
rspa.royalsocietypublishing.org

Research

Article submitted to journal

Subject Areas:

applied mathematics, computational

mathematics, differential equations

Keywords:

Kuramoto–Sivashinsky equation,

spatiotemporal chaos, active

dissipative–dispersive nonlinear PDE

Author for correspondence:

D. T. Papageorgiou

e-mail:

d.papageorgiou@imperial.ac.uk

Nonlinear dynamics of a
dispersive anisotropic
Kuramoto–Sivashinsky
equation in two space
dimensions
R. J. Tomlin1, A. Kalogirou2, D. T.

Papageorgiou1

1 Department of Mathematics, Imperial College

London, SW7 2AZ, London, UK
2 School of Mathematics, University of East Anglia,

NR4 7TJ, Norwich, UK

A Kuramoto–Sivashinsky equation in two space
dimensions arising in thin film flow is considered on
doubly periodic domains. In the absence of dispersive
effects, this anisotropic equation admits chaotic
solutions for sufficiently large length scales with
fully two-dimensional profiles; the one-dimensional
dynamics observed for thin domains are structurally
unstable as the transverse length increases. We
find that, independent of the domain size, the
characteristic length scale of the profiles in the
streamwise direction is about 10 space units, with that
in the transverse direction being approximately three
times larger. Numerical computations in the chaotic
regime provide an estimate for the radius of the
absorbing ball in L2 in terms of the length scales, from
which we conclude that the system possesses a finite
energy density. We show the property of equipartition
of energy among the low Fourier modes, and report
the disappearance of the inertial range when solution
profiles are two-dimensional. Consideration of the
high frequency modes allows us to compute an
estimate for the analytic extensibility of solutions
in C2. We examine the addition of a physically
derived third-order dispersion to the problem; this
has a destabilising effect, in the sense of reducing
analyticity and increasing amplitude of solutions.
However, sufficiently large dispersion may regularise
the spatiotemporal chaos to travelling waves. We
focus on dispersion where chaotic dynamics persist,
and study its effect on the interfacial structures,
absorbing ball, and properties of the power spectrum.
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1. Introduction1

The one-dimensional (1D) Kuramoto–Sivashinsky equation (KSE) is2

ut + uux + uxx + uxxxx = 0, (1.1)

which we consider equipped with periodic boundary conditions on the interval [0, L], and an L-3

periodic initial condition u(x, 0) = u0(x). Due to the conservative nature of (1.1) and the presence4

of a Galilean invariance, attention may be restricted to zero-mean solutions. This equation, and5

variants in higher space dimensions, arise in the study of spatiotemporal organisation in reaction–6

diffusion systems [34], the propagation of flame fronts [37,51,52], and thin film flows down7

a vertical plane [38]. Variants also arise in two-phase flows [24,44,55]. Moreover, it is found8

to emerge in numerous applications in physics, including plasma physics [11], ion sputtering9

[15], and chemical physics for the propagation of concentration waves [33,35]. A wide range of10

dynamical behaviours are observed depending on the lengthL of the periodic domain. Increasing11

L above 2π (below 2π all solutions converge uniformly to zero), steady-states, travelling waves,12

and time-periodic bursts are observed, with the onset of chaos for large enoughL [53]. The scaling13

of the system energy with the length parameter can be quantified by considering theL-dependent14

radius of the absorbing ball in the space L2per([0, L]) for solutions to (1.1); this is a bound on the15

L2-norm of the solutions in the large time limit, i.e.16

lim sup
t→∞

(∫L
0
u2 dx

)1/2

≤CP (L), (1.2)

for an appropriately chosen L-independent constant C, and some function P (L). An estimate17

of this form was first constructed using a Lyapunov function approach for odd solutions of18

(1.1), giving P (L) =L5/2 [42], a result which was later improved and generalized to non-19

parity solutions, implying the existence of a finite-dimensional global attractor [22]. After many20

intermediate developments [9,13,20,29], the most recent analytical improvement to this bound21

shows that (1.2) is satisfied for all solutions to (1.1) with P (L) =Lq for any q > 5/6 [21,43].22

Numerical work provides strong evidence that the optimal estimate for (1.2) is given by P (L) =23

L1/2 [60]; this was shown to be sharp for steady solutions of (1.1) using a dynamical systems24

approach by proving the stronger property of uniform boundedness of solutions independent25

of L [36] (this L∞ bound is also seen numerically for the general time-dependent case). It was26

also noted that the energy of the lower Fourier modes was equipartitioned, or spread equally27

[47,56,60], and decays exponentially for the higher Fourier modes due to strong dissipation on28

small scales. These regimes are separated by a peak in energy corresponding to the most active29

Fourier mode (this is near the most linearly unstable mode). The distribution of energy among30

the Fourier modes appears to be invariant to the system size L in the chaotic regime, suggesting31

an invariant energy distribution in the thermodynamic limit as L→∞. Furthermore, the decay32

of the fast high frequency modes provides an optimal lower bound on the strip of analyticity of a33

solution about the real axis [12].34

In this paper, we present numerical results for the spatially periodic initial value problem for35

a KSE in two space dimensions over rectangles Q= [0, L1]× [0, L2], given by36

ut + uux + uxx + δ∆ux +∆2u= 0, (1.3)

with initial condition u(x, y, 0) = u0(x, y) and dispersion parameter δ≥ 0. This was derived by37

Nepomnyashchy [40,41] with δ= 0, and in general by Frenkel and Indireshkumar [18] and Topper38

and Kawahara [59] to describe the weakly nonlinear evolution of the interface of a thin film flow39

down a vertical plane (see [30] for a discussion of the derivations of this model for different40

fluid dynamical regimes). Without loss of generality, we can restrict our attention to zero-mean41

solutions since the spatial average of a solution to (1.3) is conserved and the equation is invariant42

under a Galilean transformation as in the 1D case. In the absence of dispersion, i.e. δ= 0, equation43

(1.3) was studied analytically by Pinto [45,46] in the case of L1 =L2 =L. He proved global44
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existence of solutions, the existence of a compact global attractor, and analyticity of solutions.45

