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A B S T R A C T   

A new analytical model for forming force prediction in the whole process of incremental sheet forming (ISF) is 
presented in this work. The modelling of contact region, thickness distribution and strain components are carried 
out as the basis for the prediction of vertical and horizontal forces. The effect of local contact behaviour and 
material deformation, as well as the behaviours of global bending, changes of deformation mode and contact 
condition are taken into account in the modelling of ISF force history. The force prediction model at both plane 
strain and biaxial tension condition areas is developed based on the differences in contact region and thickness 
distribution between these two different deformation states. Validated by ISF tests for a truncated cone and 
pyramid part with varying drawing angles, the prediction of force history captures well the fluctuation of 
different force components due to the change of deformation conditions and provides an insight into the material 
deformation mechanisms and the direct correlation to forming force characteristics of the whole ISF process. In a 
practical case, the model is successfully applied to the force prediction in ISF-based cranial plate manufacture. 
The model is also validated by a series of ISF tests with accurate force predictions of both the peak and stabilised 
forces.   

1. Introduction 

As an emerging flexible manufacturing process, incremental sheet 
forming (ISF) has drawn increasing attention in recent years (Duflou 
et al., 2017). Extensive research has shown that it is especially advan-
tageous in manufacturing small-batch and customised sheet parts 
because of its distinctive features of flexibility (Bowen et al., 2022), 
adaptability (Schafer and Schraft, 2005), applicability (Emmens et al., 
2010), improved material formability (Nirala and Agrawal, 2022) and 
associated benefits in energy efficiency and reduced costs (Cooper and 
Gutowski, 2020). Great potential has been shown in practical applica-
tions of ISF in aerospace, automotive industries, and medical engi-
neering. Chang and Chen (2022) developed a novel flexible free ISF 
without edge constraint and tested the possibility to manufacture skull 
implant, turbo tip and blade. Centeno et al. (2012), adapted ISF in the 
application of hole flanging, while Takano et al. (2008) tested the 
feasibility of cold recycling of sheet metal waste by ISF. 

In ISF processing, the designed shape is achieved by local deforma-
tion in steps, which is driven by often a hemispheric forming tool 
following a contour path (Zhu et al., 2020) on usually a computer nu-
merical control (CNC) milling machine (Kopac and Kampus, 2005), a 
designed ISF machine (Allwood et al., 2005) or a robotic manufacturing 

system (Mohanty et al., 2019). The contact between the forming tool 
and the sheet material is important to the deformation, formability and 
fracture in ISF (Jackson and Allwood, 2009). The forming forces in ISF 
also reflect the tool-sheet contact relationship due to friction (Lu et al., 
2014), bending, shearing and stretching effect (Li et al., 2015), tool 
rotation (Obikawa et al., 2009), and the steadiness of contact (Ren et al., 
2018). 

The forming force in ISF is influenced by process parameters 
including step size, forming tool dimension, drawing angle, sheet 
thickness, feed rate, spindle speed, temperature, lubricant condition and 
material property (Kumar et al., 2019). Filice et al. (2006) observed the 
trend of force variation in ISF and clarified that the initial bending leads 
to the peak force. After peak, the stretching begins and there are three 
distinguished trends: steady-state, polynomial and monotonically 
decreasing trends. Duflou et al. (2007a) presented a sudden change 
when the tool starts to enter each contour or deforms corner positions of 
a pyramid part although there was no significant difference of the mean 
total forces in ISF of cones and pyramids. These indicate the effect of 
initial bending and geometric shape on the force variations in ISF. 

Accurate prediction of forming force provides an insight into the 
material deformation and the interaction between ISF parameters and it 
is feasible to even detect fracture failure (Ambrogio et al., 2006). To 
predict the forming forces in the whole process of ISF, finite element 
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(FE) simulation is commonly used. However, a satisfactory FE simula-
tion is affected by multiple factors and often takes considerable time to 
complete (Moser et al., 2021). Apart from FE simulation, machine 
learning has drawn increasing attention in force prediction of ISF 
(Ostasevicius et al., 2021). However, a machine learning dataset is 
necessarily generated from a series of tests (Najm and Paniti, 2023) or FE 
simulations (Jiang et al., 2022), which may take quite much time and 
effort. Therefore, it is highly desirable to develop analytical models for 
time and tool path dependent force prediction with sufficient accuracy 
and efficiency. In recent years, analytical methods have been used and 
validated in geometric accuracy improvement (Praveen et al., 2020), 
thickness distribution (Cao et al., 2015), surface roughness (Chang and 
Chen, 2019), and temperature distribution (Wu et al., 2020). 

To predict ISF forming force, analytical models could be developed 
using experimental or theoretical based methods. The experimental 
based model requires a large number of testing results to establish the 
relationship equation between forming force and process parameters. 
Aerens et al. (2010) and Duflou et al. (2007b) attempted to predict ISF 
forces by analysing testing results under different parameters and fitting 
the regression equations with power functions. As a function of sheet 
thickness, drawing angle, tool diameter, step size and material tensile 
strength, Aerens et al. model was capable to predict three force com-
ponents for five different sheet materials in the studied forming 
conditions. 

On the other hand, theoretical based models could be developed by 
looking into the intrinsic relationships among ISF parameters, material 

Nomenclature 

Symbol (unit) Description 
r (mm) Distance from studied position to tool centre 
φ (rad) Angle from studied position to tool axis 
θ (rad) Angle from workpiece meridional cross-section to studied 

position 
x, y, z (mm) Coordinates of tool position in x, y, and z axes 
rtool (mm) Tool radius 
t0 (mm) Initial sheet thickness 
Δz (mm) Step size 
Ψ (rad) Designed drawing angle 
α (rad) Actual drawing angle 
αb (rad) Actual drawing angle at corner of pyramid part 
β, λ (rad) Indentation angle in workpiece meridional and 

circumferential directions 
βb (rad) β angle at corner of pyramid part 
μ (rad) Elastic recovery angle 
β1 (rad) Angle induced by forming tool increment in workpiece 

meridional direction 
β1b (rad) β1 angle at corner of pyramid part 
t (mm) Thickness of sheet material below forming tool at different 

regions 
Δt (mm) Sheet thickness reduction at different regions after contact 
tb (mm) Thickness in workpiece meridional direction at corner of 

pyramid part 
Δter (mm) Maximum instant thickness recovery 
tc (mm) Sheet thickness below tool centre 
σc (MPa) Mean equivalent stress of sheet material below tool centre 
εp

c Mean equivalent plastic strain of sheet material below tool 
centre 

wer (mm) Maximum width of elastic recovery region 
tA, tB (mm) Thicknesses of sheet material in Parts A and B 
φp (rad) φ angle of projection position on workpiece meridional 

cross-section 
tp (mm) Thickness of projection position on workpiece meridional 

cross-section 
ω (rad) Arc angle from studied position to projection position on 

workpiece circumferential cross-section 
ρd, ρer (mm) Thickness reduction rates of deformation and elastic 

recovery regions 
E (MPa) Young’s modulus of sheet material 
n Strain hardening exponent of sheet material 
Rb, R0, R (mm) Distances from part centre/symmetry axis to edge of 

backing plate, initial tool position and studied tool position 
rgb (mm) Global bending radius 
h (mm) Depth of tool position 
εstretching Stretching strain of the neutral surface 
εbending Bending strain of sheet material 

