show strong correlation. A similar cefation
between the en-face imagining confocal microscephnique and AChE findings

in corneal diseases such as keratoconus, bulloatokathy, post penetrating
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keratoplasty and after CXL is also demonstratedX@ba et al., 2011a; Al-

Aqgaba et al., 2012a; Al-Agaba et al., 2011b; Al-Bgat al., 2012b).

AChE is intrinsic to blood vessels and nerves, thhisre both are present
the picture can be confusing. Differentiation beswéhese two structures stained
by AChE technique has been reported (Al-Agaba.ef@ll2b). Red blood cell
membranes also stain with AChE hence it is possiblesual red blood cells in
the lumen of blood vessels. Blood vessels lacHitiear, longitudinal striations
that are seen in nerves only. Cross section hgittdbexamination of ‘nerves’ do
not show a lumen whereas that of vessels show ardufirhis approach has been
used to corroborate the observed difference betwenres and vessels during
optimisation of the staining techniques in vasas&d corneas. Additionally,
NanoZoomer scanning of the corneal whole mountsvallback tracing of all
tortuous structures. Only those structures whezetlyin could be traced to
major nerve trunks, with longitudinal striationsreéabelled as nerves. Aberrant
nerves in the cornea seen in disease states oifteim €losed loops (Al-Agaba et
al., 2011a; Al-Agaba et al., 2011b; Wolter, 19649664), which is not a feature of
blood vessels. Correlation of the AChE structuréh walinically photographed
nerves and blood vessels in particular, also alldierentiation of nerves and
vessels in specimen removed during corneal trantgilan and processed for
AChE staining (Al-Agaba et al., 2011a; Al-Aqabaakt 2011b; Al-Agaba et al.,
2010b). In these studies all corneas were also ieeghtlinically with the slit

lamp prior to surgery.

6.1.2 Methylene blue staining technique
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In a review of several histochemical techniquesldsestaining neural
tissue, Weddell and Zander demonstrated suffidetdils of corneal nerves most
precisely with methylene blue (Weddell and Zand®g0). This method is
difficult to perform and requires high skill andeattion to the technical
procedure. In addition, non-neuronal corneal tiddgekeratocytes may be
stained with this dye and can be a source of carriut/nlike cholinesterase,

methylene blue can be used for in vivo staining dé and Zander, 1950).
6.1.3 Sliver staining technique

This technique is less favourable because it requhin tissue sections for
staining and final nerve ramifications, such aséhpresent in the epithelium, are
difficult demonstrate. This is because epithel@lscusually stain deeply with
silver. However, stromal nerves are fairly well derstrated by this method

(Weddell and Zander, 1950).
6.1.4 Gold chloride staining technique

These demonstrate the nerve pattern nicely in winolents but this
technique has been superseded by the cholinesterdseque because of greater

detail obtained with the latter method (Robertsod @inkelmann, 1970).
6.2 In vivo techniques: In vivo confocal microscfCM)

Although the human cornea is well known to be engly sensitive,
relatively few aspects of corneal nerve parametersspatial arrangement and
nerve density, have been illustrated by classisablogical techniques. This is
mainly because corneal nerves start to degeneeayequickly after death (Muller

et al., 1997). In addition, these techniques reglie specimen to be physically
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cut and stained so considerable information abdmit spatial arrangement may
be lost during specimen preparation (Guthoff et24l05). IVCM offers a great
opportunity to study corneal nerves and other arsiguctures in vivo. The basic
principle of IVCM is to decrease light scatterimgrh tissues outside the focal
plane enabling optical sectioning of thin layerdhe cornea resulting in
producing two- or three-dimensional images. Intietial nerves cannot be
visualised with current devices but the sub-bakadys is clearly demonstrated.
As it allows enface imaging and montaging of imajgesh over a large surface
area, the complete picture is manifest. Indicasah as length, density,
tortuosity, beading, reflectivity and branchingtpats can be measured with
dedicated software to give quantitative or semintjtetive values. Not all
confocal microscopes allow the same sub-basal nm#exais quality studies. This
is related to resolution, the ability to scan tle@ghery of the cornea and the same
site repeatedly. The Rostock cornea module whichave used in all our studies
has a side camera that allows localisation of thjeabive lens on the same site of

the cornea (Petroll and Robertson, 2015).

7. Nerve affection in corneal pathology

VCM has become the gold standard technique forysigdhe morphology and
morphometry of the human corneal nerves in healthdisease (Cruzat et al.,
2017; Patel and McGhee, 2009; Shaheen et al., 2BeNeral factors can affect
the accuracy of the morphometric measurementsrokabnerves. The type of

confocal microscope, the quantification method @nedarea scanned must all be
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taken into consideration (Cruzat et al., 2017; leabbal., 2012). Three types of
in vivo confocal microscopes have been developecesihe principle was first
described by Minsky in 1955 (Petropoulos et al1;®0These are tandem
scanning, slit scanning and laser scanning confogabscopes, the latter being
more accurate and sensitive method for evaluatingeal nerves in vivo and
allowing the detection of corneal immune and inftaatory cells as well (Qazi et

al., 2015).

In normal subjects, the average sub-basal nervsitgieis 20 mm/mrh
(18.8-21.4) in the central cornea and 10.5 mnfnBr8—12.2) in the periphery
(Cruzat et al., 2017). The diameter of sub-basalasehas been reported to range
from 0.52um to 4.68um. Sub-basal nerve beading, which represents adatioru

of mitochondira, can vary from 90 to 198 beads/nfifatel and McGhee, 2009).

Quantitative IVCM examination of the corneal strémarves remains
controversial and challenging. This is probably ttuéhe fact that stromal nerves
cross the cornea obliquely, relative to the en fdaae of confocal images. Image
through the cross-centre of the nerve is, therefooe always feasible, especially
when saccadic eye movements are present (Pat&lleé@tiee, 2009). The density
of stromal nerves can range from 0.31 to 3.61 mm/ and diameters from 5.5

mm to 11.4 mm in the healthy subjects (Cruzat.e®8all7).
7.1 Post-surgical conditions

7.1.1 Laser in situ keratomileusis (LASIK) arsall incision lenticule

extraction (SMILE)
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In LASIK, nerve damage results from the transectibthe nerves during
creation of the flap with a blade or femtosecors#tgpulses, and the subsequent
ablation of stromal tissue and the nerves contdinekin. In SMILE the
extracted stromal lenticule brings with it a comesable number of anterior-mid
stromal nerves (Mehta J, Al Agaba M, Jung C, Nubiland Dua HS,
unpublished observations) (Fig. 17 and 18). Deneyat. have compared SMILE
to LASIK for post-refractive ocular surface healithey reported a higher
incidence of mild to moderate dry eyes in LASIK gpaup to 6 months after
surgery (Denoyer et al., 2015). Furthermore, calreeb-basal nerve parameters,
including nerve density, number of long fibres, #manching as assessed by
IVCM were significantly higher in the SMILE groupmpared with the LASIK
group 1 and 6 months post-operatively. They coredutiat LASIK has more
profound impact on corneal innervation and subseityiecular surface health
particularly in early post- operative period whempared with SMILE. These
findings have to be reconciled with the fact thaubastantial number of stromal
nerves are excised with the SMILE lenticule, asdaigd above. This can be
explained on the basis that the entire sub-basalplis an interconnected
network with several larger nerve trunks carryimgpulses via the stromal nerves
to the limbal afferents and beyond. With SMILE sevstromal nerves are cut
but some remain and can carry information fromethigre sub-basal plexus,
retaining functional integrity. In LASIK, all theemves along the entire
circumference (except the hinge) of the flap aaegsected thus affecting

sensitivity of the flap.
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Experimental animal studies have shown a sigmifit@ss of epithelial,
sub-basal, and superficial stromal nerves in th&IKAflap excluding the hinge
area at 3 days after surgery. However, initial negative nerve fibres are also
identified at that time. At five months, a nearmai nerve architecture of the
epithelial, sub-basal, and anterior stromal inngowvas achieved. (Linna et al.,
1998). One to two years after LASIK, the corneglioas with better sub-basal
nerve morphology show better corneal sensitivityege regions are near the flap
hinge or the central cornea. According to Donnehé&tlal., transection of nasal
and temporal oriented long ciliary nerve bundlesrfithe corneal nerve plexus
following creation of a superior-hinge flap leadsiore marked loss of corneal
sensation and more pronounced dry eye signs anptegm than that with a
nasal-hinge flap (Donnenfeld et al., 2003). Thees&mture has been reported
with a narrow nasal-hinge flap compared with a whiage flap in which more
nerves are left intact (Donnenfeld et al., 2004widver, in+eecent human IVCM
studies on sub-basal nerve regeneration after LABIg sub-basal nerves are
still identifiable in the central cornea 3 daysattASIK (Linna et al., 2000).
Thereatfter, they showed a great reduction in nupdsexere entirely absent by
seven days (Avunduk et al., 2004; Calvillo et 2004; Lee et al., 2002; Linna et
al., 2000; Mitooka et al., 2002; Pisella et al.02D With continued nerve
regeneration, there is a gradual increase in th&eu of visible sub-basal nerves,
in the central cornea by the first six months (@lahet al., 2004; Darwish et al.,
2007c; Mitooka et al., 2002). However, two studiase shown that the
morphometric features of this plexus had not retdrio preoperative levels 6

months after surgery (Darwish et al., 2007a; Damneisal., 2007c). On the other
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hand, corneal sensitivity was decreased after LASIKreturned to normal levels
3 months after surgery. Therefore, it was conclutietithere was no direct
correlation between the nerve fibre length and ign$ sub-basal plexus and
central corneal sensitivity (Darwish et al., 200Darwish et al., 2007c). Other
studies have revealed a significant correlatiomwben central corneal sensitivity
and sub-basal nerve morphology (Linna et al., 2@d@d)density (Lee et al., 2006;
Perez-Gomez and Efron, 2003). This discrepancy nligldue to difference in
the ways by which the correlation was establishedtudies where no correlation
was found, the investigators have correlated tlstgperative state of corneal
sensitivity and sub-basal nerve morphology withrtheeoperative state, while in
those studies that documented a strong correlatierauthors have compared the
degree of corneal sensation with the level of sakabnerve regeneration
postoperatively only. It is worth noting that ineolong term follow-up study,
there has been incomplete regeneration of the ashtnerves for up to 5 years

following LASIK (Erie et al., 2005).