Using the Lyapunov function method, he obtained the estimate for the radius of the absorbing46

ball in L2per([0, L]
2),47

lim sup
t→∞

‖u‖2 ≤CL12 lnL, (1.4)

where, in terms of general domain lengths L1 and L2, we define the L2-norm by48

‖u‖22 =
∫L1

0

∫L2

0
u2 dxdy=L1L2

∑
k∈Z2

|uk|2, (1.5)

where uk are the Fourier coefficients of u. The non-dispersive problem was also considered49

numerically by Akrivis et al. [2] on a square domain. They found that50

lim sup
t→∞

‖u‖2 ≤CL, (1.6)

which is a significant improvement on the analytical result (1.4). In this paper, we generalise this51

result to periodic rectangular domains. Using numerical results from a large range of aspect ratios,52

we conjecture that the optimal bound for the radius of the absorbing ball of solutions to (1.3) for53

δ= 0 in the space L2per(Q) is given by54

lim sup
t→∞

‖u‖2 ≤CL
1/2
1 L

1/2
2 . (1.7)

In fact, we see the stronger result that the L∞-norm of solutions is bounded independent of L155

and L2. The result (1.7) implies that the solutions in the chaotic regime possess a finite energy56

density. We obtain a similar picture for the energy distribution of the Fourier modes as is found57

for the 1D KSE (1.1); a plateau of the energy for the low modes, rising to a peak and then decaying58

exponentially for the higher Fourier modes. The addition of the extra dimension in the dissipative59

fourth-order term of (1.3) produces an asymmetric energy distribution. By considering the decay60

of the Fourier spectra for large wavenumbers, we observe an increased spatial analyticity due to61

two-dimensionality of the solutions on domains that are not thin.62

Next, we introduce dispersion to the problem, and consider how a small positive value of δ63

affects the dispersionless solution dynamics, energy distribution and the absorbing ball estimate64

(1.7). Dispersive effects are often included in the 1D KSE (1.1); Akrivis et al. [3] considered the65

addition of both third- and fifth-order dispersion by studying the Benney–Lin equation66

ut + uux + uxx + δuxxx + uxxxx + µuxxxxx = 0. (1.8)

They observed that increasing dispersion regularises chaotic dynamics and supports travelling67

wave attractors. In the case of third-order dispersion alone with µ= 0 (which is of interest here),68

formal asymptotics show that for δ� 1, solutions of (1.8) converge to scaled travelling wave69

solutions of the Korteweg–de Vries (KdV) equation – this convergence has also been proved70

rigorously in [7], and the stability of the resulting travelling waves was studied in [5,28]. For71

system lengths yielding chaotic attractors, a reverse period-doubling cascade was observed as72

δ is increased (see figure 4.2 in [3]). This laminarising effect of dispersion in the 1D problem73

was additionally investigated by Chang et al. [10], where the authors showed that increasing74

dispersion diminishes the family of steady and travelling wave solutions – only KdV pulses75

remain for large enough δ, with a large basin of attraction. Gotoda et al. [23] studied the route76

of the full dynamics as dispersion is strengthened; they additionally estimated the critical value77

of δ≈ 0.2 (which appears to be independent of system length) where high-dimensional chaos78

crosses to low-dimensional chaos.79

In this paper, we are interested in weak dispersive effects which do not regularise the chaotic80

dynamics; we study the effect of the fixed values of δ= 0.01, 0.1, and 1 on the dynamics of the 2D81

KSE (1.3). We provide numerical evidence that given a fixed value of δ, the L2-norm satisfies the82
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bound83

lim sup
t→∞

‖u‖2 ≤C(δ)L
1/2
1 L

1/2
2 . (1.9)

We also look at the equipartition and analyticity properties as for the non-dispersive case. We do84

not study the large dispersion limit (δ� 1) here, but briefly comment on known results. Travelling85

wave attractors of 2D solitary pulses are found, as observed by Toh et al. [57] and Indireshkumar86

and Frenkel [26], in analogy with the results in [3] for the 1D equation. Saprykin et al. [48,49]87

also studied this problem on infinite domains, and provided a detailed analysis of the interaction88

between pulses. It can be shown with formal asymptotics (proved rigorously in [17]) that the89

solutions of (1.3) in this large dispersion limit converge to solutions of the Zakharov–Kuznetsov90

equation91

Uτ + UUx +∆Ux = 0, (1.10)

where U and τ are rescalings of u and t respectively. This is a higher-dimensional KdV equation92

yielding 2D solitons whose stability has been studied analytically [14,16].93

A related equation of interest is the multi-dimensional KSE,94

vt +
1

2
|∇v|2 +∆v +∆2v= 0, (1.11)

also considered on Q-periodic domains (recall that Q= [0, L1]× [0, L2]). In two spatial95

dimensions, this equation has been derived to describe the propagation of a planar flame front96

[52], and has been suggested (with the addition of stochastic noise) as an empirical model for97

the evolution of surfaces eroded by ion bombardment [8,15,19]. A number of authors [4,6,39,50]98

have considered (1.11) analytically, proving global existence of solutions on sufficiently thin99

domains for restricted classes of initial conditions. Kalogirou et al. [31] provided a comprehensive100

numerical study to complement this analytical work. They give an exhaustive picture of the101

dynamics present for varying domain dimensions.102

The structure of the paper is as follows. In §2, we briefly discuss the numerical schemes and103

data analysis tools employed for our simulations. The computations of (1.3) with δ= 0 follow in104

§3, and the dispersive case follows in §4. In §5, we discuss our results and future work.105

2. Numerical methods and data analysis tools106

Equation (1.3) is solved numerically by utilising implicit–explicit backwards differentiation107

formulas (BDFs) for the time discretisation, and spectral methods in space. The BDFs belong to108

the family of linearly implicit methods constructed and analysed by Akrivis and Crouzeix [1] for109

a class of nonlinear parabolic equations. It was shown by Akrivis et al. [2] that such numerical110

schemes are convergent, and also that they are efficient and unconditionally stable under various111

conditions on the linear and nonlinear terms of the problem. We do not go into further details of112

these schemes here, since their applicability for our problem has been checked in [2]. Since we are113

considering (1.3) on rectangular periodic domains, the solution may be written in the form of a114