εφ, εθ, εr Strain in tool meridional, circumferential and radial 
directions 

σ (MPa) Equivalent stress of sheet material 
εp Equivalent plastic strain of sheet material 
F, Fv, Fh, Fr, Ft (N) Total, vertical, horizontal, radial, and tangential 

forces 
Fls (N) Localised shear force 
P1, P2 Boundaries of overlapping deformation region in plane 

strain condition 
P3 Boundary of non-overlapping deformation region in plane 

strain condition 
P4, P5 Boundaries of elastic recovery region in plane strain 

condition 
aP1, aP2, aP4, aP5 (mm) Semi-major axes of ellipses for P1, P2, P4 and 

P5 
bP1, bP2, bP4, bP5 (mm) Semi-minor axes of ellipses for P1, P2, P4 and 

P5 
FP1

ls , FP2
ls , FP3

ls , FP4
ls , FP5

ls (N) Localised shear forces of P1–P5 
Q1 Boundary of corner deformation region in biaxial tension 

condition 
Q2 Boundary of overlapping deformation region in biaxial 

tension condition 
Q3, Q4 Boundaries of elastic recovery region in biaxial tension 

condition 
aQ1, aQ2, aQ3, aQ4 (mm) Semi-major axes of super ellipse or ellipses 

for Q1–Q4 
bQ1, bQ2, bQ3, bQ4 (mm) Semi-minor axes of super ellipse or ellipses 

for Q1–Q4 
FQ1

ls , FQ2
ls , FQ3

ls , FQ4
ls (N) Localised shear forces of Q1–Q4 

Fls
v (N) Vertical component of localised shear force 

Fgb
v (N) Vertical force from global bending 

Fls
t (N) Tangential component of localised shear force 

Fmt
t (N) Tangential force leading to material thinning 

Ff
t (N) Frictional force in tangential direction 

Fx, Fy (N) Forces along x and y axes 
f Frictional coefficient between forming tool and sheet 
σs (MPa) Yield stress of sheet material at different regions 
εs Yield strain of sheet material at different regions 
τ (MPa) Shear stress of sheet material 
γ (mm) Elastic deflection 
D (N⋅mm) Flexural rigidity of sheet material 
ν Poisson’s ratio of sheet material 
εgb Equivalent strain due to global bending 
rcritical

gb (mm) Critical bending radius for maximum elastic deflection 
hcritical (mm) Critical depth of tool position for maximum elastic 

deflection  
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deformation, stress and strain states. Li et al. (2015) developed models 
based on the energy method, and took the deformation modes of shear, 
bending and stretching into account. The prediction results showed 
good agreement with experimental data, but Li et al. model requires 
further adjustment for a wider range of process conditions because this 
model only considers the prediction of horizontal force components and 
uses an empirical coefficient for combined shear and bending defor-
mation. Bansal et al. (2017) presented equations for axial, radial and 
tangential forces, and the prediction of axial force was validated by 
comparing with experimental results although the modelling assumed a 
rectangle contact region and uniform stress distribution. Liu et al. 
(2022) developed an analytical model for force prediction in three di-
rections by considering the contact area. The forming force in different 
directions is calculated by integrating the directional force of each 
element, which is the multiplication of the element area and the cor-
responding stress. However, several key parameters in the model are 
unknown and need to be determined by experimental results. Adopted 
from the membrane analysis by Silva et al. (2008), Chang et al. (2019) 
developed an analytical model to predict forming force in ISF and 
adjusted the model for several variants. This model calculates the 
forming force and components by multiplying the through-thickness 
stress on neutral surface with contact area and projection areas. For 
different ISF conditions, the prediction accuracy of the model was 
validated. However, without considering the force caused by global 
bending of unsupported sidewall, Chang et al. model can only be used to 
predict stabilised force instead of giving whole-process force prediction 

from the beginning to the end of ISF process. 
As summarised from the above literature review, two of the existing 

but unsolved essential issues in analytical force prediction are the 
dramatically increased forming force by the deformation/contact 
behaviour change and the peak force by the initial bending effect. In 
order to overcome the limitations in existing analytical models, this 
work presents a novel modelling strategy for forming force history 
prediction by looking into the material deformation in ISF processes. 
Localised indentation, tool-sheet contact, material stretching, as well as 
previously less involved issues including global bending, deformation 
mode change and contact condition change are considered in ISF pro-
cessing conditions. Experimental validations are conducted to test the 
prediction results of the analytical model as well as comparison with 
other representative models. The developed model could help to reveal 
and understand the complicated and instable deformation behaviour 
from both local and global aspects. 

2. Analytical modelling of forming force 

The modelling strategy and deviation process for forming force 
prediction are given in this section. The modelling of contact region, 
thickness distribution, strain and stress components is derived first fol-
lowed by the calculation of forming force components. 

Fig. 1. Boolean subtraction of a ball tool from (a), (b) truncated cone shape, (c), (d) linear part and (e), (f) corner of truncated pyramid shape.  
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2.1. Contact region 

In ISF, larger contact area between forming tool and sheet material 
could contribute to larger forming force, while losing contact usually 
leads to smaller force. The first step of modelling is to identify the 
contact region. 

The similarity between ISF and milling processes is that both obtain 
the final part through accumulation of localised deformation or cutting 
following a predefined tool path. The major difference is that the 
localised material under milling is subjected to cutting, while in ISF the 
localised sheet material undergoes plastic deformation followed by some 
elastic deformation. The ISF of rigid plastic materials may have the same 
contact region to the end milling process with a ball nose tool. As shown 
in Fig. 1, Boolean operation is used to subtract a ball tool from truncated 
cone and pyramid shaped parts. The blue area shows the cutting region 
in end milling process using a ball nose tool, which is the same as the 
contact region in ISF of materials only with rigid plastic deformation. 
However, the elastic deformation before full tool-sheet contact and the 
recovery after deformation should be considered in real ISF situation. A 
shrink of the front contact region and an expansion of the rear contact 
region may be applied, as shown by the white lines in Fig. 1. The above 
analysis is the basis for the modelling of contact region in ISF. 

Before analytical modelling, a number of assumptions are made 
below:  

(1) The scallop height is neglected as it is relatively small compared 
to the sheet thickness.  

(2) The thickness of localised contact region is assumed linearly 
distributed in the workpiece meridional and circumferential 
directions.  

(3) In the elastic recovery region, the maximum elastic recovery of 
thickness occurs at the sheet material below the tool centre 
position. 

Under ISF condition, a localised spherical coordinate system is pro-
posed with the origin at the tool centre. For a certain position or small 
element inside the contact region, the coordinate can be expressed as (r,
φ,θ) as shown in Fig. 2, where r is the distance from the studied position 
to the tool centre, φ is the angle between the position and the tool axis, 
and θ is the angle from the workpiece meridional cross-section to the 
position. rtool is the tool radius, t0 is the initial sheet thickness, α is the 
drawing angle, β and λ are the indentation angles in the workpiece 
meridional and circumferential directions, respectively, μ is the elastic 
recovery angle behind the tool resulting from the instant recovery after 
elastoplastic deformation, and β1 is the angle induced by the increment 
of forming tool in workpiece meridional direction. The partition of Parts 
A and B is for the convenience of thickness derivation on workpiece 
meridional cross-section, and Parts A and B are at inner and outer sides 
of the tool, respectively. 