It is likely that in some individuals the nervegeeaerate to preoperative
levels and in others they do not. Despite the redutensity postoperatively
corneal sensations have largely been reporteduoreo preoperative levels after
an initial drop. Moreover, the physical recoverynefves appears to lag behind
the return of sensations. This suggests that iteesglundancy in the density of
nerves the cornea is endowed with or that our nustlod testing corneal
sensitivity (Cochet Bonnet aesthesiometer) isiradht crude and not sensitive
enough to distinguish between finer degrees of dbsensitivity. Transected

nerve segments in the flap and stroma tend tosiBleion IVCM for a variable
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number of hours before they disappear, functioved preceding morphological
loss of the nerves. Depending on the timing ofek@mination, these segments

may be counted as ‘normal’, compounding the neeresiy measurements.

The contention that superior-hinge flaps are wtliae nasal-hinge flaps
is based on the premise that main bundles of nemigimating from the long
posterior ciliary nerves that traverse in the nasa temporal meridians are both
transected in superior-hinge flaps and the nasaksere preserved in nasal flaps.
This is not entirely accurate as the depth at wthehmain bundles enter the
corneal periphery is mid to two-thirds of the cahihickness, which is well
posterior to the thickness of the flap either bychamical keratomes or
femtosecond laser. Hence it is unlikely that tregantrunks are transected during
making of the flap. Histological studies on humameas that have undergone
LASIK have not been described (to the best of mowedge). We had the
opportunity to study one eye ‘a few years’ post-IlASy the AChE whole
mount staining technique. Disrupted nerves witbgular thickening and aberrant
regeneration in the form of thick closed loops weoted, primarily within the
margins of the LASIK flap (Fig. 19) (Dua HS, Dhitie/ unpublished

observations).
7.1.2 Laser epithelial keratomileusis (LASEK)

There is a significant reduction in the sub-basale diameter and density
following LASEK and these do not recover to preapige states even 6 months
after surgery (Darwish et al., 2007a; Darwish et2007c; Lee et al., 2006).

Although tortuosity showed a significant decrea$era ASEK, the sub-basal
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nerve tortuosity measured by tortuosity coefficieturns to its normal
preoperative level by 3 months (Darwish et al.,Z0)0When comparing the
regeneration of sub-basal nerve following LASIK &MBEK, different studies
have reported different results. Whilst, Lee ata@kd slower sub-basal nerve
regeneration following LASIK in comparison with LEX (Lee et al., 2006),
Darwish et al found no differences in the recovargub-basal nerves following

these procedures (Darwish et al., 2007c).
7.1.3 Photorefractive keratectomy (PRK)

Several studies using confocal microscopy have beerducted to
investigate the corneal nerve regeneration and nodogy over time following
PRK. The immediate postoperative finding is thelent stromal nerve damage
fifteen minutes after PRK (Heinz et al., 1996).1A2 months, the first sub-basal
nerve bundles can be seen (Linna and Tervo, 19g@éjter with sprouting nerve
fibres in the anterior stroma at the edge of thamdp directed toward the centre
of cornea (Heinz et al., 1996; Kauffmann et al9@)9 At 5-8 months following
PRK, regeneration of stromal nerves and sub-basakrplexus seems to be
completed. However, abnormal branching and accessor nerve fibres were

present (Heinz et al., 1996; Kauffmann et al., 2996

Some investigators have noted that the sub-basa meorphology
returned to its preoperative state at 1 year (Mdledersen et al., 2000), while
others have reported a bizarre pattern comparedrols 2 years following PRK
(Bohnke et al., 1998). Regarding sub-basal nermsitjeafter PRK, a 59%

reduction in the density at 1 year has been regdté it returned to its pre-
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operative density 2 years following PRK (Erie et 2005). Moreover, no
significant difference in the number and densitgefitral sub-basal nerve fibres
were found when compared to controls at 5 yealsvilmig PRK (Moilanen et al.,

2003). In this study, 71% of patients showed a rabtmanching pattern.

In LASEK and PRK there is the added element ofhetigl healing in addition to
anterior stromal healing. Cytokines and growthdextelated to epithelial healing
are known to influence keratocyte ‘activation’ anducing haze with an
exaggerated healing response in the stroma (Leth,e2003). What effect these
molecules have on nerve regeneration is unknowggufar nerve sprouting and
persistence of abnormal thin nerves could be mlatehe epithelial wound
healing response. As far as the causes of nemagkin these procedures are
concerned, it seems likely that the microkeratootecauses most of the nerve
damage in corneas after LASIK. However, in PRKegithelial nerves are
removed with the removal of the epithelium by wkatemeans, sub-basal nerves
photoablated, and a certain degree of stromal riejuges is induced by

photoablation as well (Tervo et al., 2002).
7.1.4 Corneal crosslinking

Corneal crosslinking (CXL) for keratoconus has @asi techniques with
different initial effects on sub-basal and stromalves. The immediate effect of
corneal crosslinking was studied in an ex-vivo niedgere corneoscleral buttons
were subjected to epithelium-on or -off corneakstimking. There was complete
absence of the sub-basal nerves in the epithelifigraup while they were intact

in the epithelium-on group. Stromal nerves althopggsent, showed localised
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swelling, axonal discontinuity, and interruptionaxfonal membrane in the area

that was treated with epi-off CXL (Fig. 20) (Al-Aba et al., 2012a).

Other studies have shown that crosslinking whetpghelium-off or -on
leads to initial reduction of anterior stromal Keytes and nerve densities.
Regeneration starts at 7 days post-operativelyeoyensprouting from
neighbouring non-injured nerves. At 3 months, themxcessive stromal nerves
regeneration in the anterior stroma which reachesperative levels at 6 months
(Xia et al., 2011). Sub-basal nerves density wagad to be markedly reduced in
the first 6 months following epithelium-off CXL babmplete regeneration was
seen by IVCM after 12 months with return of cornsahsation to baseline
(Mazzotta et al., 2015) while trans-epithelial gloking with iontophoresis (-
CXL) was associated with less damage to the suatbasves and return to

normal density within 6 months (Bouheraoua et24l14).

The ex vivo study on human corneas would suggestamost all the
damage that occurs to nerves during CXL is reladgtie removal of the
epithelium. However, IVCM based in vivo studies gest damage to the anterior
stromal nerves as well, which implies that this rtedie a relatively longer time to
manifest and is likely to be associated with thstflammatory response that

will be absent in the ex vivo model.
7.1.5 Corneal transplantation

Penetrating keratoplasty (PK) is a major surgicatpdure wherein all
corneal nerve bundles entering the cornea aree@VvEhis often performed in the

background of a corneal pathology itself would heaesed alterations in both
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function and structure of the nerves. The knowleofgeorneal nerve regeneration
and repair in this context is therefore importamta 12 month follow up study
after penetrating keratoplasty, no clinically olbsdée sub-basal nerves were
identified over. (Darwish et al., 2007b). In a simalongitudinal study of a series
of cases series, presumed nerve structures haaeobserved at the level of
Bowman'’s layer at one year post operatively (Hgkwvorth et al., 2006). In both
studies, stromal nerves were observed in the desdraea from 6 months after
surgery. The longest longitudinal study was perferby Richter et al (Richter et
al., 1996), documenting re-innervation of the caintornea with stromal nerves at
7 months and sub-basal nerves at 2 years posttmedyaThe long-term effects

of penetrating keratoplasty on sub-basal cornealesehave also been
investigated in larger cross sectional studiesdiRis are sub-basal nerves appear
tortuous and disoriented and nerve density is redlueven four decades after

surgery (Niederer et al., 2007; Patel et al., 2007)

Among different indications for penetrating kerdagpy, patients with
keratoconus showed greater regeneration of théasal nerve plexus (Niederer
et al., 2007). This might be due to the fact tlmaheal nerves in the peripheral
host rim are relatively healthy allowing relativebpid regeneration after PK.
Considerable changes, in the form of thickeninglan@ing and coiling, have
been noted in corneal nerves in keratoconus. Telemeges are largely restricted
to the ectatic area of the cornea while the periplemains essentially normal.
(Patel and McGhee, 2006) The regenerating nerwestioaraverse the scar tissue
between donor and host tissue to reach the cehtihe donor cornea (Escapini,

1955; Rexed, 1951). The scar tissue may have gbaffect slowing the
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progression of the regenerating nerves or may geo&iplane of less resistance
directing nerves to grow along the graft host jiorcas is classically seen with
any invading vessels after PK (Fig. 21) (Al-Agabale 2012b). Where the
underlying disease has resulted in attrition atehagtion of peripheral nerves it
is to be expected that the regenerating respons&lbe delayed, aberrant and

incomplete.

After PK, sub-basal nerves are seen to approactettiteal cornea
travelling directly from the host sub-basal plexmshe donor cornea and also
from regenerated stromal nerves, passing antetiorbugh the Bowman'’s layer
as they normally do (Fig. 21). Varied patternstaérmal nerve regeneration are
seen with in the same transplanted corneal butte@se may be straight and
angular resembling normal nerves, coiled and tokuesembling aberrant
regeneration and some area may be devoid of néfigs22). Central corneal
sensitivity is reduced in grafted eyes and rettwnsear normal levels after 12
months. There is no direct association betweeshbebasal nerve regeneration
and recovery of central corneal sensitivity. Thosild be due to the limitation of
IVCM in detecting fine regenerating nerve fibreattbhontribute to the restoration
of the corneal sensitivity postoperatively. (Dawet al., 2007b) Other alternative
explanations could be the redundancy of cornealengensity or the inadequate
sensitivity of the Cochet-Bonnet aesthesiometelisgissed in the context of

laser refractive surgery in section 7.1.1.