Fourier series115

u=
∑
k∈Z2

uk(t)e
ik̃·x, (2.1)

where uk are the Fourier coefficients of u, and k̃= (k̃1, k̃2) denotes the wavenumber vector with116

components defined by117

k̃1 =
2πk1
L1

, k̃2 =
2πk2
L2

, (2.2)

for k ∈Z2. Since u is real-valued, uk is the complex conjugate of u−k. For numerical simulations,118

we truncate this Fourier series to |k1| ≤M and |k2| ≤N , corresponding to a discretisation of the119

spatial domain Q into (2M + 1)× (2N + 1) equidistant points.120
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Figure 1: Contours of Re[s(k̃)] with the bold line corresponding to the zero contour, i.e. Re[s(k̃)] =

0. The most linearly unstable mode is at k̃= (1/
√
2, 0)≈ (0.7071, 0) where Re[s(k̃)] = 1/4. For a

given L1 and L2, the (k1, k2)-mode is linearly unstable/stable if the corresponding point (k̃1, k̃2)
lies inside/outside the zero contour.

The linear dispersion relation for (1.3) is121

s(k̃) = k̃21 + iδk̃1(k̃
2
1 + k̃22)− (k̃21 + k̃22)

2 = k̃21 + iδk̃1|k̃|2 − |k̃|4, (2.3)

where the real part of s(k̃) is the linear growth rate. The competition between the second-order122

destabilising term and the fourth-order damping is clear from (2.3), yielding a region of linearly123

unstable wavenumbers for certain domain choices. Contours of the real part of s, as a function of124

k̃1 and k̃2, are shown in figure 1, where the zero contour is marked with a thicker line. For a fixed125

value of L1 and L2, the stability of the (k1, k2)-mode (where k ∈Z2) is determined by the sign126

of the real part of s(k̃), with linear instability for wavenumber vectors satisfying Re[s(k̃)]> 0. It127

can be seen from figure 1 (and from the definition of s) that the purely transverse modes (k1 = 0)128

are always linearly stable. If L1 ≤ 2π (implying k̃1 ≥ 1) we also see that no modes are linearly129

unstable since the real part of s(k̃) is negative for all arguments; in this case, using an energy130

equation obtained by multiplying (1.3) by u and integrating over Q, it can be easily shown that131

the solution decays to zero exponentially. The purely imaginary component of s(k̃) corresponds132

to the third-order dispersion term providing rotation of the Fourier coefficients in the complex133

plane. We may rewrite (1.3) as an infinite system of ODEs for the Fourier coefficients as134

d

dt
uk =−

ik̃1
2

∑
m∈Z2

uk−mum + s(k̃)uk. (2.4)

From this it can be seen that the purely transverse modes (k̃1 = 0) are unaffected by the nonlinear135

coupling and decay exponentially. However, the dynamics of the streamwise and mixed modes136

are slaved to the transverse modes through the nonlinear term, i.e. the transverse modes decouple137

partially.138

We write the domain lengths L1, L2 in a canonical form, taking L1 =L and L2 =Lα. We take139

α∈R in a range of values and vary L to present a view of the chaotic dynamics in the global140

attractor for many aspect ratios. For aspect ratios with α≤ 0, the domains are thin, as either141

L1 ≤ 1 or L2 ≤ 1. In the former case we have trivial behaviour with solutions decaying to zero142

as mentioned before, and in the latter case only the purely streamwise modes may be linearly143

unstable, thus the dynamics of solutions are expected to be 1D (this is confirmed by numerical144

simulations). We use small amplitude random initial conditions with unstable low wavenumber145
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modes for our numerical simulations. For x= (x, y)∈Q, we take146

u0(x) =

20∑
|k|∞=1
k1 6=0

ak cos(k̃ · x) + bk sin(k̃ · x), (2.5)

where the coefficients ak and bk are random numbers in the range [−0.05, 0.05), generated147

separately for each pair (L,α). Due to the existence of a global attractor [45], the large time148

behaviour is independent of initial condition. Note that (2.5) does not contain contributions from149

the purely transverse modes (the summation excludes modes with k1 = 0). For large values of150

L2, the lower transverse modes have very small exponential decay rates and would affect the151

streamwise and mixed mode dynamics at large times; taking transverse modes in the initial152

condition would only extend the transient phase of the dynamics.153

We average desired quantities over one solution orbit in order to obtain an average of that154

quantity over the entire global attractor (orbits are assumed to be dense in the attractor). Instead155

of computing an estimate for156

lim sup
t→∞

‖u‖22, (2.6)

we compute (as an equivalent) the time-average of the energy defined by157

EL,α = lim
T→∞

1

T

∫T
0
‖u‖22 dt, (2.7)

and approximate it by158

EL,α(T1, T2) =
1

T2 − T1

∫T2

T1

‖u‖22 dt, (2.8)

where 0� T1� T2 are two large times. We require T1 to be large enough that the solution has159

reached the global attractor, and T2 to be large enough thatEL,α is a good enough approximation160

of the time-average. For all numerical results, we chose T1 = 1× 104 and T2 = 2× 104, which161

proved to be suitable. To study the equipartition and analyticity properties, we consider the time-162

averaged power spectrum of solutions, given by163

S(k) =L1L2 lim
T→∞

1

T

∫T
0
|uk|2 dt, (2.9)

for each k ∈Z2. Realistically, we approximate S(k) by S(k;T1, T2) where we take a time average164

over [T1, T2] as done for EL,α. We can visualise S(k) as a surface through discrete points, or we165

can condense the data by plotting the power spectrum against the magnitude of the wavenumber166

vector |k̃|= (k̃21 + k̃22)
1/2. Note that the energy EL,α is related to S(k) through167

EL,α =
∑
k∈Z2

S(k), (2.10)

and we have the same relation between the approximate quantities EL,α and S(k).168