As indicated by Park and Kim (2003) and Martins et al. (2008), the 
normal state of ISF formed part is under plane strain condition. This is 
also revealed by the strain components distribution in FE simulation of 
ISF of 0.7 mm titanium grade 1 (TA1) sheet. As shown in Fig. 3(b) and 
(d), for the truncated cone part and the linear positions of truncated 
pyramid part, zero circumferential strain is observed along the dotted 
paths in Fig. 3(a) and (c). Therefore, plane strain condition can be 
regarded as the normal state after ISF at the level of global deformation. 

In plane strain condition, the contact region may be comprised of 
three parts: non-overlapping deformation (ND), overlapping deforma-
tion (OD) and elastic recovery (ER) regions visible in a top view shown 
in Fig. 2(c), which can be seen as the combination of a part of a circular 
region and parts of three elliptical regions. The ND region covers the 

Fig. 2. Illustration of contact region in ISF and the coordinate system to show the relationship between forming tool and sheet material in plane strain condition from 
(a) front view, (b) left view, (c) top view and (d) 3D view. 
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area where the sheet material is newly deformed under the tool, and P3 
in Fig. 2(c) is the border line of this region. The OD region defines the 
material that has already undergone at least one deformation cycle 
before this round of tool contact, and the border line is composed of P1 
and P2. ER region represents the area where the sheet material un-
dergoes the instant elastic recovery after deformation, and Parts A and B 
of the ER region have the boundaries as P4 and P5, respectively, as given 
in Fig. 2(c). The definition of different regions is critical to the analytical 
modelling, as they are the key to derivation of the localised shear force, 
which may drive the material to move downwards. 

For OD region, the ellipse (P1 and P2) in a horizontal projection 
plane has semi-major and semi-minor axes with lengths of aP1 = aP2 

= rtool • (sinα+sinβ1) and bP1 = bP2 = rtool •

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(sinβ)2
− (sinβ1)

2
√

, 
respectively. By projecting the ellipse in the horizontal plane to the 
hemispherical tool surface, the centre is located at (rtool, β1, π), and the 
expression of the ellipse can be written as following: 

(rtool • sinφ • cosθ + rtool • sinβ1)
2

aP1
2 +

(rtool • sinφ • sinθ)2

bP1
2 = 1 (1)  

where β will be calculated in Section 2.3, and the relationship between β 
and β1 can be given as following: 

If the step size Δz ≤ rtool • sinβ • tanα, 

β1 = arcsin
(

sinβ −
Δz

rtool • tanα

)

(2) 

and if Δz ≥ rtool • sinβ • tanα, 

β1 = arcsin
(

Δz
rtool • tanα − sinβ

)

(3) 

The situation of Δz ≥ rtool • sinβ • tanα leads to too small or even no 
overlapping region, which is uncommon in ISF design and would cause 
poor surface finish. Therefore, β1 is calculated as Eq. (2) throughout the 
modelling. 

Fig. 3. FE simulation of TA1 ISF of (a) truncated cone part and (c), (e) truncated pyramid part, and (b), (d), (f) principal strain components distribution along the 
dotted path. 
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For the circular shape of ND region (P3), the radius is rtool • sinβ. In 
the spherical coordinate system, the contact boundary of this region can 
be expressed as following: 

φ = β (4) 

Parts A and B of ER region also have elliptical shapes (P4 and P5) 
with the tool tip as the centre, and aP4 = rtool • sinβ and aP5 = rtool • sinα as 
the length of semi-major axes, respectively. The length of semi-minor 
axis can be calculated with consideration of the elastic recovery of the 
sheet thickness after deformation. According to the assumption, the 
maximum elastic recovery of the sheet thickness occurs below the tool 
centre position, and the maximum recovery Δter may be calculated with 
the following equation by considering the elastic strain recovery: 

Δter =

[

exp
(

1
2
•

σc

E

)

− 1
]

• Δtc (5)  

where E is the Young’s modulus, Δtc = t0 − tc is the thickness reduction 
below the tool centre position, and σc is the mean equivalent stress of the 
sheet material below the tool centre position. The calculation methods 
for tc and σc are given in Sections 2.2 and 2.4, respectively. 

The maximum width of the ER region wer, i.e., the length of semi- 
minor axes bP4 and bP5 as shown in Fig. 2(c), is given as the following 
expression: 

bP4 = bP5 = wer =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

rtool
2 − (rtool − Δter)

2
√

(6) 

As a result, in the spherical coordinate system, the boundaries of 
Parts A and B of ER region are expressed as the following Eqs. (7) and 
(8), respectively: 

(rtool • sinφ • cosθ)2

aP4
2 +

(rtool • sinφ • sinθ)2

bP4
2 = 1 (7)  

(rtool • sinφ • cosθ)2

aP5
2 +

(rtool • sinφ • sinθ)2

bP5
2 = 1 (8)  

2.2. Thickness distribution under tool-sheet contact 

This section aims to give the analytical model of sheet thickness 
distribution under tool-sheet contact. The modelling process is pre-
sented in two steps: thickness distribution on the workpiece meridional 
cross-section and thickness distribution of the whole contact region in 
3D space. 

The thickness distribution on the workpiece meridional cross-section 
is firstly derived. According to the assumption of linear thickness dis-

tribution, the thickness along the workpiece meridional direction as 
shown in Fig. 2(a) is linearly distributed from t0 to t0 • cosα following the 
cosine law (Hussain and Gao, 2007). So, the thickness t on the workpiece 
meridional cross-section at a proposed position with coordinates of (rtool,

φ,θ) (on the workpiece meridional cross-section, θ = 0 in Part B or θ = π 
in Part A) can be expressed as the following equation: 

t = t0 −
t0 • (1 − cosα) • (β + φ • cosθ)

α + β
(9) 

On the workpiece cross-section of Parts A and B, Eq. (9) can be 
written in the following formats, respectively: 

tA = t0 −
t0 • (1 − cosα) • (β − φ)

α + β
(10)  

tB = t0 −
t0 • (1 − cosα) • (β + φ)

α + β
(11) 

The thickness at the tool centre position tc can be calculated as 
following by applying φ = 0: 

tc = t0 −
t0 • (1 − cosα) • β

α + β
(12) 

Thickness distribution of the whole contact region in 3D space can be 
obtained by following the derivation in Appendix A. The thickness dis-
tribution in ND and OD region is expressed as the following equation: 

t = t0 −
t0 • (1 − cosα)

α + β

•

⎡

⎢
⎣β+ arcsin(sinφ • cosθ) −

(β − β1) •

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1 − (sinβ1)
2

√

• φ • sinθ
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
β2 − β1

2
√

•

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1 − (sinφ • cosθ)2
√

⎤

⎥
⎦

(13) 

The thickness distribution in ER region is expressed as the following 
equation: 

t = t0 −
t0 • (1 − cosα)