Although tear film function has been shown to remosignificantly faster
in DALK patients compared to PK patients, there wassignificant difference in

corneal sensitivity between the two groups at 12t postoperatively.(Lin et
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al., 2014). The earliest appearance of the sub-besae was documented at
about 6 months after surgery in both groups. Inteng there was no statistical
difference in the number and density of the sulaba®rves, even 5 years
following DALK and PK (Zhang et al., 2013). Thisegpected as the transection
of tissue and nerves contained therein is idenfamaDALK and PK barring the
retention of pre-Descemets layer (Dua’s layer, DL15-20 microns, which like

the deep stroma does not contain any nerves (Daia €015).

Descemet’s membrane endothelial keratoplasty (DMiEd€¢e been shown
to result in short term reduction of the sub-basaive density and corneal
sensitivity which return to their preoperative edubetween 4 to 20 months
(Bucher et al., 2014). The authors’ suggest thegisal trauma including corneal
incisions and descemetorhexis are the most likedsaon for the transient nerve
alteration. Neurotrophic factors released by thenab corneal endothelial cells of
the graft may contribute to nerve regeneration.jAlet al found a similar trend in
patients following Descemet-stripping endotheligdrdtoplasty (DESK). The
sensitivity diminishes 1 month postoperatively agiirned to preoperative values
by 24 months. However, the sub-basal nerve regeoerappears retarded with
abnormal branching pattern (Ahuja et al., 2012).ddEhelial keratoplasty
procedures, DSEK, pre-Descemets endothelial kdestyp(PDEK) and DMEK,
are the main stay interventions for endothelidufai (Singh et al., 2018). These
procedures involve small incisions at the limbudascataract surgery. Though
some nerve transection can and does occur at ti&oin sites the damage in
never as much as in DALK and PK. In DSEK a finitecaint (100-150 microns)

of stroma is also transplanted; in PDEK, DL and d@esets membrane (DM) is
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1323 transplanted and in DMEK only the DM is transplahtélence, it is almost
1324  certain that no donor nerves are transplanted BaltK and PK. This could have
1325 a bearing on the nerve changes seen in the immediad late postoperative
1326 periods. While evaluating nerve changes followimmgneal transplantation it is
1327 important to consider that much of these will rel&d the underlying pathology

1328 and not just the type of procedure performed.TCh&ract surgery

1329 Following extracapsular cataract surgery, a sigaift reduction in the
1330 sensitivity is confined to a wedge-shaped areaneixtg from the scleral wound
1331 and encompassing the central cornea (John eB&8)1 This is in contrast to a
1332 small area of reduced sensation around the incstenn phacoemulsification.
1333  When compared to the superior clear corneal incjgEmporal incision seems to
1334 induce a larger decrease in corneal sensitivibgiahot significant (Kim et al.,
1335 2009). Corneal sensation returns to its preoperdg¢ivels by 3 months, despite
1336  suboptimal regeneration of sub-basal nerve fibsesoafirmed by confocal

1337  microscopy (Kim et al., 2009). There is notion ttie temporal long ciliary nerve
1338 is damaged with temporal incisions (see also secioLASIK 7.1.1). If this were
1339 the case, innervation in a significant area wodafiected. It has been shown
1340 that the long ciliary nerves arborize far postefadm the limbus and the branches
1341 enter the limbus equally all around (Al-Agaba et 2010b; He et al., 2010;

1342  Marfurt et al., 2010). The risk of damaging the m@aunk of the long ciliary

1343 nerve in limbal incisions is low or none at all.

1344 7.2 Diabetic keratopathy
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Diabetic keratopathy is characterised by abnormaivation of the
cornea that results in decreased sensitivity anairad epithelial wound healing
(Bikbova et al., 2018). It represents a form ofmaénophic keratopathy where
patients are at a higher risk of ocular compligaisuch as surface irregularities,
corneal erosions, corneal infections, and strorpatiication. In neurotrophic
keratopathy the balanced mutual dependence ofedipitbells and nerves is

disrupted leading in damage to both structures (@uwd., 2018).

Sub-basal nerve plexus is frequently affected abelic patients with
neuropathy and the changes depend on the sevenguompathy. It has been
found that the number of fibres, number of beadiagsl branching pattern of
fibres in the sub-basal plexus decreases in cdsagdto severe neuropathy
(Hossain et al., 2005; Malik et al., 2003; Midenale 2006) but corneal
mechanical sensitivity decreases only in cases setlere neuropathy (Rosenberg
et al., 2000). The epithelium of diabetic patiemith advanced neuropathy is
much thinner than that of diabetic patients withoemiropathy, (Rosenberg et al.,
2000) which could influence the subjective respdnsgensitivity testing.
Moreover, it has been shown that there is a doecelation between corneal
sensitivity and the number of nerve fibres in thb-basal plexus and between
corneal diabetic neuropathy with peripheral diabeturopathy. Quantitative
analysis has also shown greater tortuosity in ptiwith greater severity of
peripheral diabetic neuropathy (Chang et al., 26G@#ljnikos et al., 2004). The
visibility of corneal nerves by IVCM enables thagsessment and serves as a
useful clinical marker of peripheral diabetic nquathy (Boulton, 2007; Pritchard

et al., 2015). Proliferative diabetic retinopathyaiso significantly associated with
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lower sub-basal nerve densities (Mocan et al., pa®@rprisingly, diabetic

patients with normal corneal and vibration sensasioow significant changes in
the sub-basal nerve parameters compared to healttigols (Messmer et al.,
2010). Therefore, IVCM is capable of detecting eidbnerve fibre damage
earlier than corneal aesthesiometery and perceptivibration in the lower limb
(Messmer et al., 2010). This reinforces the notibredundancy of corneal
innervation wherein for a measurable loss of sefityilas assessed by the Cochet-
Bonnet aesthesiometer, there has to be a signifioss of visible nerves in the
sub-basal plexus. Interestingly, IVCM can detectaalities of sub-basal nerve
fibres in the inferior whorl complex in diabetictts even before the
development of clinical peripheral diabetic neutbggPetropoulos et al., 2015).
In addition to corneal nerve alteration, diabetecnea demonstrates decreased
basal epithelial cell density, reduced anteriavratil keratocyte counts, and
endothelial cell density (Bitirgen et al., 2014heBe cellular changes can only
been seen in diabetic patients with retinopathylenterve alterations seem to
precede the development of diabetic retinopathig. Worth noting that increasing
duration of type 2 diabetes has been linked t@tbgressive degeneration of sub-

basal nerve plexus (Lagali et al., 2017).

Other cellular changes haven been observed intitatmneas. Qu et al
showed an increase in the densities of Langerhalissio patients with type 2
diabetes mellitus who have corneal punctate epajpa&ihy. These changes were
related to the reduction in basal epithelial celsity leading to a delayed corneal

wound healing (Qu et al., 2018).
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A previous study has provided evidence that pamekpihotocoagulation
for diabetic retinopathy is associated with furthetuction in sub-basal nerve
density and this damage seems to be due to thet effargon laser on the long
ciliary nerves as they traverse the suprachoraipate and could be directly hit
by the laser pulses or be involved in the induazdreng in the choroid (De Cilla

et al., 2009).
7.3 Herpetic corneal disease

Herpes simplex infection of the ocular surfacenss leading cause of
neurotrophic keratopathy and infectious corneaidsiess in the developed world
(Farooq and Shukla, 2012; Looker and Garnett, 20D&)neal nerves are at the
heart of the pathophysiological mechanism and temptypical manifestation of
the disease. During primary infection, corneal eerserve as a conduit for the
herpes virus to track into the trigeminal ganghe retrograde axonal transport,
where a latent HSV-1 infection is established. &wihg reactivation, viral
particles travel down sensory nerve axons to thdaosurface where they

replicate and induce cytopathic effect.

In patients with herpes simplex keratitis (HSK)QM has shown a
significant reduction in the density, number ananghing of the sub-basal nerve
plexus (Hamrah et al., 2010). The chronicity of itifection episodes has been
associated with greater nerve damage. In acuteplfdbe disease, loss of
corneal sensation correlates strongly with proforgttliction of the sub-basal
nerve density. However, anatomical nerve regermrasi often associated with

poor functional recovery, even 3 years following tast infection episode
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(Chucair-Elliott et al., 2015; Moein et al., 2018jhe contralateral, clinically
unaffected eyes also show a diminishment of subtresve plexus as compared
with normal controls, suggesting bilateral nerteraition in a clinically unilateral
disease (Hamrah et al., 2010). Furthermore, Tewtifan has been shown to be
impaired in the unaffected eyes of patients withateral recurrent herpetic
keratitis, even when the disease is apparentlysqar@ (M'Garrech et al., 2013).
This finding suggests that recurrent disease inflaaeduction in the afferent
pathways of the tear reflex from the affected égadling to tear abnormality in

the unaffected eye.

Following resolution of HSK, from a month to 12 ntlos later, a majority
of patients have a normal looking sub-basal plekaagh a few patients can
show either complete absence of sub-basal nerxept& reduced number of

nerve fibre bundles (Rosenberg et al., 2002).

In an experimental animal model, sympathetic hypeervation of the
infected cornea is causatively linked to the patbimial changes observed in HSK
including thinning and scarring (Yun et al., 2018\rprisingly, sympathetic
nerves have also been shown to prevent cornealasiation by sensory nerves
and promote severe and persistent stromal inflammaburgical sympathectomy
is shown to halt or reverse the process of comeaVvascularisation, scarring and
thinning and is often associated with restoratibsemsory innervation (Yun et
al., 2016). Following penetrating keratoplasty deép anterior lamellar
keratoplasty, corneal nerves are cut along theeeaiticumference. Aberrant and
limited nerve regeneration in corneal grafts haanb@bserved even 14 years

following surgery, where a large number of nenagkedl to regenerate and extend
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beyond the area of graft host junction (Al-Agabalet2012b). This blocks the
free access of viral particles to the donor corie@ensive virus replication and
shedding have been detected at the graft hostiquneithout clinical signs of
disease (Nicholls et al., 1996). This regeneragpiattern possibly explains the
altered clinical appearance of recurrent HSK imeat grafts where lesions can
start only in the vicinity of trephination line,tefi geographic, and lack of typical
dendrites and terminal bulbs (Remeijer et al., 1983zende et al., 2004). Late
recurrences are located more centrally inside gm@dbutton corresponding with

further progression of the regenerating nerves.