3. Computations in the absence of dispersion169

We first proceed with a numerical study of (1.3) with δ= 0 on large periodic domains. As noted170

earlier, for α≤ 0, we either obtain trivial dynamics or 1D solutions corresponding to solutions of171

the 1D KSE (1.1), so we focus on domains with α> 0 (not thin). Figure 2 shows instantaneous172

interfacial profiles of solutions in the chaotic regime at time T2 = 2× 104. A variety of aspect173

ratios are used: in panel (a) the domain is longer in the streamwise direction and has L1 = 166.8,174

L2 = 59.9 (i.e. α= 0.8); panel (b) shows a solution on a square domain with L1 =L2 = 122.5,175

and the domain in panel (c) is longer in the spanwise direction with L1 = 46.4, L2 = 215.4176

(here α= 1.4). In all cases shown, activity in the mixed modes promotes fully 2D solutions.177

These profiles highlight distinct features of solutions to (1.3) on sufficiently large domains; the178
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(a) (b)

(c)

Figure 2: Profiles of numerical solutions to (1.3) with δ= 0 in the chaotic regime at time T2 =
2× 104 are shown for a range of aspect ratios. The choice of domain dimensions are: (a) L=

L1 = 166.81, L2 = 59.95, α= 0.8, |Q|= 104, (b) L=L1 =L2 = 122.474, α= 1, |Q|= 1.5× 104 and
(c) L=L1 = 46.415, L2 = 215.44, α= 1.4, |Q|= 104. The structure of the profiles appears to be
invariant of the length scales (as long as the domain is not thin), and the characteristic length of
the cellular structures in the y-direction is comparatively larger than in the x-direction.

behaviour is dominated by the streamwise dynamics, with solutions varying weakly in y, but179

maintaining the characteristic cellular behaviour in the x-direction associated with solutions to180

the 1D equation (1.1) – a streamwise slice of the solution profile is very similar to the typical181

profiles observed in the chaotic regime for the 1D equation. Supplementary Movie 1 presents the182

time evolution of solutions to (1.3) for these aspect ratios; the solution profiles at the final time are183

those shown in figure 2. For all profiles shown in figure 2, the characteristic length of the nonlinear184

cellular structures in the streamwise direction is about 10 units; this corresponds to the most185

active streamwise Fourier mode which has a wavenumber slightly smaller than the most linearly186
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(a) (b)

Figure 3: Plots of log10EL,α against log10 L for a range of α. Panel (a) shows the results for a
range of aspect ratios with 1≤ α≤ 2, and panel (b) considers 0.6≤ α≤ 1. Best fit lines for each
choice of α are also plotted – these are calculated using a least squares approximation with the
last few data points in each case.

unstable streamwise mode, k̃1 = 1/
√
2. This shift to larger scales induced by the nonlinearity was187

also noted for the 1D problem by Wittenberg and Holmes [60]. No transverse modes are active188

at large times since they are linearly damped and unaffected by the nonlinear term, however,189

structures form in the spanwise direction due to the mixed mode activity – these structures have190

length of approximately 30 space units. From a vast number of numerical experiments it appears191

that the characteristic cellular structures present in the profiles are independent of the aspect ratio192

and length parameters in the 2D chaotic regime. This is already evidence of extensive dynamics193

that are analogous to the 1D problem.194

(a) Computational estimation of the radius of the absorbing ball195

In what follows we present the results of extensive numerical experiments that were used to196

obtain an optimal numerical bound on the radius of the absorbing ball inL2per(Q); this generalizes197

the result (1.6) for square periodic domains (α= 1) in [2]. To obtain the results that follow, α was198

fixed to take values in the interval 0.6≤ α≤ 2, and L increased to cover a sufficiently large range199

of domains that support complex dynamics (recall that the rectangular domain has dimensions200

L× Lα). For a given α, computations were carried out and the time-averaged quantities EL,α201

given by (2.8) were estimated for a range of values of L. We do not consider α≤ 0 since the202

dynamics are 1D as noted earlier. The variation of log10EL,α against log10 L is shown in figure203

3. Panel (a) considers α≥ 1, i.e. domains that are longer in the spanwise direction, and panel204

(b) corresponds to α≤ 1, giving domains that are longer in the streamwise direction, with α= 1205

providing a reference between the two panels. We observe that a regime of direct proportionality206

between log10EL,α and log10 L emerges for sufficiently large length scales. It is apparent from207

our computations that the regime of linear proportionality arises when the shortest side of the208

periodic domain is greater than approximately 30.209

A quantification of the linear behaviour apparent in figure 3 was carried out using a least210

squares approximation to the slope of the different lines and their intercepts with the vertical211

axis. The slopes are found to be α+ 1 with an accuracy of 0.02 or less, and the vertical intercepts212

are all found to be zero, also with an accuracy of approximately 0.02. Hence, on sufficiently large213
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domains with α> 0, we observe that214

log10EL,α ≈ (1 + α) log10 L, (3.1)

which implies that EL,α ≈L1+α. Surprisingly, the unit constant of proportionality in this215

expression for EL,α is not found in the case of the 1D problem (1.1) where it is approximately216

1.7. Recalling the definitions of L1 and L2, and with the established proportionality of EL,α with217

the quantity lim supt→∞ ‖u‖22, we obtain our optimal bound,218

lim sup
t→∞

‖u‖2 ≤CL
1+α
2 =C L

1/2
1 L

1/2
2 , (3.2)

where C is a constant which is independent of the length parameters. This result is also valid for219

α≤ 0 given the previous discussions on the dynamics in this regime. In fact, an even stronger220

result than (3.2) appears to hold; the numerical results provide evidence that the L∞-norm (the221

supremum of |u| over Q at a fixed time) of solutions in the chaotic regime is bounded above by a222

constant, in direct analogy with the numerical results for the 1D equation (1.1) – this can be seen223

in figure 2, where the solution amplitude appears to be independent of aspect ratio and length224

parameters. We find that the mean of the L∞-norm across the time series between times T1 and225