α + β
•

⎧
⎪⎪⎨

⎪⎪⎩

β + arcsin(sinφ • cosθ)

+

[
exp

(
1
2 •

σc
E

)
− 1

]
• β • φ • sinθ

arccos
[
1 −

(
exp

(
1
2 •

σc
E

)
− 1

)
•

t0•(1− cosα)•β
rtool•(α+β)

]
•

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1 − (sinφ • cosθ)2
√

⎫
⎪⎪⎬

⎪⎪⎭

(14)  

2.3. Indentation and drawing angles 

In expressions of thickness distribution, Eqs. (13) and (14), there are 
two unknown parameters: equivalent stress σc at the tool centre position 
and the indentation angle β in workpiece meridional direction, among 
which σc can be calculated by using the equivalent plastic strain in the 
constitutive equation. Apart from β, the actual drawing angle α is 
different from the designed drawing angle Ψ because of the initial 
bending effect and the incomplete contact between the forming tool and 
sheet material. Therefore, the actual drawing angle α needs to be iden-
tified appropriately and affects the calculation of all the equations 
above. This section aims to give the detailed calculation methods of β 
and α. 

As shown in Fig. 2(a), β meets the condition given by the following 
expression: 

rtool • (1 − cosβ) > t0 • (1 − cosβ) •
β

α + β
(15) 

Referring to the study of Ai et al. (2017), strain hardening exponent n 
is considered in the modelling process to reflect the effect of material 

Fig. 4. Comparison of indentation angle between simulation and analytical 
results considering the effect of material hardening exponent on indentation in 
ISF process. 
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hardening on indentation, and an equation is proposed as following by 
modifying the above expression: 

rtool • (1 − cosβ) = t0 • (1 − cosα) • β
α + β

+
1

1 + exp(5 • n − 1)
• rtool

• (1 − cosβ) (16) 

Solving the above equation gives the expression of β: 

β =
1
2
•

[ ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

α2 +
8 • t0 • (1 − cosα) • [1 + exp(5 • n − 1) ]

rtool • exp(5 • n − 1)

√

− α
]

(17) 

To confirm the validity of Eq. (17), FE simulation is used to obtain 
angle β of materials with different strain hardening exponent as it is 
difficult to observe in experiment. AA5052, AA3003 and TA1 are used in 
ISF simulation with drawing angle of 50◦ and sheet thickness of 1.2 mm. 
As shown in Fig. 4, the comparison between the simulation and 
analytical results indicates that the proposed equation can predict angle 
β well. 

Since the boundary expressions of different regions are derived in 
Eqs. (1), (4), (7) and (8), the indentation angle λ in workpiece circum-
ferential direction and the elastic recovery angle μ as shown in Fig. 2(b) 
can be approximately calculated as the following equations: 

λ =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

β2 − β1
2

√

(18)  

μ = arcsin
wer

rtool
(19) 

Another important angle in the contact region is the drawing angle. 
At the initial stage of ISF, the actual drawing angle α is smaller than the 
designed drawing angle Ψ because the tool and the sheet are not in 
complete contact and the bending effect is obvious at the beginning.  
Fig. 5 illustrates the contact relationship at the beginning of ISF, in 
which the initial bending effect is demonstrated. 

According to the geometric feature, following equations can be lis-
ted: 
(
rgb + t0 + rtool

)
• sinα = Rb − R (20)  

(
rgb + t0

)
• cosα+ h − rtool • (1 − cosα) = rgb + t0 (21) 

where Rb is the distance from the part centre/symmetry axis to the 
edge of backing plate (or clamping position if without backing plate), R 
is the distance from the part centre/symmetry axis to the tool position, 
rgb is the bending radius and h is the depth of tool position. By solving 
Eqs. (20) and (21), the actual drawing angle at the initial stage of ISF can 
be obtained as the following expression: 

α = 2 • tan− 1
(

h
Rb − R

)

(22) 

The actual drawing angle follows Eq. (22) until the designed value Ψ 
is reached. 

2.4. Strain components 

In ISF, the forming force is closely related to the amount of defor-
mation, which is quantified by strain components. This section gives the 
modelling and calculation of strain components under tool-sheet 
contact. 

The strain distribution of the tool meridional cross-section may be 
calculated under the combined effect of stretching and local bending 
(Fang et al., 2014). The strain caused by stretching and material thin-
ning on the neutral surface can be calculated as following: 

εstretching = ln
t + Δt

t
(23) 

where t is the material thickness under contact, which is derived as 
Eqs. (13) and (14) for different contact regions. 
Δt = t0 • (1 − cosα) • (β − β1)/(α+β) for overlapping regions, while 
Δt = t0 − t for non-overlapping regions. The strain due to pure bending 
has the following expression (Hu et al., 2002): 

εbending = ln
r

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
rtool • (rtool + t)

√ (24) 

Combining the stretching and bending strain, the strain along the 
tool meridional direction can be calculated: 

εφ = εstretching + εbending = ln
(t + Δt) • r

t •
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
rtool • (rtool + t)

√ (25) 

Although the global deformation and final state of the ISF formed 
truncated cone part are in plane strain condition, the instant local 
deformation state under the localised contact can be seen similar as 
stretch forming of thin sheet, which is typically in biaxial tension con-
dition (Hu et al., 2002). Therefore, εθ and εr in the tool meridional and 
radial directions may be given by the next equations: 

εθ = ln
(t + Δt) • r

t •
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
rtool • (rtool + t)

√ (26)  

εr = 2 • ln
t •

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
rtool • (rtool + t)

√

(t + Δt) • r
(27) 

The equivalent plastic strain εp can be derived as the following 
expression: 

εp =

̅̅̅
2

√

3
•

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(εr − εφ)
2
+ (εφ − εθ)

2
+ (εθ − εr)

2
√

= 2 •

⃒
⃒
⃒
⃒
⃒
ln

(t + Δt) • r
t •

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
rtool • (rtool + t)

√

⃒
⃒
⃒
⃒
⃒

(28) 

The equivalent stress σ can be calculated with a given material 
constitutive model and the equivalent plastic strain. It is noteworthy 
that σc in Eq. (5) can be obtained at the mean equivalent plastic strain εp

c , 
which may be calculated without consideration of bending strain: 

εp
c = 2 • ln

tc + Δt
tc

(29)  

where, Δt = t0 • (1 − cosα) • (β − β1)/(α+β) and tc is derived as Eq. (12). 

2.5. Forming force 

After the modelling of contact region, thickness distribution, strain 
and stress components in the above several sections, this section aims to 

Fig. 5. Illustration of tool-sheet relationship to show the global bending effect 
at the beginning of ISF. 
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give the modelling method and to develop the analytical equations for 
calculation of forming forces in ISF. 

The forming force (F) is decomposed to the vertical force (Fv) and 
horizontal force (Fh), between which the horizontal force may be 
comprised of the force in radial direction (Fr) and the force in tangential 
direction (Ft). As shown in Fig. 6, the vertical force may consist of the 
vertical component of localised shear force (Fls

v ) and the vertical force 
due to global bending (Fgb

v ). The radial force Fr is perpendicular to the 
tool path and may come from the radial component of the localised 
shear force, while the tangential force Ft may be comprised of the 
localised shear force component in tangential direction (Fls

t ), the force 
leading to material thinning (Fmt

t ) and the frictional force (Ff
t ). 