In herpes zoster virus keratitis (HZVK), the redostof sub-basal nerve
density is strongly linked to the profound chanigesorneal epithelium e.g.
increase cell size, decrease epithelial cell dgasit squamous metaplasia
(Hamrah et al., 2015). The recovery of corneal sgms and innervation is
possible, though many years after the last infaatipisode (Cruzat et al., 2016).
The dendritic pattern of HZVK is similar but notiatical to HSVK. The
dendrites are described as ‘elevated’ rather thimerated’ but are likely to be
related to the epithelial nerves as (Piebenga ailosbn, 1973) both herpes zoster

and simplex viruses have an affinity for nervosstke.
7.4 Dry eyes

Aspects of dry eye are covered in sections 5.25ahdThe Tear Film
Ocular Surface society Dry eye workshop-2 (TFOS CENY report defines dry
eye disease thus “Dry eye is a multifactorial digeaf the ocular surface

characterised by a loss of homeostasis of thditegrand accompanied by ocular
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symptoms, in which tear film instability and hypsnaolarity, ocular surface
inflammation and damage, and neurosensory abndresatilay etiological roles”
(Craig et al., 2017). Inflammation and neurosensdmyormalities play a role in
the pathophysiology of DED and are both accentulayeldED being the principle
factors contributing to pain, soreness and othenpsgms. Hyperosmolarity leads
to inflammation and nerve damage, which when pagietl over time lead to
altered gene expression of ion channel and recepbteins, sensitisation of
nociceptors, altered excitability and abnormahfirof impulses (Craig et al.,

2017).

It is well known that Sjogren’s syndrome is asstedawith increased
prevalence of peripheral and cranial neuropathyijévieg et al., 2004). In
addition, a relation has been suggested betweeabinnervation and aqueous
tear production. Therefore, different studies gsWiCM have been conducted to
investigate the sub-basal nerve plexus in patieittsaqueous tear deficiency.
With regard to the effect of dry eye on sub-basave density, results are
inconsistent. While some studies report a signifiiyareduced sub-basal nerve
density in both Sjogren’s and non-Sjogren’s syndrairy eyes compared to
normal (Benitez del Castillo et al., 2004; ShinQ2)) others have observed no
significant differences in the density (Hosal ef 2005; Meijering et al., 2004;
Zhang et al., 2005). One study even reported aeased number of nerves per
frame in patients with Sjogren’s syndrome compésesbntrols (Zhang et al.,
2005). Another finding reported is an increasedIsagal nerve tortuosity in
Sjogren’s syndrome (Benitez del Castillo et alQ2G&hin, 2002; Zhang et al.,

2005), which was hypothesised to be due to tleasel of nerve growth factors in
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response to the inflammatory process (Shin, 200%).conflicting reports of
increased or decreased nerve density and othenptaes in dry eye and their
return to normal in response to treatment (Cadial.e2018) could be reconciled
by considering that dry eye disease is a specttartirgy with increased nerves
and/or increased sensitivity (hyperaesthesia)eretirly stages followed by
reduction in nerves and hypoaesthesia as the digpeagresses (laccheri et al.,

2017; Stepp et al., 2018).

Active DED affects not only the nerves but epithletiells and keratocytes
as well. Laccheri B (2017) noted increase in celfigity of the intermediate
corneal epithelial cells, activation of keratocysesl increased density, tortuosity
and reflectivity of sub-basal nerves; all of whirelurned to normal levels on
treatment with cyclosporine drops indicating thegrad behaviour to sensory
stimuli and trophic effects, both play a role inDBut can be reversed in the
early stages of disease but the same may not lsébpokater in the course when

permanent structural changes and nerve loss oBelmonte et al., 2017).
7.5 Keratoconus

Early IVCM studies regarding alteration in the ceshnerve morphology
in patients with keratoconus have been limitedualitative analysis, with
observations such as “ sub-basal nerve fibres ngniniand out of the plane of
the field in the central cornea” (Tervo et al., 2p8uantitative studies have
shown that patients with keratoconus exhibit aifigant decrease in the sub-
basal nerve density (Patel et al., 2008; PateMef@hee, 2006; Simo Mannion et

al., 2005; Tervo, 1977). However, a consideraldieicéon in corneal sensation
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1509 has been revealed only in patients with keratoceviuswore contact lenses
1510 routinely (Patel et al., 2008). Stromal nerve besdire thicker than normal,
1511 especially within the area of the cone explainifywrominent corneal nerves
1512 are often seen using slit lamp biomicroscopy. (Mamet al., 2007). Some

1513 authors have linked these nerve changes to praognestkeratoconus (Brookes
1514 etal., 2003). IVCM and immunohistological studmskeratoconus buttons
1515 removed during corneal transplant surgery has teslegnormal architecture
1516  with a tortuous network of nerve fibre bundleshat apex of the cone; many of
1517 these bundles formed closed loops. The sub-bagallise structures too are
1518 thickened in keratoconus (Al-Agaba et al., 2011dtePand McGhee, 2006). At
1519 the topographic base of the cone, nerve fibre msappeared to follow the
1520 contour of the base, with many of the bundles mig@oncentrically in this

1521 region. On histology, stromal nerves within theicahregion showed a series of
1522 changes of varying severity and were classified grades based on the extent
1523 and severity of the morphologic alterations. Indgr8, there is an excessive
1524  overgrowth of tortuous nerves forming a very commpietwork within the central
1525 cornea (Fig. 23). In grade 1, the changes areeificdtm of mild looping and

1526 coiling of the central stromal nerves. These figdiprovide an evidence of the
1527 involvement of corneal nerves in keratoconus amgests further that they may
1528 play arole in the pathophysiology of the diseasgession (Al-Agaba et al.,

1529 2011b).
1530 7.6 Contact lens wear

1531 Although associated with reduced corneal senséRatel et al., 2002),

1532 long term contact lens wear does not appear tatatfee morphology,
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distribution or number of corneal nerves (OliveSato and Efron, 2003; Patel et
al., 2002). Non-structural functional nerve chanigage been attributed to the
decreased corneal sensitivity in these subjectis.Mhy be a sensory adaptation
of the nerves to the constant presence of the coletas much like the

unawareness of the clothes we wear on a daily (@s&czyk et al., 2018).

7.7 Fuchs’ Endothelial Corneal Dystrophy (FECD) aBdllous keratopathy

(BK)

Corneal nerve changes in conditions associatedahitbnic corneal
edema have been studied in pseudophakic bulloasdpathy, Fuchs’ endothelial
corneal dystrophy (FECD) and failed corneal graftsough all conditions have
persistent corneal edema they fundamentally diffeelation to transection of
corneal nerves in those that have had penetraérggdplasty compared to those
that have not. Some may have had an endotheliatdq@asty procedure where
the nerve trauma is expected to be different tsghwho have undergone
penetrating keratoplasty. Ahug al. studied sensitivity and nerve morphology in
patients with FECD and reported low sensitivity aedsity prior to endothelial
keratoplasty (EK), a further drop after the op@matnd slow recovery to pre-
operative levels (Ahuja et al., 2012). As the pasaunderwent EK it is presumed
that the indication was endothelial cell dysfunetemd corneal edema, implying
an association of the reported changes to edema.dbacorneal thickness and
endothelial cell counts is not provided. They ndteat stromal nerves were
frequently tortuous and formed loops with the abmadities persisting up to 36
months post EK. Kobayashi et al (Kobayashi et28108) noted that patients who

underwent Descemets stripping automated keratyptastiery had a change in
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the morphology from honey comb pattern, consisigtit edema, to normal not

activated keratocytes.

Al Agaba et al. (2011) studied corneal nerve charnigdK with in vivo
confocal microscopy and AChE staining of buttomaaeed for BK eyes during
PK (Al-Agaba et al., 2011a). They reported thatribeve density was lower, the
branching pattern less apparent and the sub-basaswere thinner in BK
compared to normal. Other striking anomalies sucloealised thickenings or
excrescences and abnormal twisting, coiling, angilg of the mid-stromal
nerves were also noted. The localised thickenifmsgethe course of the nerve
were interesting as they represented either thedfta degenerated nerve or the
starting point of aberrant nerve re-generatiois ftot just the nerves that show
structural changes in BK (Fig. 24 and 25). Subegigthfibroblasts with scarring,
altered keratocyte cell bodies and absent or deedesub-basal nerves were seen
both histologically and on IVCM in patients with BK long standing, secondary
to FECD and cataract surgery (Alomar et al., 20M/jth the popularity of EK
these findings raise an interesting question. Aedeaving behind a normal
cornea following EK compared to PK? How long do ¢thanges described above
persist and do they every return to normal is umkribFrom clinical experience
it appears that vision improves despite reducediseity and residual changes in
nerves and resident cells, raising once againukestepn of structure-function

correlation, redundancy and what constitutes noasdhr as vision is concerned?