T2 is approximately 2.4, with the maximum value often being as large as 3.5; this result appears226

to be independent of Q as long as the domain is sufficiently large. This computational evidence227

that u is bounded by anO(1) constant (for example, 4 would suffice) over all choices ofQ trivially228

implies (3.2).229

(b) Equipartition of energy and analyticity of solutions230

In the previous subsection we presented numerical evidence that predicts how the time-averaged231

energy of the system scales with the underlying lengths L1 and L2 for large domains supporting232

chaotic solutions. It is also particularly interesting to understand how this energy is spread233

among the Fourier modes. Recall that for the 1D KSE (1.1), it was observed that the energy234

was equipartitioned, i.e. spread equally, among the lower Fourier modes (see [60] for example).235

The energy distribution rises to a peak for the most active mode (this is slightly less than the236

most linearly unstable mode) and then decays exponentially after an inertial range where the237

power spectrum behaves like |k̃|−4. Interestingly, the energy distribution for the symmetric 2D238

KSE (1.11) also exhibits an inertial range, where the power spectrum behaves like |k̃|−6, and239

the exponent is also seen for the 1D form of (1.11) – this is natural given that (1.1) and the 1D240

form of (1.11) may be related through u= vx. This power law behaviour has been attributed241

to the balance of the destabilising and dissipative linear terms for O(1) wavenumbers [47]. By242

the Paley–Wiener–Schwartz theorem (see [25] for example), the exponential decay of the high243

frequency modes informs us of the spatial analyticity properties of solutions. For the 1D equation244

on an L-periodic doman, it is observed numerically that245

|uk| ∼ e−β(L)|k̃|, as k→∞, (3.3)

where β(L) converges to approximately 3.5 as L→∞ [12]. This implies that we may extend the246

solution u analytically about the real axis into the complex plane in a strip with | Imx|<β(L). It247

is noted that β(L) converges to 3.5 from above (meaning that solutions lose spatial analyticity as248

L increases), and the limit value can thus be surmised to be the optimal lower bound of the width249

of the analytic extension.250

For completeness and to check the numerical work, we have recovered the above results251

for (1.3) in the special limit that our periodic domain is thin in the transverse dimension, and252

we again concentrate on numerical results for aspect ratios with α> 0. The key quantity is the253

time-averaged power spectrum S(k) of the solutions given by (2.9) which is approximated by254

S(k) with an average over a finite time interval [T1, T2] as done for the energy in (2.8). Figure255

4 depicts the spectrum S(k) for domains of different aspect ratios but equal areas, |Q|= 104.256

The values of α used in figure 4 are 0.8, 1 and 1.4 for panels (a), (b) and (c), respectively, and257
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(a) α= 0.8.
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(b) α= 1.0.
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(c) α= 1.4.
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Figure 4: Contours of log10 S(k) for a selection of aspect ratios with |Q|= 104. The domain
dimensions are: (a) L=L1 = 166.81, L2 = 59.95, (b) L=L1 =L2 = 100, and (c) L=L1 = 46.415,
L2 = 215.44. Panels (a) and (c) take the same dimensions for Q as panels (a) and (c) of figure 2,
respectively.

the corresponding values of L are 1020/9, 102 and 105/3 (recall that |Q|=L1+α). The respective258

streamwise–spanwise aspect ratios are 104/9 ≈ 2.7826, 1 and 10−2/3 ≈ 0.2154. The figure shows259

logarithmic (base 10) contour plots for the three cases in the positive wavenumber quadrant260

corresponding to k̃1, k̃2 ≥ 0. There are a number of noteworthy features of the results for the three261

representative domains selected: firstly, the contours are essentially equally spaced along rays262

from (0, 0) as the exponent decreases to negative values, indicating that there is exponential decay263

of the power spectrum as |k̃1| and |k̃2| increase. The smallest exponential decay rate is observed264

in the streamwise (k1, 0)-modes (the spacing between the contours is the largest in this direction).265

Secondly, the power spectrum remains O(1) as k̃1 and k̃2 become small, in analogue with the266

1D equation (1.1). Lastly, and most noticeably from figure 4, the power spectra for all three cases267

appear to be almost identical, which suggests that in the chaotic regime the distribution of the268

energy amongst the Fourier modes is insensitive to the domain aspect ratio (assuming that the269

domain is not thin and mixed modes are active, as is the case for the choices of Q used to produce270

the figure). In figure 5, we zoom in on the low mode region of the power spectrum shown in271

figure 4(c); the other cases provide similar plots. The tongue of most active modes (depicted by272

the white region in the figure), is consistent with the characteristic length scales of the cellular273

structures of profiles shown in figure 2. The most active streamwise mode with wavenumber 0.6274

gives a length of approximately 2π/0.6≈ 10 space units. The longer length scale in the transverse275

direction is compatible with the observation that the tongue only extends to mixed modes with276

transverse wavenumbers around 0.3.277

Figure 6 provides a better description of the behaviour of the low modes, plotting the power278

spectrum against the size of the scaled wavenumber vector, |k̃|. Panel (a) compares three different279

aspect ratios, with two sets of data for the square domain case – all simulations exhibit fully280

2D chaotic dynamics. The purely streamwise modes are interpolated with a cubic spline which281

appears to bound the data points; these modes carry the most energy, which is unsurprising282

given the anisotropy of figure 4, and the fact that they are the most linearly unstable modes283

for a given value of |k̃|. The equipartition of the energy is recovered for the streamwise modes284

– the interpolant plateaus for |k̃1|. 10−0.5. Furthermore, we see a peak in energy corresponding285

to the most active Fourier mode (as in the 1D case, this is slightly less than the most linearly286

unstable mode), and then the energy decays exponentially. Interestingly, the inertial range which287

is discernible for the 1D KSE is not seen in panel (a); we propose that the disappearance of the288

inertial range is due to the mixed mode activity when the transverse length is sufficiently large.289
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Figure 5: Contours of log10 S(k) for L=L1 = 46.415, L2 = 215.44, α= 1.4, |Q|= 104 (magnified
view of figure 4(c)). For each k̃1, the maximum value of the surface (corresponding to the most
active mode) is found for k̃2 = 0, with the streamwise modes with wavenumbers around 0.6 being
the most active of all. A large tongue of active mixed modes with transverse wavenumbers up to
approximately 0.3 is visible.
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Figure 6: Equipartition of the energy. Panel (a) displays the time-averaged power spectra S(k)
of four sets of solution data plotted against the size of the wavenumber vector |k̃| on log–
log axes. For |Q|= 104 we have three sets of data for different aspect ratios: α= 0.8, 1 and
1.4. For |Q|= 1.5× 104 we have one set of data for α= 1. The data points corresponding to
the streamwise (k1, 0)-modes are interpolated with cubic splines. All data points are from the
quadrant corresponding to k1, k2 ≥ 0, the other quadrants give similar plots. Panel (b) compares
the cubic spline interpolations of the streamwise mode spectrum for L1 = 250 and for the three
choices of L2 = 1, 10, 100.