2.5.1. Vertical forming force related to local shear deformation 
In ISF, the downward movement of material is driven by the forming 

tool. The tool may be seen as an indentation of the sheet along the 
normal direction of the contact region to generate deformation, and the 
sheet material gives a reaction force to oppose the tool movement and 
the material deformation. The vertical force is a combination of the 
vertical component of reaction shear force provided by the sheet ma-
terial and the force resulting from the global bending. 

According to the von-Mises yield criteria, in biaxial tension condition 
of the localised deformation region as indicated above, the shear stress τ 
may be calculated using the following equation (Hu et al., 2002): 

τ =
1
2
• σs (30)  

where the yield stress σs is represented by σP1
s , σP2

s , σP3
s , σP4

s and σP5
s for 

different parts as shown in Fig. 2(c) and is calculated by the material 
constitutive model at the yield strain εs as given by Eq. (31), which may 
only come from the material thinning Δt after contact and deformation. 

εs = 2 • ln

⎡

⎢
⎢
⎣1+

Δt
t0 −

t0•(1− cosα)•(β+asinδ•cosθ)
α+β

⎤

⎥
⎥
⎦ (31)  

where Δt = t0 • (1 − cosα) • (β − β1)/(α+β) for P1, P2 and P5, while Δt 
= t0 • (1 − cosα) • (β+asinδ • cosθ)/(α+β) for P3 and P4. δ is represented 
by δP1, δP2, δP3, δP4 and δP5, which are φ angles at boundaries of the five 
contact regions and are defined with different θ ranges by Eqs. (1), (4), 
(7) and (8). 

The localised shear force (Fls) in different contact regions may be 
calculated using the shear stress and through thickness area by the 
following expressions: 

FP1
ls =

∫ 1
2 π

0

∫ rtool+tP1

rtool

σP1
s • sinδP1 • rtool

2 • cos
[

π
2 − θ − arctan

(
bP1

2•cosθ
aP12•sinθ

) ] drdθ (32)  

FP2
ls =

∫ arccos

(

−
sinβ1
sinβ

)

1
2 π

∫ rtool+tP2

rtool

σP2
s • sinδP2 • rtool

2 • cos
[

π
2 − θ − arctan

(
bP2

2•cosθ
aP22•sinθ

) ] drdθ (33)  

FP3
ls =

∫ π

arccos

(

−
sinβ1
sinβ

)
∫ rtool+tP3

rtool

σP3
s • sinδP3 • rtool

2
drdθ (34)  

FP4
ls =

∫ 3
2 π

π

∫ rtool+tP4

rtool

σP4
s • sinδP4 • rtool

2 • cos
[

π
2 + θ + arctan

(
bP4

2•cosθ
aP42•sinθ

) ] drdθ (35)  

FP5
ls =

∫ 2π

3
2 π

∫ rtool+tP5

rtool

σP5
s • sinδP5 • rtool

2 • cos
[

π
2 + θ + arctan

(
bP5

2•cosθ
aP52•sinθ

) ] drdθ (36) 

where FP1
ls , FP2

ls , FP3
ls , FP4

ls and FP5
ls are localised shear forces of P1, P2, 

P3, P4 and P5, respectively; tP1, tP2, tP3, tP4 and tP5 are the thickness at the 
boundary of the five regions by Eqs. (13) and (14). 

The vertical forming force due to localised shear force may be 
calculated using the following equation: 

Fls
v = cos

α − β
2

• cos
λ − μ

2
• Fls

= cos
α − β

2
• cos

λ − μ
2

•
(
FP1

ls +FP2
ls +FP3

ls +FP4
ls +FP5

ls

)
(37)  

2.5.2. Vertical forming force from elastic deflection 
Referring to the case of a circular plate, elastic deflection γ and 

concentrated force Fgb
v may have the following relationship: 

γ =
Fgb

v •
(
Rb

2 − R2
)2

16 • π • D • Rb
2 (38)  

where D in N⋅mm is the flexural rigidity of sheet material: 

D =
E • t0

3

12 • (1 − ν2)
(39)  

where ν is the material Poisson’s ratio. The part of vertical force from 
global bending can be expressed as follows: 

Fgb
v = 16 • π • D • γ •

Rb
2

(
Rb

2 − R2
)2 (40) 

The global bending of the sheet material between the forming tool 
and the backing plate is totally recovered until the equivalent strain due 
to bending on the top surface (expressed as Eq. (41)) equals to the yield 
strain εs of the sheet material. 

εgb =
2̅
̅̅
3

√ • ln
rgb + t0

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

rgb •
(
rgb + t0

)√ =
1̅
̅̅
3

√ • ln
rgb + t0

rgb
(41) 

Therefore, when the elastic deflection reaches the maximum value, 
the bending has a critical radius as expressed by Eq. (42): 

rcritical
gb =

t0

exp
( ̅̅̅

3
√

• εs
)
− 1

(42) 

According to the relationships given by Eqs. (20) and (21), the crit-
ical depth of tool position, i.e., the maximum elastic deflection can be 
derived and calculated by the following equation: 

hcritical =

[
t0

exp
( ̅̅̅

3
√

• εs
)
− 1

+ t0 + rtool

]

•

⎧
⎪⎪⎨

⎪⎪⎩

1 − cos

⎡

⎢
⎢
⎣arcsin

Rb − R
t0

exp(
̅̅
3

√
•εs)− 1

+ t0 + rtool

⎤

⎥
⎥
⎦

⎫
⎪⎪⎬

⎪⎪⎭

(43) 

Fig. 6. Forming force components in ISF.  
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The elastic deflection γ equals to h until the tool position reaches a 
critical depth hcritical. After this position, the elastic deflection γ is treated 
as a constant value hcritical. 

The vertical force is finally calculated as the superposition of Fls
v and 

Fgb
v as following: 

Fv = Fls
v +Fgb

v (44)  

2.5.3. Horizontal forming forces 
The horizontal forces in radial and tangential directions due to local 

shear behaviour have expressions as follows: 

Fr = sin
α − β

2
•
(
FP1

s +FP2
s +FP3

s +FP4
s +FP5

s

)
(45)  

Fls
t = cos

α − β
2

• sin
λ − μ

2
•
(
FP1

s +FP2
s +FP3

s +FP4
s +FP5

s

)
(46) 

The derivation of the material thinning-related horizontal force is 
based on the energy method and the work done by the horizontal force 
in movement of l along the workpiece circumferential direction may 
lead to the thinning of the sheet, as shown in Fig. 7. 

Fmt
t can be derived as the following expression: 

Fmt
t =

∫ β

0

∫ rtool+tA

rtool

σ • r • εpdrdφ+

∫ α

0

∫ rtool+tB

rtool

σ • r • εpdrdφ (47) 

In ISF, the cross-section shape of workpiece after deformation is 
determined by the meridional cross-section, which has the minimum 
area. Therefore, in this equation, the volume of the deformed material 
and the strain distribution are utilised on the workpiece meridional 
cross-section. 