BK is often encountered as a unilateral diseash, patients presenting to
ophthalmic emergency care due to an acute ongetinfin the background of

blurred or misty vision. It was thought that theulae pain in BK is caused by
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defects in the corneal epithelium exposing the ealnerve endings as the fluid
filled epithelial bullae rupture or due to nerveesthing and irritation by the
epithelial and subepithelial bullae. However, Alaka et al (Al-Agaba et al.,
2011a) have demonstrated that sub-Bowman’s neatlesr than sub-basal
nerves may be contributing to the symptoms of pHiis explanation was based
on their finding of reduced sub-basal nerves (diam&nd branching) indicating
attrition of sub-basal plexus in chronic corneamd which does not reconcile
with the increased pain experienced by these fdati@berrant morphology and
hyper-regeneration of the sub-Bowman’s and midgbenial stromal nerves may

contribute to the symptom of pain in BK.
7.8 Neurotrophic keratopathy (NK)

Aspects of NK are covered in sections 4.2 and 41h& hallmark of NK
is affection of corneal nerves, which manifestsreduced or absent corneal
sensations associated with epitheliopathy, epéahdgfect and ultimately stromal
ulceration (Dua et al., 2018; Mertsch et al., 20¥8)sence of corneal sensations
with preservation of trophic functions carriers aod prognosis compared to
conditions where the nerve damage is such thattbgphic and sensory functions
are affected. (Dhillon et al., 2016) Although stednmvolvement is traditionally
regarded as stage 3 (severe grade) of NK, recaerene with OCT examination
has shown that stromal involvement occurs earihécourse of the disease and
is present throughout (Mastropasqua et al., 2018)lerstanding of pathogenesis
of NK stimulated the development of recombinantveegrowth factor (rhNGF)

eye drops, for the treatment of stage 2 and 3 Riplacement of deficient nerve
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growth factor promotes the healing of epitheliund aerve regeneration (Bonini

et al., 2018a; Bonini et al., 2018b; Dua et al180

Corneal neurotisation is a surgical approach thstores corneal sensation
by reinnervating the stromal and sub-basal layetseocornea. The first report of
IVCM in patients with NK and corneal neurotisatias published by Fung et al
(Fung et al., 2018; Malhotra et al., 2019), whérgas shown to restore sensory
and trophic functions of corneal nerves, effecyivglting the progression of NK
and preventing further visual loss. Another cagereby Ting et al (Ting et al.,
2018) pointed out that the findings on IVCM anddymthological examination
suggest that partial regeneration/maintenance roieab nerves occurring after
corneal neurotisation surgery is likely attributedhe paracrine neurotrophic
support, instead of direct sprouting, from the Ipabal transplanted nerve

fascicles.
7.9 Glaucoma

IVCM has been used to evaluate microstructural gearmn different types
of glaucoma as well as to assess corneal changesad by topical antiglaucoma
medications and their preservatives and study oatijal wound healing process
specially in filtering blebs. Gatzioufas et al.did the corneal morphology in
primary congenital glaucoma, and found that thermt and posterior stromal
keratocyte density was significantly reduced, comagavith normal controls but
there were no observed differences in the keratoryirphology(Gatzioufas et
al., 2013). In pseudoexfoliation syndrome and ghaua, studies have shown

marked reduced density of sub-basal nerves andokgtas in the anterior and
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1627  posterior stroma as well as endothelial cells witieased endothelial cell

1628 polymegathism and pleomorphism (Kocabeyoglu eRall6; Yuksel et al.,

1629 2016).

1630 Several studies have shown reduced density aneased tortuosity and
1631 reflectivity of sub-basal nerves in patients origlaticoma drops (Baghdasaryan
1632 etal., 2018), thus highlighting the importancd\6EM as a potential tool to

1633 assess the level of toxicity of topical antiglaueodnugs specially those

1634  containing preservatives and to identify thosequai who would best benefit
1635 from laser trabeculoplasty or minimally invasivegrry to control the disease
1636  without detrimental effect on the ocular surfacd aarneal innervation (Labbe et
1637 al., 2012; Zhang et al., 2019). Patients on predme containing antiglaucoma
1638 medications have a greater reduction of sub-basakrdensity and corneal

1639 hypoesthesia, when compared to preservative friggsdMartone et al., 2009).
1640 Although hypoesthesia is often associated with owpment in patient symptoms
1641 despite presence of signs, this is not always dlse as nerve pathology can be
1642 associated with allodynia and hyperalgesia in tiesgnce of hypoesthesia.

1643  Another study conducted in France compared pat@nentiglaucoma

1644 medications and dry eyes to normal subjects anadfdioiat corneal sensation was
1645 significantly decreased in the former two groupsthle dry-eye group, corneal
1646  sensitivity correlated with the density and the bemof nerves, whereas in the
1647 glaucoma group, corneal sensitivity correlated avity the tortuosity of sub-
1648 basal nerves. This highlights the importance ofeusidnding the pathophysiology
1649 of the disease process to understand the cornellagittveen corneal sensation and

1650 sub-basal nerve morphology. Cyclo-destructive pataoes to control advanced
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glaucoma such as cyclo-photocoagulation did nangeeaffect the morphology

or density of the sub-basal nerves (Raivio e28l02).
7.10 Corneal dystrophies

Corneal dystrophies are a heterogenous group @ftigenften
progressive, bilateral non-inflammatory corneakdses, which are characterised
by deposition of abnormal material (Klintworth, Z2000ut of 25 types of corneal
dystrophies, two are often associated with sigaifi@lterations of nerve structure
and/or function. These are lattice corneal dystydih€D) and epithelial
basement membrane dystrophy (EBMD). Keratoconud=&@D are discussed in

sections 7.5 and 7.7 respectively.

Lattice dystrophy typically starts as superficiakfnodular opacities in
the central cornea, which appear to have stellaped extensions when
examined with slit lamp at high magnification (Wasland Hendrson, 1962).
Coalescence of the opacities form radially orieniteehr deposits extend from the
centre to the periphery, sparing the limbus. Thiedappearance closely
resembles the branching pattern of corneal nervelemonstrated by several
histological staining methods (Al-Agaba et al., @B 1Marfurt et al., 2010). A
previous study has revealed that hyalinisatiornefdorneal nerves is responsible
for the clinical appearance of linear opacities (Mfoand Hendrson, 1962).
Furthermore, the clinical observation of the diremttinuity of corneal nerves
with the linear opacities at the periphery provitlesher evidence of the
involvement of nerves. In addition, many patienithwattice dystrophy suffer

from corneal hypoesthesia or anaesthesia (Meret6jé?), which probably
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accounts for the development of recurrent cornexiens and poor wound
healing in these cases (Martin and Safran, 198&réfore, degeneration and
hyalinisation of the corneal nerves is often coased the primary pathology of

lattice dystrophy.

In familial amyloidosis, slowly progressive involment of cranial nerves
including the trigeminal, facial, glossopharyngeaicessory, and hypoglossal
nerves is clinically evident in patients with asytorpatic corneal lattice
dystrophy (Boysen et al., 1979). Impaired corneakgivity in those patients is
correlated with the reduction in density of subabaerve plexus and the number

of long fibre bundles on IVCM (Rosenberg et al.02pD

EBMD is a common anterior corneal dystrophy, witbravalence of at
least 2% in the population (Waring et al., 1978)e Tajority of EBMD cases are
asymptomatic and only 10% of patients present weitiurrent corneal erosions.
IVCM shows a reduction of up to 50% in the sub-basave density when
compared to the healthy population (Germundssori_agdli, 2014). The poor
adhesion of the basal epithelium to the underljaagement membrane or the
hemidesmosome complexes to the Bowman’s zone ciaoaimg filaments, with
subsequent erosions result in disruption and abalaiegeneration of the sub-
basal nerves (Germundsson and Lagali, 2014). @troerves remain intact in
this condition (He and Bazan, 2013). Interestingtg, improved sub-basal nerve
density following phototherapeutic keratectomy hasn attributed to

regeneration from the peripheral sub-basal nerves.

7.11 Limbal stem cell deficiency (LSCD)
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Limbal stem cells play a pivotal role in the mairdace of normal
homeostasis of the corneal epithelium and wountifge¢Deng et al., 2019; Dua
et al., 2000). LSCD is defined as “an ocular stefdisease caused by a decrease
in the population and/or function of corneal eplitdestem/ progenitor cells; this
decrease leads to the inability to sustain the abhomeostasis of the corneal

epithelium” (Deng et al., 2019).

On IVCM, LSCD is associated with a magnitude ofrayes in the corneal
microstructure. These include a decrease in bashleial cell density and
epithelial thickness, the presence of metaplastis avith hyper-reflective nuclei
and the presence of goblet cells within the cortjualised corneal epithelium

(Chan et al., 2015a; Chan et al., 2015b; Deng.£2@12; Miri et al., 2012).

Alterations in sub-basal nerve plexus have beeptineary focus of nerve
research in LSCD. Several studies confirmed thaatsoh in the sub-basal nerve
density and increased nerve tortuosity in stagexdégnt manner (Chuephanich et
al., 2017; Miri et al., 2012). In one study, sulsdlanerves were detected in 22%
of patients with total LSCD and in 100% of patiewith partial LSCD (Miri et

al., 2012). The density of sub-basal nerves wa#®66 mm/mmin cases of
total LSCD and 9.7:6.32 mm/mnf in cases of partial LSCD. Both figures fall

significantly below the normal sub-basal nerve dgrmeviously published using

laser scanning IVCM.

In normal corneas, sub-basal nerves and their iaseddntraepithelial
nerve terminals run for several millimetres witkine corneal epithelium without

Schwann cell support. Emerging evidence suggesttraeal epithelial cells
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function as surrogate Schwann cells during norroaldostasis and wound
healing (Stepp et al., 2017). Therefore, loss ofieal epithelial phenotype could
possibly explain the nerve dropout in the sub-bpkale in LSCD. In addition,
the abnormal corneal and limbal epithelial cellt 8CD are unable to produce
glial cell-derived nerve growth factors and nervevgh factors, which are

necessary molecules to maintain neurite growthrageneration (Qi et al., 2007).