This is investigated in panel (b), where for a fixed value of L1 = 250, we observe how increasing290

L2 effects the interpolant through the streamwise mode data points. For L2 = 1, 10, the mixed291

modes are not active in the solutions and the resulting dynamics are 1D – the solutions are just292

elongations of solutions to the 1D KSE (1.1) in the transverse direction. The dotted line in figure293

6(b) corresponding to L2 = 1 matches the curve in [60] (for L2 = 1, the definition of the power294
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Table 1: Estimates of decay rates of Fourier spectra.

L1 L2 α |Q| β

250 1 0 250 3.54

250 10 0.417 2.5× 103 3.55

46.415 215.44 1.4 104 3.79

100 100 1 104 3.80

166.81 59.95 0.8 104 3.80

122.474 122.474 1 1.5× 104 3.81

250 100 0.834 2.5× 104 3.81

spectrum (2.9) reduces to the definition for the 1D case), and the curve for L2 = 10 is simply a295

factor of 10 greater. Increasing L2 further, the spectrum begins to widen with increased activity296

in the mixed modes, and the streamwise component of the power spectrum tends towards the297

solid line shown in panel (b) for L2 = 100. For this choice of L2, the mixed modes are fully active298

in solutions, although we omit the data points lying on and below the interpolant in figure 6(b)299

since they are shown in panel (a). Note also that no mixed modes are linearly unstable until300

approximately L2 = 40, although activity is seen for much smaller L2 due to the energy transfer301

from the nonlinear term; equivalently, the mixed modes are linearly unstable about 1D chaotic302

solutions for much smaller L2 – this can be observed from a crude truncation of the set of ODEs303

for the Fourier modes (2.4). The inertial range (the linear behaviour for wavenumbers beyond304

the most active wavenumber) visible for L2 = 1, 10, is no longer discernible for L2 = 100, and305

the most active mode shifts even further towards the longer waves. This is consistent with the306

finding that the characteristic streamwise cell size of the profiles in figure 2 is larger than that307

found in simulations of the 1D equation, the respective values being 10 and 9 space units. Note308

that the equipartition observed in figure 6 is expected given its relation to the solution energy309

(2.10) which scales with |Q| – there is a constant energy density of solutions in the large domain310

limit.311

The effect of the mixed mode activity can be seen more drastically in the analyticity of312

solutions. In [27], the authors give the generalisation of the connection between the decay rate of313

the Fourier spectrum and the analyticity of solutions to the 2D case. Informally, the observation314

that315

|uk| ∼ e−β(L1,L2)|k̃|, as |k| →∞, (3.4)

implies that the function umay be extended holomorphically into C2 in a ball of radius β(L1, L2).316

They also provide the analytical estimate for the problem (1.3) with δ= 0 and α= 1 that317

β(L,L)≥ C̃L−1/5(logL)−2/3. (3.5)

This estimate depends on the length scales, as does the analytical estimate for the 1D equation318

[12]. Since the streamwise modes yield the smallest exponential decay rate, an estimate for β may319

be computed numerically using a least squares approximation from the slope of − log |u(k1,0)|320

when plotted against |k̃1|. Table 1 shows the results obtained for a range of domain dimensions.321

The optimal numerical lower bound on the strip of analyticity for solutions of the 1D KSE (1.1)322

is independent of L as mentioned earlier, and we find the same result in the 2D case, contrasting323

the analytical result (3.5). We recover the convergence of β(L1, L2) to approximately 3.5 for324

thin domains in the transverse dimension – the first two rows of table 1 take lengths L1 and325

L2 which result in no mixed mode activity, hence the dynamics are that of the 1D equation.326

We observe that increasing L2 so that mixed modes are active in the chaotic solutions actually327

improves the radius of analyticity, as observed in rows 3 to 7 of the table. For large domains328

with solutions exhibiting fully 2D spatiotemporal chaos, we are able to estimate that solutions329

can be extended holomorphically into C2 in a ball of radius 3.8 approximately. Surprisingly, this330

decay rate appears for spectra just beyond the onset of fully 2D chaos and appears to remain331
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relatively constant for all of our simulations with mixed mode activity. The present computations332

are very well resolved and yield values of β different to those obtained in [2] for the case of α= 1,333

where the analyticity of solutions is found to be less than that observed for the 1D equation.334

Indeed, we find an increase in β from the 1D value, something which would be expected given335

the additional dissipation. Obviously, this does not improve the optimal lower bound on the336

analytic extensibility of solutions in the attractor, but it tells us that increasing two-dimensionality337

improves analyticity of the solutions (we assume that this is due to the activity of the mixed modes338

promoting energy in the dissipative range to move away from the purely streamwise modes).339

The 2D KSE (1.11) studied in [31] is symmetric, and the resulting power spectrum is thus340

a function of |k̃|. For this problem, the radius of the ball of analytic extension in C2 can be341

computed to be approximately 3.4. We note that the analyticity width for solutions to (1.3) is342

computed by considering the decay of the streamwise modes which are the most active, but due343

to the anisotropy of the spectrum, it is true that the solution may be extended further in different344

directions since the decay of the Fourier coefficients is asymmetric (for (1.3), the optimal analytic345

extension in C2 is not a ball). This is in contrast to the problem (1.11), but we do not investigate346

this further here.347

It is important to consider the possibility of a regime of dynamics beyond the length scales348

studied in this paper as discussed for the 1D problem (1.1) in [60]. It has been observed349

through extensive numerics and analysis that the large wavelength fluctuations of the 1D form of350

(1.11) (v2x nonlinearity), can be described effectively by the Kardar–Parisi–Zhang (KPZ) equation351