The frictional force Ff
t approximately has the following relationship 

with the vertical forming force: 

Ff
t = f •

(
FP1

ls +FP2
ls +FP3

ls +FP4
ls +FP5

ls

)
(48)  

where f is the frictional coefficient between the forming tool and the 
sheet. The tangential, horizontal and total forces, Ft, Fh and F can be 
calculated as following: 

Ft = Fls
t +Fmt

t +Ff
t (49)  

Fh =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
Ft

2 + Fr
2

√
(50)  

F =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
Fv

2 + Fh
2

√
(51)  

2.6. Forming force in biaxial tension condition area 

At the corner of ISF formed parts, the material deformation at global 
level presents biaxial tension condition (Park and Kim, 2003), which 
causes the sudden change of contact region, deformation state and 
forming force. As shown in Fig. 3(e) and (f), the strain components along 

the corner positions of truncated pyramid parts also show the distribu-
tion relationship in the biaxial tension condition, which is distinguished 
from the plane strain condition. This section presents the analytical 
modelling of forming force in biaxial tension condition area by adapting 
the modelling method in Sections 2.1–2.5. 

2.6.1. Contact region 
As shown in Fig. 1(e) and (f), the blue area represents the contact 

region at the corner in end milling process or ISF process of a rigid 
plastic material. In consideration of the elastic deformation before 
contact and the recovery after contact in ISF, a shrink and an expansion 
are applied to the front and rear contact regions, respectively, as illus-
trated by the white borders. 

In biaxial tension condition area, the contact region may be 
comprised of four different parts: corner deformation (CD) region, 
overlapping deformation (OD) region and elastic recovery (ER) region, 
each of which can be assumed as a part of elliptical or super elliptical 
shape as shown in Fig. 8. The boundaries of CD and OD regions are 
represented by Q1 and Q2, respectively, while the boundary of ER re-
gion consists of Q3 and Q4. 

The lateral edge of the pyramid is defined as the intersecting line 
between two lateral faces, and the drawing angle αb becomes slightly 
smaller when the tool moves to the corner. Therefore, Q1 can be 
considered as a part of super ellipse, and the semi-major and semi-minor 
axes are aQ1 = bQ1 = rtool • sinα. In the spherical coordinate system, 
given that (rtool,αb,π/4) is on the super ellipse, the boundary of Q1 can be 
expressed as the following equation by projecting the super ellipse in the 
horizontal plane to the hemispherical tool surface: 

⃒
⃒
⃒
⃒
rtool⋅ sin φ⋅ cos θ

aQ1
|
ln 1

2

/

ln sin αb̅̅
2

√
⋅ sin α

+

⃒
⃒
⃒
⃒
rtool⋅ sin φ⋅ sin θ

bQ1
|
ln 1

2

/

ln sin αb̅̅
2

√
⋅ sin α

= 1 (52) 

With semi-major and semi-minor axes of aQ2 = rtool • (sinα+sinβ1)

and bQ2 = rtool •

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(sinβ)2
− (sinβ1)

2
√

, the elliptical boundary of Q2 can be 
given by the following equation: 

(rtool • sinφ • cosθ)2

bQ2
2 +

(rtool • sinφ • sinθ + rtool • sinβ1)
2

aQ2
2 = 1 (53) 

With semi-major and semi-minor axes of aQ3 = rtool •

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅[
1 −

(sinβ1)
2

(sinα+sinβ1)
2

]
•
[
(sinβ)2

− (sinβ1)
2
]√

and bQ3 = wer, the elliptical 

boundary of Q3 can be expressed as: 

(rtool • sinφ • cosθ)2

aQ3
2 +

(rtool • sinφ • sinθ)2

bQ3
2 = 1 (54) 

Fig. 7. Illustration of the workpiece circumferential cross-section before and 
after deformation with tool motion of distance l. 

Fig. 8. Illustration of contact region (red colour) on forming tool surface in 
biaxial tension condition at corner from top view. 
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Finally, with semi-major and semi-minor axes of aQ4 = rtool • sinα and 
bQ4 = wer, the expression of the elliptical boundary of Q4 is derived as 
the following: 

(rtool • sinφ • cosθ)2

aQ4
2 +

(rtool • sinφ • sinθ)2

bQ4
2 = 1 (55)  

2.6.2. Vertical forming force 
Referring to plane strain condition area, the vertical force in biaxial 

tension condition area can be derived as in the following expression: 

Fv = cos
αb

2
•
(
FQ1

ls +FQ2
ls +FQ3

ls +FQ4
ls
)
+Fed

v (56)  

where FQ2
ls = FP1

ls , FQ4
ls = FP5

ls and FQ3
ls can be approximated as FP4

ls . FQ1
ls can 

be calculated by the following equation: 

FQ1
ls =

∫ 1
2 π

0

∫ rtool+tQ1

rtool

σQ1
s ⋅ sin δQ1⋅rtool

2⋅ cos
{

π
2 − θ − arctan

[
(cot θ)

ln 1
2

/
ln sin αb̅̅

2
√

⋅ sin α
− 1 ]}

drdθ

(57)  

where tQ1 and σQ1
s are the sheet thickness and the yield stress of Q1, 

respectively. The sheet thickness at the immediate proximity near the 
contact region at the corner can be approximated as t0 • cosαb. Accord-
ing to the assumption of linear distribution, when 0 ≤ θ ≤ π

4, the 
expression of tQ1 can be given by the following equation: 

tQ1 = t0 • cosα+ t0 • (cosαb − cosα) • 4 • θ
π (58)  

When π
4 ≤ θ ≤ π

2, the thickness distribution along Q1 has the following 
expression: 

Fig. 9. Flow chart to solve and implement the analytical model of forming force prediction in plane strain condition in ISF.  
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tQ1 = t0 • cosαb − t0 • (cosαb − cosα) • 4 • θ − π
π (59) 

σQ1
s in Eq. (57) may be calculated at the yield strain εQ1

s as following 
by referring to Eq. (31): 

εQ1
s = 2 • ln

(

1+
ΔtQ1

tQ1

)

(60)  

where ΔtQ1 is the thickness reduction of Q1 after contact and ΔtQ1 =

t0 • (1 − cosαb) • (βb − β1b)/(αb +βb). βb and β1b are the β angle and β1 
angle at the corner, respectively, and βb = asin(sinβ/cos45◦

), β1b =

asin(sinβ1/cos45◦

). 
Therefore, FQ1

ls can be calculated by putting Eqs. (58)–(60) in Eq. (57) 
and the vertical forming force Fv can be calculated by Eq. (56). 