There is another aspect to visualisation of sulalb@erves through multiple
epithelial cell layers by IVCM. In conjunctival naepithelial neoplasia, the
hyper-reflective nature of the epithelium and thiekness was considered to
‘mask’ the sub-basal nerves, which ‘re-appearedhasCIN responded to
treatment with mitomycin C. The central segmentaiire of the re-appearing
nerves corresponding to return of normality of épéhelium showed that a

masking effect and visibility are factors to be siolered (Alomar REF).
7.12 Small-fibre sensory neuropathy (SFSN)

Small-fibre sensory neuropathy (SFSN) refers tpexsum of peripheral
neuropathic conditions of diverse aetiologies #ratcharacterised by damage to
small-calibre sensory and/or autonomic nerve filfrestsma et al., 2004; Tavee
and Zhou, 2009). It exclusively involves finely nlipated and unmyelinated
fibres (Holland et al., 1998). Patients often suffem burning, pain and
autonomic deficits but with normal strength, propaption, and reflexes (Gorson
and Ropper, 1995). Symptoms are usually distributedstocking/glove pattern,
suggesting a length-dependent neuropathy (Buchadr, &@015). Alternatively,

SFSN may manifest as an asymmetrical patchy patfesansory symptoms
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1743  primarily affecting the arms or even in the facepiicating a non—-length-

1744  dependent ganglionopathy (Gemignani, 2012; KhanZwdi, 2012).

1745 SFSN can be caused by hereditary or acquired ¢onsli(Holland et al.,
1746  1998). Hereditary causes include autosomal rece$sreditary sensory

1747  neuropathy, familial amyloidosis, and Fabry's dsse@cquired conditions

1748 include diabetes mellitus, systemic amyloidosisl hnman immunodeficiency
1749 virus infection, and exposure to certain neurotonedications. However, no
1750 underlying cause can be identified in up to 47%axfes (Devigili et al., 2008),
1751 therefore these cases are categorised as “idigga@urrently, the assessment of
1752 intraepidermal nerve fibre density through skingsipis the gold standard tool to
1753  establish the diagnosis (Lauria et al., 2010). fués invasive nature, skin biopsy
1754  has a limited application for longitudinal studi&ore importantly,

1755 intraepidermal nerve fibre density does not oftemalate with the disease

1756  severity (Bucher et al., 2015). It therefore becsmgparent that non-invasive
1757 measures are required to objectively evaluate thiphology of small sensory

1758 nerve fibres.

1759 In a prospective single centre study, Bucher stuadied 14 patients with
1760 histologically confirmed SFSN. Corneal nerve parergeand dendritic cell
1761 density were assessed with IVCM and compared wgéiraatched healthy
1762  controls and correlated with symptoms, diseasesep@and histopathological
1763 findings (Bucher et al., 2015). They reported auctidn in nerve fibre density
1764  and total number of nerves with increased nerveidsity. However, these
1765 changes were not correlated with intraepidermalenébre density or clinical

1766  symptoms. Similarly, Tavakoli et al evaluated calneeuropathy in Fabry’s
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disease and found that IVCM and non-contact coraesthesiometry provide
novel means to detect early nerve fibre damagedgsiinction in patients with

Fabry disease (Tavakoli et al., 2009).

IVCM evidence of corneal small fibre neuropathy bls® been reported
in Wilson disease (Sturniolo et al., 2015), fibraigya (Ramirez et al., 2015),
sarcoidosis (Oudejans et al., 2017) and Parkinstis&ase (Podgorny et al.,

2016).

8. Futuredirections

Although numerous studies have contributed to oomkedge and a lot is
known about corneal nerves in health and diseaserth conclusion that can be
drawn without any controversy is that a lot moredeeto be learned, both in
health and in disease. Part of this challenge tggpense with some old
conceptions and reconcile others with new discegeaind emerging knowledge.
The long ciliary nerves, travelling anteriorly aipthe nasal and temporal
meridians were believed to divide into multiplerrhes at the 3 and 9 O’clock
positions to innervate the cornea leaving a waegtgtone at the 12 and 6 O’clock
positions. This fed the debate between preferemcené nasal hinge (where the
nasal fibres are not transected by the keratondeblaver the superior hinge
(where both the 3 and 9 O’clock meridian are tratesh in LASIK. As
anatomical clarification emerged that the nervesevegually distributed along
the entire circumference and the main trunks ldgvo¢he depth at which most

keratome blades made their pass it became appbetithe location of the flap
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1790 was not paramount but thinner flaps were betteddguate knowledge drive

1791 hypotheses that become accepted as the ‘norm’pmotred one way or the other.

1792 The terminal bulb-like structures located in thb-basal plane from

1793  which the nerve bundles of the sub-basal plexs® aie there to be seen but their
1794  structure and function if any, needs to be decigthetheir visualisation with
1795 some stains but not with others indicates that te&te to the nerve sheath and
1796 not the axoplasm or axolemma but that is wherertde runs cold. Ultrastructural
1797  studies supplemented with immunohistochemical sgidhould reveal

1798 information on structure, function and possibleriol the afferent pathway of the
1799 nerves. Specific involvement of these structurgsaithology should cast light on
1800 the basis of some clinical signs such as the melépd isolated lesions of

1801 nummular keratitis and lesions of Thygeson’s kégatsome clinical features of
1802 conditions such as lattice dystrophy and denduiters of herpetic eye disease
1803 relate to major trunks or fine terminal branchesaheal nerves. In the latter
1804 example the exact mechanism by which virus pagieldt the nerve to infect the
1805 epithelium along the final length of the terminghiches is unclear. A better
1806 understanding of this association will provide gigiin to nerve function and

1807 nerve pathology.

1808 The intimate relationship between epithelial neraed epithelial cells
1809 implies that with any abrasion, whatever the catise|ost epithelium will take
1810 with it a network of nerve fibres, ripping them difieir attachments to the sub-
1811 basal plexus. Though it is known that the termfime bundles and axons are
1812 always in a state of flux, how they respond to lolslarge patches of cells is

1813 unclear. The whorl pattern of the entire cornedhetial sheet and a
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corresponding whorl pattern of the underlying salsd) nerve plexus reinforces
the close association of the nerves and epithegial Regeneration of lost tissue
to recreate the same association must require exngialectional signalling in
which the epithelial cells could direct the nereeshe nerves the cells. Research
to monitor and understand the regeneration andseeaation of nerves and cells
is warranted to understand better the associatidri@expose clues related to

nerve regeneration.

The LNC are recently discovered nerve related siras that are located
at the limbus, have a distinct morphology and atieniately related to the limbal
epithelial crypts. Here again the close associaifamerves and epithelium is
inescapable. Though a little is known of the suitetof the LNC, nothing is
known of their function. They resemble pressuressesnin the skin opening an
exciting possibility of the existence of pressueasors along the limbus, which
may provide feedback on changes in corneal shagpewamature in response to
external pressure applied by the lid blinks, lidegging, eye movement and eye
rubbing. Any relationship to intraocular pressu@nd be pure speculation and
blue-sky but as a notion, it cannot be brushedeagtésearch to address these
questions will gather pace and answers found tealahe true role of these

corpuscles.

The lack of correlation demonstrated in many st&idietween corneal
epithelial nerve density and corneal sensitivitgadgean explanation. This
discrepancy is noted both when nerves are losadpa disease process and
during regeneration after attrition related to suygespecially laser refractive

surgery. The explanations put forth are eitherdamdancy between nerve supply
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that exists and what is needed for the corneasjwored normally to

environmental stimuli or the limitation of the ingtnents we have at our disposal,
to assess corneal sensitivity. Exploration in lwbtbctions will yield scientific
dividends, a better understanding of the catchraeza of major nerve bundles
and the overlap between the sensory fields ontleehand and the invention of
better devices to measure and quantify not jushaband subnormal sensitivity
but also hypersensitivity, which in some patiesta cause of significant
morbidity and suicidal thoughts. Studies with fuocal magnetic resonance
imaging together with sub-threshold stimuli arengetontemplated to understand

this hitherto inadequately explored area in theicdil setting.

Linked to the above is the correlation between fioncand structure.
Many abnormalities are seen in corneal disease griéCM, some by whole
mount histology and some by both techniques. Hansthuctural changes relate
to function is ill understood. Advances in measgisensitivity will help to
understand association of sensory function withcstire for example why in BK,
with absent sub-basal plexus there is intense psitti?s related to gross stromal
nerve anomalies seen in this condition? Convergekeratoconus, gross
thickening of stromal nerves and sub-basal bule4ittuctures are seen with
almost no sensory symptoms. However, such charayed be a reflection of
altered trophic function beyond that what is natetlK. The predominant
stromal nerve changes in keratoconus are seee iaréa of ectasia. Can ectasia
be a manifestation of altered trophic influenceshemnkeratocytes? Trophic
effects on corneal epithelium in NK are countergdrbatment with recombinant

NGF with effects that last well beyond the duratadrmdministration of NGF
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drops. Clinical trials on a number of different ddrons are contemplated or
required to ascertain effects of altered trophisih i@versal thereof, on the
disease condition being treated. Studies suches® tshould provide some
answers to the question whether corneal nerve |mafhdrives the disease or
altered nerve morphology is a consequence of $eade? Terms such as
‘activated’ or ‘resting’ nerves and keratocytes aiteibuted to these structures
based on IVCM appearances, implying a structuretfan relationship. These
are based on some available evidence but at leeblypotheses that need to be
proved or disproved. Besides keratocytes, therether cells in the stroma
notably dendritic cells that are also ‘activateddanigrate to the corneal stroma
in response to inflammatory stimuli. The role gk cells in modulating corneal
nerve responses is being studied and should hélpilid our understanding of

inflammation and induced symptoms originating frthra cornea.