[54], and correspondingly, the derivative form (1.1) can be described by a stochastically forced352

Burgers equation [62]. The inclusion of the 1D KSE with the v2x nonlinearity in the so-called353

KPZ universality class is known as Yakhot’s conjecture [61], which correctly predicts that the354

roughness exponent is 1/2 – the roughness exponent characterises the scaling of the typical height355

fluctuations around the mean (of a saturated interface) with the length L, and is related to the L2-356

norm of solutions. For the case of the v2x nonlinearity, the interface width scales with L1/2 and357

the L2-norm behaves like L. This scaling is observed for relatively small system sizes, although358

the other two critical exponents1 characterising the KPZ universality class are not observed until359

L is much larger when full crossover to the KPZ scaling occurs. It is also worth noting that this360

asymptotic description is consistent with the observed energy spectrum. With this knowledge of361

the dynamics for the 1D problem, we conjecture that the energy behaviour (3.2) will not exhibit a362

crossover to a different scaling for even larger periodic domains. We do not attempt to compute363

the growth and dynamic exponents in this study, nor do we believe that the domain lengths364

used here are large enough to estimate these successfully; a number of studies have attempted365

to calculate these exponents for similar KS-type problems, but do so by resorting to very crude366

numerical discretisations in order to compute at large system sizes for a large number of time367

units. We are not certain that the form of the spectra observed for solutions in which mixed modes368

are active (see figure 6) does not enter a different scaling regime which is computationally out of369

reach. In one of the less extreme cases used to compute the solution on a square domain with370

side L= 100, there are 386 linearly unstable modes in total. This requires a numerical truncation371

with at least M = 400, N = 200 (80000 Fourier modes) to obtain good accuracy (the spectrum is372

resolved to machine accuracy). Combining this with small time step requirements and large times373

of integration requires a large computing time.374

4. Computations when dispersion is present375

For the 1D KSE (1.1), it was observed in [3] that the strengthening of a physically derived376

third-order dispersion term can lead to a reverse period-doubling cascade. It is suggested377

that sufficiently large δ (i.e. a large amount of dispersion) can regularise chaotic dynamics378

1These are the growth and dynamic exponents which characterise the transient dynamics, i.e. before the solution orbit enters
the chaotic attractor. These exponents are defined by how the surface roughness grows with time before saturation, and how
the critical saturation time scales with the system length, respectively. Such exponents are not of current interest to us since
we study large time properties of solutions.
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Figure 7: Profile of a numerical solutions to (1.3) with δ= 1 in the chaotic regime at time T2 =
2× 104. The dimensions of the periodic domain areL=L1 =L2 = 100, α= 1, |Q|= 104. Different
aspect ratios produce similar profile structures; this was observed in figure 2 for the dispersionless
case, so we do not plot other choices of Q here.

for any system length L, as solutions are observed to be attracted to nonlinear travelling379

waves. Surprisingly, third-order dispersion acts as a destabilising mechanism for this equation,380

competing with the stabilising nonlinear term – it hinders the transfer of energy from low to high381

wavenumbers, and consequently analyticity of solutions reduces as δ is increased (see [32] for a382

discussion of this for the 1D case). Turning to the 2D problem, Toh et al. [57] and Indireshkumar383

and Frenkel [26] observed pulse solutions of (1.3) for large values of dispersion on large periodic384

domains – the usual streamwise cellular structures are found to be unstable and give way to385

the 2D pulses. An example of such a multi-pulse solution is given in supplementary Movie 2386

where the O(δ) pulses are seen to form an arrow-head arrangement (the parameters taken are387

L1 =L2 = 100 and δ= 25). The arrow-head of solitons is approximately time-periodic, with a388

period of about 10 time units; the pulses travel in the positive x-direction (streamwise) above389

a chaotic sea-state of waves travelling upstream. Chaotic fluctuations of O(1) still exist in this390

case, but temporally periodic solutions are observed when δ is larger, where the O(1) component391

of solutions are time-periodic interactions at the bases of the pulses (see figure 5 in [57]). We392

do not investigate the large δ limit here, nor questions concerning the regularisation of chaotic393

dynamics. We are concerned with weak dispersive effects which do not fully regularise the chaotic394

behaviour, and observe how this affects the absorbing ball estimate and equipartition in the395

previous section.396

The addition of dispersion qualitatively changes the profiles of solutions observed in the397

chaotic regime when δ= 0 (see figure 2), yet they remain dominated by the streamwise dynamics398

as long as δ is not too large. The profile of a numerical solution in the chaotic attractor for399

δ= 1 is shown in figure 7 for a square periodic domain with L= 100. For δ= 1, wave fronts400

are apparent, with higher peaks than the dispersionless case and flat trough regions in between.401

Streamwise slices of these profiles are similar to the solutions of 1D dispersive KS-type problems,402

for example the Benney–Lin equation (1.8) – the solutions observed are chaotic interactions of403

KdV pulses. These wave fronts cross and interact nonlinearly; this can be seen in supplementary404

Movie 3, where the evolution of a solution to (1.3) with δ= 1 is shown, and the profile at the405

final time is the same as that in figure 7. Our numerical simulations agree with the conjecture that406
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Figure 8: Energy behaviour for square domains (α= 1) with δ= 0.01, 0.1, 1. Panel (a) shows a plot
of log10EL,1 against log10 L (with best fit lines included), and panel (b) compares the interpolants
through the streamwise data points for the power spectra on a log–log axis – for each δ we show
three sets of data with L= 120, 130, 140.

chaotic dynamics may be regularised with sufficiently strong dispersion. We also note the path407

along which the regularisation appears to occur as δ is increased: from the streamwise-dominated408

dynamics observed in the absence of dispersion, the cellular structures in the transverse direction409

begin to become more peaked in places forming wavefronts perpendicular to the streamwise410

direction. These fronts break up yielding pulse structures (for a square domain of side 100,411

this occurs around δ= 5). Then, the arrangements of these 2D solitons are regularised fully to412

travelling waves for much larger δ.413

In the dispersionless case, recall we observed that EL,α ≈L1+α. To extend this result to the414

case of non-zero dispersion, we performed numerical simulations for α= 0.8, 1, and 1.4, taking415