2.6.3. Horizontal forming force 
In biaxial tension condition, the influence of ND region on the 

decomposition of localised shear force can be neglected as it is much 
smaller than CD region. Therefore, the tangential force is only comprised 
of the force related to material thinning and the frictional force. Refer-
ring to the calculation method in plane strain condition area, the 
tangential horizontal force related to material thinning in biaxial tension 
condition can be derived as in the following equation: 

Fmt
t =

∫ αb

0

∫ rtool+tb

rtool

σ • r • εpdrdφ (61)  

where tb is the thickness distribution along the workpiece meridional 
direction in biaxial tension condition at corner, and tb has the following 
expression: 

tb = t0 −
t0 • (1 − cosα) • β

α + β
+

[

t0 −
t0 • (1 − cosα) • β

α + β
− t0 • cosαb

]

•
φ
αb

(62) 

Besides, the frictional force Ff
t and the horizontal force in the radial 

direction Fr can be derived and approximated as the following equations: 

Ff
t = f •

(
FQ1

s +FQ2
s +FQ3

s +FQ4
s

)
(63)  

Fr = sin
αb

2
•
(
FQ1

s +FQ2
s +FQ3

s +FQ4
s

)
(64) 

The horizontal force and total forming force in biaxial tension con-
dition can be calculated by Eqs. (50) and (51), respectively. 

2.7. Implementation 

MATLAB software is used to implement and visualise the derived 
analytical model of force prediction, and the implementation steps are 
given in the flow chart as shown in Fig. 9, where the calculation method 
for the plane strain condition area is introduced. In the flow chart shown 
in Fig. 9, the equations used for each step are indicated for convenience. 

3. Force prediction and validation 

This section presents the validation of the new analytical model 
using two materials: a titanium alloy TA1 and an aluminium alloy 
AA1003 at different deformation conditions (plane strain and biaxial 
tension conditions) with different process parameters (step size, tool 
dimension, drawing angle and sheet thickness). Validation is also given 
by the force prediction in a practical application of ISF-based cranial 
plate manufacture. At last, this section gives a comparison between the 
developed analytical model and other representative models. 

3.1. Model validation from ISF of TA1 sheet 

In the developed analytical model, two different conditions are 
considered in ISF: plane strain condition on the flat surface and biaxial 
tension condition at the corner. This section aims to validate the 

Fig. 10. Designed profiles and formed ISF parts in (a), (b) truncated cone shape, and (c), (d) truncated pyramid shape with varying drawing angle for experimental 
validation of forming forces. 
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analytical model with two different forming shapes designed and formed 
as shown in Fig. 10. The drawing angles of the designed parts vary from 
22◦ to 88◦ and the forming forces during ISF of 140 × 140 × 0.7 mm 
TA1 sheet were measured. Step size in ISF of the truncated cone is 
0.28 mm, while for ISF of the truncated pyramid it is 0.44 mm. Other 
process parameters are the same: with tool radius of 5 mm, feed rate of 
800 mm/min, no spindle rotation, and with use of RTD COMPOUND 
lubricant. 

Table 1 
Johnson-Cook parameters of TA1 and AA3003-O sheet.  

Material A (MPa) B (MPa) n E (MPa) 

TA1 220.6 341.3  0.4692 105,000 
AA3003-O 41.37 79.22  0.2244 68,900  

Table 2 
Horizontal force conversion in ISF of truncated cone and pyramid parts.  

Tool position conditions Fx Fy 

All positions of truncated cone part y
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
x2 + y2
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Fig. 11. Contour plots for analytically predicted results of (a) total force, (b) z force, (c) x force and (d) y force of different tool position in ISF of truncated cone part 
of TA1. 
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Fig. 12. Comparison between experimental (solid curves) and analytically predicted (dashed curves) force components in ISF of truncated cone part of TA1: (a) 
whole process comparison and (b) detailed comparison in an enlarged time range from 830 s to 860 s. 

Fig. 13. Contour plot for analytically predicted results of (a) total force, (b) z force, (c) x force and (d) y force of different tool position in ISF of truncated pyramid 
part of TA1. 

H. Zhu and H. Ou                                                                                                                                                                                                                              



Journal of Materials Processing Tech. 318 (2023) 118037

14

Frictional coefficient of 0.25 is used, and Johnson-Cook model as 
given by Eq. (65) is applied to describe the constitutive behaviour. The 
model parameters given in Table 1 were based on the quasi-static uni-
axial tensile test. As the effects of strain rate and temperature are not 
considered in the current model, the constitutive model only has the part 
to predict the flow stress at different equivalent plastic strain. 

σ = A+B ∗ (εp)
n (65) 

In ISF processing of the designed regular shapes, the prediction of 
forming force in x, y, and z axes of the ISF machine may be more 
convincing in the validation. Therefore, z force (Fz), x force (Fx) and y 
force (Fy) are predicted and compared with experimental results. Fz 

equals to Fv in the derivation, while Fx and Fy at different tool positions 
are converted from the tangential (Ft) and radial forces (Fr) by the rules 
in Table 2. 

The prediction results of total force and force components during the 

motion of forming tool are presented in Fig. 11. For convenience, the 
force variation with the change of tool position is given in a contour plot. 
Different colours indicate the predicted force levels when the tool moves 
to different positions. Fig. 10(a) and (b) shows the nonuniform distri-
bution of rising total and z forces with the increase of forming depth. 
This is due to the change of drawing angle and the relatively uniform 
force distribution in the same or adjacent tool path layers. Meanwhile, as 
given by Fig. 10(c) and (d), horizontal forces in x and y axes are in 
regular alternant variation because of the approximate circular tool 
path. 

The comparison of force components over time between analytical 
prediction and experimental results is presented in Fig. 12. The gradual 
increase of all force components is due to the increase of draw angle and 
the same trend of x and y force fluctuation give an indication of the same 
deformation behaviour and contact condition in ISF of truncated cone 
part. The slight fluctuation may come from the non-horizontal 

Fig. 14. Comparison between experimental (solid curves) and analytically predicted (dashed curves) force components in ISF of truncated pyramid part of TA1: (a) 
whole process comparison, (b) detailed comparison in an enlarged time range from 610 s to 640 s and (c) prediction with (red dashed curve) and without (black 
dashed curve) consideration of biaxial tension condition. 
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placement of the ISF fixture, the stiffness change of sheet material 
(Chang et al., 2019), or the effect of the anisotropy. The comparison 
shows that the prediction is in good agreement with experiment and the 
predicted z force has a smooth variation trend because of the unchanged 
deformation behaviour and contact condition in the model imple-
mentation. As shown in Fig. 12(b), the detailed force variation in an 
enlarged time range from 830 s to 860 s further indicates the prediction 
accuracy and confirms the regular alternant variation of x and y forces. 

As shown in Fig. 13, the predicted force distribution in ISF of trun-
cated pyramid part shows that the force gradually increases when the 

tool moves from the middle position of linear part to the corner as well 
as with the increase of forming depth/drawing angle. A dramatic in-
crease of total force and force components is presented at the corner, 
where the calculation follows the analysis and equations for biaxial 
tension condition area. The alternant variation can also be predicted in 
the distribution of x and y forces. 

As shown by the solid curves in Fig. 14, experimental z, x, and y force 
signals have significant fluctuation. Each time when the tool moves to 
the corner, the force would increase dramatically, which results from the 
sudden change of deformation behaviour and the enhanced tool-sheet 

Fig. 15. Application of the analytical model in ISF-based manufacture of cranial plate: (a) Head and cranial models, (b) contour plot for prediction of total force, (c) 
contour plot for prediction of vertical force, (d) contour plot for prediction of horizontal force. 