Most IVCM kits only capture a very small area of ttornea and image
‘stitching’ software is used to build a ‘bigger fice’ unlike whole mount staining
of corneal buttons that provide a complete pictfrihe nerve pathology. As the
latter can only be done in-vitro it can only prawid snapshot of the pathology at
time the cornea was removed for grafting, whichssally in a more advanced
stage of the disease process. Advances in technodtaged to hardware and
software of IVCM will allow longitudinal examinatioover wider surface areas
both during the course of the disease processtamesponse to treatment. It is
more than likely that the studies indicated wilbgress and accrue data at pace
such that answers to some of the questions posqar@bably just around the

corner.
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12. Legendsfor Figures

Fig. 1. Acetycholinestrase stained corneoscleral rim feonormal donor showing
a dense network of fine and thick nerve bundleshiiog the limbal nerve plexus.
They are derived from the long ciliary (uveal) resvBar = 500 microns

(Nanozoomer digital pathology microphotograph)

Fig. 2. En face sequential light micrograph of whole moficgtylcholinestrase
stained cornea extending into limbal stroma showimggoup of limbal nerve
corpuscles (LNC, brown stained dots) and their @é&manches originating from
the superficial limbal plexus anterior to the padies. Bar = 250m (Nanozoomer
digital pathology microphotograph, 5 micron secsiéiom A to F). Inset in ‘A’
illustrates a cross section of a subepithelial LM@ich is solid and shows a

neuronal extension attached to it.

Fig. 3. En face sequential light micrograph of whole moicgtylcholinestrase
stained cornea extending into limbal stroma showmgal nerve corpuscles
(LNC, arrows) that reside within the palisades ofV(P), which are all
connected to fine nerve fibres (arrowheads) arifioigp the superficial limbal
plexus anterior to the palisades. Bar = @idQNanozoomer digital pathology
microphotogra, 5 micron sections from A to F). lngeA’ illustrates a cross
section of a subepithelial LNC, which is solid atwws a neuronal extension

attached to it.

Fig. 4. In vivo confocal microscopy images of limbal nen@puscles (LNCs).

LNCs appear as hyper-reflective ovoid or elongatedctures (arrows). Bar =
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10Qum. Frame depth; A=4pm, B=40um. Bar = 10@m. (Images were taken
with Heidelberg Retina Tomograph Il Rostock Corridadule [RCM];

Heidelberg Engineering GmbH, Heidelberg, Germany).

Fig. 5. Scanning electron micrographs of a limbal nervuascle (LNC) and its
single terminal nerve branch using tissue maceradohnique. LNC appears as

an oval structure with a ruffled outer surface.;Bar 10Qum, B = 2Qum.

Fig. 6. Cross section photomicrographs of Acetylcholireest stained
corneoscleral disc. A. A large (brown stained) s@@bnerve is seen in the mid-
stroma of the peripheral cornea. B. Shows the inshgelarge stromal nerve
within the anterior stroma (arrow) bifurcating irtteo nerves (white and black
arrowheads) C. The same branches as in ‘B’ asappyoach the surface of the
peripheral cornea and conjunctiva. The photomi@aplgs were obtained from a
corneoscleral disc used for endothelial keratopldsts standard practice to
remove the epithelium to increase the depth ofaobtain thinner donor
lenticules for Descemets stripping endothelial tagrkasty, hence the epithelium
is not seen. Sparse endothelial cells were sesonte sections, the loss being
related to processing through the two steps. B&8dG-microns (light microscopy

with haematoxylin and eosin counter stain).

Fig. 7. Low (A) and high (B) magnification transmissioeetron micrographs of
an Acetycholinesterase (AChE) stained normal huocaainea showing a stromal
keratocyte (K) in close contact (arrow) with a weally-oriented stromal nerve

(N). In this experiment, the tissue was first foiméixed and taken through the

steps of AChE staining, then fixed in EM fixativedaprocessed for TEM. The
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black dots are AChE stained particles. Althouglsé¢hearticles can be seen
scattered around the area of interest, they aaglgleoncentrated on either side of
the nerve (not in the nerve itself) illustratingthhe sheath is stained and nerve
itself is not, with the AChE technique.. The patter regarded as strongly

positive. Bar; A=2@Qm, B= 2um.

Fig. 8. Nanozoomer digital pathology photomicrographs oé#lcholinestrase
stained normal human cornea. The nuclei of thénefwd cells are clearly
demonstrated in enface sections from the centdhpanpheral cornea,
respectively (A & B). At a higher magnification gtfepithelial cell nucleoli can
also be seen (B). Enface sections of the anterioms: show the heterogeneous
morphology of keratocyte nuclei (C & D). A stronmedrve (arrow) is seen in

section (C). Bar; A=5@m, B=25um, C=20@um, D=10Qum.

Fig. 9. Nanozoomer digital pathology photomicrograph oblethuman corneal
mount stained by the Acetylcholinesterase technigud@wo bulb-like structures
are seen (arrowheads) at the point where the sw¥B0’s nerve emerges in the
sub-basal plane. B. A sub-Bowman’s nerve is se@mierge anterior to
Bowman'’s layer and bifurcate with one branch teatiimg in two bulb-like
structures and the other in four blub-like struetufarrowheads). In both A and B,
fine axon bundles are seen to arise from the bkebstructures, divide and
reconnect to form the sub-basal plexus. Bars grB0(reproduced with
permission from the BMJ publishing group Ltd., auth own publication Al

Aqgaba et al. 2010).
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Fig. 10. Sequential enface nanozoomer digital pathologyghizrographs of
Acetylcholinestrase stained cornea (A-F at 5 mienbervals) showing the bulb-
like termination of a stromal nerve at the perfianrasite anterior to Bowman’s
layer, from which a single sub-basal nerve bundkea (arrowhead in section F).
The epithelial cells in the close proximity to twlb-like structure show dense

nuclear staining with Acetylcholinestrase (arrow<i D and E). Bar =1(m.

Fig. 11. Electron microscopy images of the bulb like stooes in normal human
cornea. A, a scanning electron microscopy (SEM)genaf a bulb-like structure
(arrow) at the perforation site, from which a sengub-basal nerve arises. B, a
SEM image of a bulb-like structure, (arrow) lyingthe sub-basal plane anterior
to a perforation site, from which two sub-basalesrare seen to emerge. The
basal surface of the basal cells of the epithebwenseen beneath the bulb-like
structure as the specimen of the epithelial shagbleen flipped around to scan
the basal surface. C & D, a transmission electramascopy (TEM) image of a
bulb-like structure at two different magnificatio#s single stromal nerve bundle
(arrowhead) is seen to run obliquely and anteritwlgerforate Bowman’s layer
and end in a bulb like structure (arrow). E-G, TiMages of a single bulb like
structure at different magnifications. E&F, A siagitromal nerve bundle
(arrowhead) is seen to run anteriorly to perfoBde/man’s layer (P) and end in
a bulb like structure (arrow) in the sub-basal pléiapi = basal epithelial cells,, K
= keratocyte). G, the bulb-like structure appeansd made of convolutions of
endoneurium surrounding bundles of neurofilameN&)(Bar; A= 10um, B= 10
um, C= 10um, D=2pum, E=10um, F=2um, G=1um. The letters and numbers in

A and B relate to power and exposure during SEMyin@a C to G are sections of
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Acetylcholinestrase (AChE) stained whole mountsarfieal samples. The black
dots are deposits of copper thiocholine crytals {iCimage G), which is an end

product of the AChE staining method, and are ebectiense.

Fig. 12. In vivo confocal microscopy (IVCM) images of nornman corneas
showing the termination of sub-basal nerves inHirtyper-reflective bulb-like
structures at the basal epithelial plane (arrot¥aj.100u. Frame depth; A=40y,
B=44u, C=58u, D=46y, E=40u, F=46L. These structuezs first demonstrated
in whole mount Acetylcholinesterase stained cortedsvere missed on IVCM.
IVCM confirmation was then possible on cadaver wh®yes and finally in living
human eyes. (Images were taken with HeidelberghRdtomograph Il Rostock

Corneal Module [RCM]; Heidelberg Engineering Gmibtgidelberg, Germany).

Fig. 13. Scanning electron micrographs of the sub-basaenglexus. A. Nerve
fibres are seen running parallel on the BowmaryeraB. A beaded nerve fibre
(arrow) approximately 2u diameter bifurcating frarbp non-beaded straight
nerve fibre (arrowhead) is seen as it ascends fhenBowman’s layer anteriorly
towards the basal epithelial layers. C. Beadedapee of a single fibre is seen
(arrow). D. Larger and thinner fibres (arrows) bifating and interconnecting
with adjacent fibres are seen posterior to thellsaséaces of the basal epithelial
cells. The specimen of the epithelial sheet has figged around to scan the
basal surface. Bar; A=1u, B=10u, C=1u, D=1y. There and numbers at the

bottom of the images relate to power and exposuri@g SEM imaging.

Fig. 14. In vivo confocal microscopy of the sub-basal ngriexus in normal

human subjects. The sub-basal nerves form a sdr@snplex anastomosis with
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characteristic Y shaped bifurcations and H shaptatdonnections. Bar = 100 p.
Frame depth; A=49 U, B=52u. (Images were taken kéitelberg Retina
Tomograph 1l Rostock Corneal Module [RCM]; Heidelip&ngineering GmbH,

Heidelberg, Germany).

Fig. 15. Nanozoomer digital pathology photomicrograph oblethuman corneal
mount stained by the Acetylcholinesterase technsipasving a clockwise whorl
pattern of the sub-basal nerves in the infero-eéotrnea. Perforation sites and
bulb-like structures in the sub-basal plane initiferior (white arrowheads) and
central (black arrowhead) cornea are seen. . Alolankn line (arrow) represents
an artefactual corneal fold secondary to flatterufithe cornea during processing.
Bar = 0.5 mm. (reproduced with permission fromBiJ publishing group Ltd.,

author’'s own publication Al Agaba et al. 2010).