δ= 0.01, 0.1 and 1. We obtained the same result as shown in figure 3, with a modification in416

the intercept of the straight lines with the vertical axis; this corresponds to the introduction of417

a constant C̃(δ) such that EL,α ≈ C̃(δ)L1+α. The case of α= 1 with δ= 0.01, 0.1, 1 is shown in418

figure 8(a), and it is clear in this case, as in the other cases, that C̃(δ) increases monotonically in419

δ (the line for δ= 0 is not included in figure 8(a) since it is unmistakeable from the δ= 0.01 line420

at this scale). From our computations, we find roughly that C̃(δ) increases from 1 for δ∼ o(1) to421

C̃(1)≈ 2. As before, this result yields the optimal numerical bound422

lim sup
t→∞

‖u‖2 ≤C(δ)L
1/2
1 L

1/2
2 . (4.1)

We also observe that the L∞-norm appears to be uniformly bounded as in the dispersionless423

case, and this bound increases with δ; the chaotic profiles for larger values of dispersion have424

larger amplitude solutions, and the dynamics appears to consist of the creation, interaction and425

annihilation of many 2D pulses. This scaling of the L∞-norm with δ becomes linear in the large426

dispersion regime where the solution converges to travelling wave solutions of the ZKE (1.10),427

scaled by δ. Panel (b) of figure 8 shows how the increase of δ affects the energy distribution among428

the Fourier modes. The plot uses data from numerical simulations with δ= 0.01, 0.1, and 1, for429

square domains of sides L= 120, 130, 140, and shows the interpolants of the streamwise data430

points (these are found to be the most active modes as in the δ= 0 case). Increasing δ results431

in a larger value of the small wavenumber asymptote and an increase in the energy in the low432
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modes – this is consistent with the fact that C(δ) is an increasing function of its argument. The433

interpolant of the data points for δ= 0.01 is almost identical to the dispersionless case shown in434

figure 6(a), thus we do not plot the latter for comparison. For the moderate value of δ= 0.1, the435

energy equipartition is skewed, as the active mode hump widens towards the low wavenumbers.436

The hump of active modes appears to cover the entire low wavenumber range for δ= 1, and thus437

we recover the equipartition of energy among the low modes. For larger values of δ (for example438

δ= 25 as in supplementary Movie 2), we recover the peaks in the spectrum as observed for the439

1D problem by Gotoda et al. [23], however the mixed modes are much more active – further440

investigation of the dynamics of moderate to large δ is warranted.441

In analogue with the 1D case, we see that the addition of dispersion decreases the radius of442

analyticity of solutions; for example, in the case of δ= 1 and a domain which yields fully 2D443

solutions, it is observed that the Fourier coefficients decay as (3.4) with β ≈ 3.5. As before, we find444

that the optimal numerical lower bound on the strip of analyticity occurs for thin domains (the445

smoothening of solutions due to two-dimensionality is independent of δ), and the corresponding446

1D results are investigated in [3].447

5. Conclusions448

In this work, we have studied the dynamics of a physically derived dispersive KSE (1.3) in449

two spatial dimensions exhibiting extensive behaviour. Without dispersion, we observed that450

for sufficiently large domains, the system enters a regime of full spatiotemporal chaos, which is451

dominated by the streamwise dynamics (see supplementary Movie 1). Furthermore, the system452

possesses a constant energy density since theL2-norm of solutions scales with |Q|1/2 =L
1/2
1 L

1/2
2 .453

In keeping with this, we find that the energy distribution of the low modes converges to a constant454

surface as L1 and L2 become large (see figure 4) and the L∞-norm of solutions is bounded455

independently of Q. These features are seen for the 1D KSE (1.1); however, the anisotropic KSE456

(1.3) of interest in this paper does not present an inertial range in the simulations we have457

performed with mixed mode activity. In addition to this, we saw that the increase in two-458

dimensionality of solutions, through increasing the transverse length L2 until mixed modes459

become active, results in increased spatial analyticity. The optimal lower bound on the strip of460

analyticity is found when the domain is thin in the transverse direction, where the dynamics are461

governed by the 1D equation (1.1).462

The addition of strong dispersion results in regularisation of the spatiotemporal chaos, but463

moderate values of δ (dispersion parameter) change the nature of the chaotic dynamics, with464

interacting wavefronts that resemble KdV-type pulses emerging (see supplementary Movie 3).465

The energy density is an increasing function of δ, and the constant L∞-norm bound on the466

solutions also increases with dispersion. As observed in 1D, dispersion has a destabilising effect467

on the dynamics, as can be seen in a loss of spatial analyticity of solutions. Preliminary numerical468

runs indicate that (4.1) is valid in the large dispersion regime where the chaotic dynamics are469

regularised – the value of δ fixes the pulse height, and the number of pulses scales with the size470

of the periodic rectangular domain. Much larger values of dispersion require smaller time steps471

for good accuracy, and a comprehensive study of the moderate to large δ regime for very large472

domains is numerically challenging.473

It appears that finite energy density, corresponding to systems exhibiting equipartition, is a474

hallmark of the dynamics of KS-type systems with a uux nonlinearity. This property has been475

shown for multi-dimensional equations even with the addition of dispersion and variation in476

the linear and nonlinear terms. A non-local KSE in 2D was derived by Tomlin et al. [58] for477

the problem of a gravity-driven thin liquid film under the action of a normal electric field.478

Preliminary results appear to indicate a finite energy density for this problem also. Current work479

by the authors is the investigation of the extent of the class of PDE with quadratic nonlinearities480

exhibiting a finite energy density (corresponding to a roughness exponent of 0) by considering481
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non-local variants of (1.1). Correspondingly, there is the related problem of finding the extent of482

the KPZ universality class by considering equations with the v2x nonlinearity.483

Data Accessibility. An executable file, datafile and MATLAB script required to run and analyse numerical484

simulations of (1.3) are available at:485

https://github.com/RubenJTomlin/Anisotropic-dispersive-2D-Kuramoto-Sivashinsky-Equation.486
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