Fig. 16. In vivo confocal microscopy images of a patientwipain without stain”
A-C. Show activated anterior stromal keratocyt@ang rise to honeycomb-like
pattern. D & E. Anterior stromal nerves show patahgas of hyper-reflectivity
(arrow). F. Dendritic cells appear as hyper-reflecbodies with an amorphous
stroma. Bar = 10@m. Frame depth; A=8gm, B=59um, C=46um, D= 85um,
E=119um, F=43um. (Images were taken with Heidelberg Retina Toraplyr|
Rostock Corneal Module [RCM]; Heidelberg EnginegritmbH, Heidelberg,

Germany)

Fig. 17. Nanozoomer digital pathology photomicrographs oé#lcholinestrase
stained rabbit cornea showing corneal nerve danmalgeed by ‘small incision

lenticule extraction’ femtosecond Laser surgeryThAe nerves have three zones
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of progressive changes indicated by rectangles &)dCD. B. Normal peripheral
zone (inset B) where the nerve maintains the nostnattural features including
nerve fibre striation. C. Abnormal mid-peripherahe (inset C), where the nerve
shows moderate damage including disruption of ttevann cell tube and
reduction of nerve fibre thickness. D. A centrahegdinset D) where the nerve
undergoes severe disintegration with extrusionsotontents. Bar: A = 200 um;
B and C =50 um and D = 100 um. (unpublished olagiens Mehta J, Al Agaba

A, Jung C, Nubile M and Dua HS).

Fig. 18. Image of a lenticule extracted by ‘small incislenticule extraction’
femtosecond Laser surgery in a rabbit cornea dainth Acetycholinestrase. A
significant number of medium and large stromal edsundles are removed by
this procedure. The long-term consequences ofghisknown. Bar =1mm

(unpublished observations Mehta J, Al Agaba A, Jondlubile M and Dua HS).

Fig. 19. Nanozoomer digital pathology photomicrographs bbig-mount human
cornea that had undergone Laser in situ keratosigemith mechanical keratome
for correction of myopia ‘a few years’ ago. A-C.€elperipheral corneal stromal
nerves show disruption (A), looping (B) and irregguhickening (C). D-F. Two
adjacent stromal nerves show aberrant regenerdpnvhich is magnified to
demonstrate thickening, formation of loops andingjljust central to the flap
edge (E, F). (*) in figure A marks the area in fig, (1) in figure A marks the
area in figure C. (*) in figure D marks the aredigure E, (1) in figure D marks

the area in figure F
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Fig. 20. Nanozoomer digital pathology photomicrographs bbig-mount
Acetylcholinesterase stained control and collages<zlinked corneas. A,
Normal-appearing central stromal nerves in thercbebrnea. B and C, Anterior
stromal nerves terminate in bulb-like structuresofas) from which no sub-basal
nerves are seen to arise. Thickened stumps ofritp@ of sub-basal nerves are
seen in ‘C’. D, Central stromal nerves (arrowheati®Ww localised swelling and
loss of nerve continuity (arrows). E and F, loadiserve thickenings (arrows)
are seen probably representing disruption and disugty of nerves. G, These
changes are more numerous in some areas (arron&)pkdminent localised
swelling (arrow) of a midperipheral stromal nervighim the treatment zone with
loss of nerve continuity. I, Similar changes weo¢ observed in corneas treated
by transepithelial corneal crosslinking (CXL). Acentrol cornea; B-F = standard
CXL (1/2 hour between CXL and fixation); G = startl&XL (1 hour between
CXL and fixation); H = standard CXL (2 hours betwe@XL and fixation; | =
transepithelial CXL. Bar: A-F = 100m, G = 25um, H-I = 100um. (reproduced
with permission from Elsevier Inc., author’'s owrbpoation Al Agaba et al.

2012)

Fig. 21. Nanozoomer digital pathology photomicrograph ofteolg-mount
Acetylcholinesterase-stained corneal graft buttomfan eye that underwent a
regraft. A. radially oriented sub-basal nervesdaireads) from the peripheral
cornea of the host extend across the graft-hostipm(GHJ) into the peripheral
part of the graft (arrows). B. Radially orientedbsaasal nerves (arrowheads)
from the peripheral cornea of the host extend acitos graft-host junction in to

the peripheral part of the graft (arrows). C. TWwimtand tortuous sub-basal
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3034 nerves are seen running in the central zone ofitaie. D. Stromal nerves from
3035 the host tissue stop at the peripheral edge oBthé. Some of them divide at the
3036 GHJ into branches (arrowheads) that run along tHé. @ buried nylon suture
3037 related to the previous graft surgery is seen (igkje E. One stromal nerve has
3038 crossed the GHJ into the graft and extends for a®@@um toward the graft
3039 centre (black arrow). Two thick stromal nerve traiflack arrowheads) appear to
3040 extend for several millimetres along the GHJ, aquanned by a large blood
3041 vessel (blue arrowhead). A complex vascular ar¢alde arrows) in the graft is
3042 also seen. F. This image represents a higher meagioh of the region outlined
3043 by arectangle in (E). It shows a large nerve triilack arrowhead) and a blood
3044  vessel (blue arrowhead) running together at the efighe GHJ but within the
3045 hosttissue. Bars: A =2Q0n, B = 100um , C = 10Qum, D = 500um, E = 500
3046  um, F =100um. (reproduced with permission from Elsevier lauthor's own

3047 publication Al Agaba et al. 2012).

3048 Fig. 22. Nanozoomer digital pathology photomicrograph oblehmount

3049 Acetylcholinesterase-stained corneal graft buttomfan eye that underwent a
3050 regraft. Excessive regeneration of two types ove®is seen. One type

3051 representing an attempt at normal regeneration laitfe straight nerve trunks,
3052 which demonstrate abrupt angulations along theairsm(arrows), and the other
3053 type, which demonstrates a highly tortuous and d¢exnpetwork of

3054 interconnecting nerves (arrowheads). In the ceofttbe button is an area that is
3055 relatively sparsely innervated. Scale bar = 2 nreprpoduced with permission

3056 from Elsevier Inc., author’s own publication Al Asmet al. 2012).
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Fig. 23. Nanozoomer digital pathology photomicrograph simgna whole-mount
Acetylcholinestrase stained advanced keratoconuseaoA. Exuberant
overgrowth of the stromal nerves (grade 3) is gedarm a complex network of
small and large nerve bundles at the central cacogasponding to the area of
the conical ectasia. The peripheral nerves dematiestrnear normal morphology.
Bar = 2 mm. B. An overtly thickened central strongaive is seen with sprouting
of short, tortuous aberrant nerves (arrows), (répced with permission from

Elsevier Inc., author's own publication Al Agabaa&t2011)

Fig. 24. In vivo confocal micrographs of the corneal nendesNormal
appearance of the sub-basal nerve plexus seeheaalthy control. Bulb-like
termination of sub-basal nerves is shown in thetirB. Sub-basal nerve plexus
appearance in bullous keratopathy. There is a tedhuin the density and
thickness of the nerves. C. Tortuous sub-basalksdrn/bullous keratopathy. D-F.
Coiling, looping and twisting of tortuous stromaraes, some surrounding dark
lacunae, are seen at different depths within tfeerst. Frame level; A= 58n,
B=32, C=30um, D = 189um, E, 380um, F =331um. Bar =10Qum. (reproduced
with permission from Elsevier Inc., author’'s owrbpoation Al Agaba et al.

2011a).

Fig. 25. Correlation of confocal microscopy findings (Lefilumn) with those
observed on histology of whole mounts (Right colymrcorneas with bullous
keratopathy. A and B. A mid-stromal nerve charasser by localised nerve
excrescences or thickenings (arrowheads) suggesdtearly sprouting or
representing stubs of degenerated nerves (arr@v#).relatively thick stromal

nerve with ill-defined margins at its bifurcatioeen on confocal microscopy at
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the level of 12Gum. D. The confocal image in ‘C’ corresponds withessive
axonal sprouting seen at a stromal nerve bifurnatiohistology. E and D.
Confocal microscopy and histology images show Iogg@nd coiling of tortuous
aberrant stromal corneal nerves. Bar = 00 (reproduced with permission from

Elsevier Inc., author's own publication Al Agabaaét2011a).



Table 1. A list of techniques used for in vitro demonstration of corneal nerves.

Sensory nerves

1-Conventional light microscopy.

* Gold Chloride technique.

* Methylene blue staining technique.
» Sliver staining technique.

» Toluidine blue.

2-Light and electron microscopy after peptidergic and classic neurotransmitter
staining.

*  Whole mount cholinesterase technique.

» Cacitonin gene-related peptide detection.
» Substance P detection.

o Cacein acetoxymethyl ester

* Mixed staining technique.

3-Immunohistochemical staining.

* Anti-Class Il f Tubulin (neurona specific).

4-Retrograde nerve tracing technique.

» Horseradish peroxidise-wheat germ agglutinin (HRP-WGA) technique.

Autonomic nerves

1-Light and electron microscopy in ultrastructural immunohistochemical
preparation.

* Antibodies against tyrosine hydroxylase.
»  Sodium-potassium-glyoxylic acid-induced fluorescence technique.
» Formaldehyde-induced fluorescence technique.

2-Retrograde nerve tracing techniques.

* Horseradish peroxidise-wheat germ agglutinin (HRP-WGA) technique.




Highlights

e Sub-basal bulb-like structures and Limbal nerve corpuscles are two relatively
recent discoveries where the structure has yet to be attributed a function.

« Dissociation of trophic and sensory functions, depending on the pre-ganglionic or
post-ganglionic location of the lesion; and a discordance between objective signs
and subjective symptoms in the clinical entities of ‘pain without stain’ and ‘stain
without pain’ reflect the possible evolution of nerve pathology from
hyperaesthesia to anaesthesia.

e In-vivo confocal microscopy and whole mount staining of normal and diseased
corneas/corneal buttons has revealed that corneal nerves are not passive
bystanders incorneal disease. It is likely that structural and/or functional nerve
changes occur in all forms of corneal pathology.

« A wide range of pathology ranging from hyper-regeneration, aberrant
regeneration, thickening, tortuosity, looping and coiling to thinning, disruption
and complete absence, has been demonstrated in a number of conditions such as
bullous keratopathy, keratoconus, dry eye disease, diabetic keratopahty, limbal
stem cell deficiency, post-keratoplasty, refractive surgery and corneal infections.

« Inflammatory responses of resident epithelial cells, keratocytes and dendritic cells
areintegral to corneal nerve responses.
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