Fig. 16. Comparison between the experimental vertical force Fv and horizontal force Fh (solid curves) from Lu et al. (2016) and the analytically predicted results 
(dashed curves) in ISF-based manufacture of cranial plate. 
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contact. However, at the linear part of pyramid, the z force is compa-
rable to that of truncated cone but only has some more frequent fluc-
tuation. This clarifies that the deformation behaviour and contact 
condition at the linear part of the pyramid are the same as the truncated 
cone. The periodic fluctuation from the middle position of linear part to 
the position near the corner is a result of the slight change in bending 
condition, which affects the actual drawing angle. 

As shown in Fig. 14(a) and (b), the comparison between predicted 
and experimental results shows a good correlation, no matter at linear or 
corner positions, in vertical or horizontal components. To further 
confirm the model validity and the prediction effect, only the model for 
plane strain condition area is used to predict the force in whole process. 
As presented by the dashed black curve in Fig. 14(c), there is no sudden 
increase in z force but only slight fluctuation. This proves that, without 
the analytical modelling in biaxial tension condition area, the model is 
not able to predict the dramatic force change at the corner but can only 
describe the bending effect. This demonstrates that the analytical model 
successfully differentiates the force prediction for either plane strain or 
biaxial tension condition areas and clarifies that the remarkable fluc-
tuation is mainly caused by the change of deformation mode and contact 
condition. By considering the effects of deformation condition, changed 
contact area and global bending, the analytical model shows the capa-
bility in predicting force variations and presenting the force character-
isation accurately of different components. 

3.2. Model validation in a practical application 

To broaden the application of the analytical model, ISF-based 
manufacture of a cranial plate is used in this section for further valida-
tion. As shown in Fig. 15(a), the cranial plate, which is a customised 
asymmetric shape, was manufactured by ISF of 0.5 mm thickness TA1 
sheet (Lu et al., 2016). The vertical and horizontal forces during the 

manufacture process were measured by Lu et al. (2016). The analytical 
prediction results of forming forces are given in Fig. 15(b)–(d). 

Fig. 15(b)–(d) presents the contour plot of the total, vertical and 
horizontal force variations, which has a sharp increase at the beginning 
and a gradual decreasing trend when the tool moves towards the part 
centre. This is also confirmed by Fig. 16, where the solid and dashed 
curves represent experimental and analytical results, respectively. As 
shown by the red and blue dashed curves, the vertical and horizontal 
forces can be predicted with high accuracy. Moreover, the analytical 
model is effective to reflect the fluctuation, which is caused by drawing 
angle variation at the same layer and step size changes between each 
layer due to the irregular cranial shape. It is noteworthy that the pre-
diction of vertical force is totally determined with the predefined pro-
cess parameters in tool path generation. However, the prediction 
accuracy of horizontal force partially depends on the coefficient of 
friction, which is an unknown factor even if the lubrication type is given. 
A value of 0.25 is used as the coefficient of friction in this analytical 
prediction. The effect of lubrication condition and frictional coefficient 
on the prediction results is discussed in Section 4.1. 

3.3. Model validation from ISF of AA1003-O sheet 

The ISF testing results of AA3003-O by Duflou et al. (2007a) are used 
to validate the developed model in this section. The tests of truncated 
cone parts were carried out with different parameters, and the base test 
had step size of 0.5 mm, tool radius of 5 mm, drawing angle of 50◦ and 
sheet thickness of 1.2 mm. The constitutive behaviour of AA3003-O is 
still described by Johnson-Cook model, parameters of which were 
derived based on the published test (Hagan and Jeswiet, 2003) and can 
be found in Table 1. 

The predicted total force and the comparison with experimental re-
sults are given in Fig. 17. The variation follows the same trend: at initial 

Fig. 17. Experimental total force (solid curves) from Duflou et al. (2007a) and predicted total force (dashed curves) in ISF of AA3003-O with different (a) step size 
from 0.25 mm to 1 mm, (b) tool radius from 5 mm to 10 mm, (c) drawing angle from 30◦ to 70◦ and (d) sheet thickness from 0.85 mm to 2 mm. 
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Fig. 18. Comparison of peak Fp and stabilised forces Fs between experimentally measured results from Duflou et al. (2007a) and analytically predicted results in ISF 
of AA3003-O with different (a) step size, (c) tool radius, (e) drawing angle and (g) sheet thickness. 
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Fig. 19. Comparison of force components between experimentally measured results from Aerens et al. (2010) and analytically predicted results in ISF of AA3003-O 
with different (a) step size, (c) tool radius, (e) drawing angle and (g) sheet thickness. 
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stage, the forming force continuously increases until a global bending 
induced peak force (Fp) is reached, and after the peak, a reduction of 
forming force occurs followed by stabilised force (Fs) afterwards. For 
different parameters, the predicted results of the analytical model can 
describe the varying trend well. 

As shown in Fig. 17(a), both experimental and predicted results show 
that with the increase of step size, larger forming force are obtained. 
Fig. 17(b) shows that larger tool radius increases forming force obvi-
ously, and with the increase of tool dimension, worse prediction effect is 
observed. In terms of different drawing angle, experimental results show 

Fig. 20. Comparisons with R2
adj and RMSE of vertical forming force predicted by Aerens et al., Chang et al. and the new models at different (a), (b) step size, (c), (d) 

tool radius, (e), (f) drawing angle and (g), (h) sheet thickness based on testing results in ISF of AA3003-O by Aerens et al. (2010). 
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that the peak force only appears when the drawing angle is larger than 
50◦. For the analytical results in dashed lines, the peak force exists at all 
drawing angles, but the peak becomes slightly less obvious at smaller 
drawing angles. It is noteworthy that at large drawing angles of 60◦ and 
70◦, the experimental curve presents an obvious trough after peak. This 
may be caused by the sheet material wear (Ambrogio et al., 2006), 
which is not included in the modelling, so the predicted curve cannot 
reflect the corresponding effect. Finally, with the increase of sheet 
thickness, the forming force is increased dramatically, which is reflected 
by both the experimental and predicted results. 

Fig. 18 shows the comparison of peak and stabilised forces between 
experimental and prediction results. The effect of step size on both peak 
and stabilised forces are predicted accurately and the largest prediction 
error is 8.25 % with step size of 1 mm. Among different tool radius, with 
values of 24.82 % and 25.69 %, the largest prediction errors of peak and 
stabilised forces appear when tool radius is 10 mm. While, with tool 
radius of 5 mm, the prediction errors are calculated as small as 5.96 % 
and 3.27 % for peak and stabilised forces, respectively. The effect of 
drawing angle on peak and stabilised forces is also predicted to have 
good agreement with experimental ones, with the largest error of 9.15 % 
for the peak force and 11.45 % for stabilised force. The peak force al-
ways rises with the increase of drawing angle, while there is a drop of 
stabilised force when larger drawing angles are used, which is reflected 
by the developed model. For different sheet thickness, the worst pre-
diction accuracy of peak force appears at thickness of 0.85 mm with 
prediction error of 12.55 %, while poor prediction of stabilised force is 
observed at 2 mm thickness with error of 15.24 %. The above compar-
ison demonstrates that the developed model has the capability to predict 
both stabilised and peak forces with high accuracy because of the 
consideration of both local deformation and global bending in ISF. 

3.4. Model validation of force components 

To validate the new analytical model for different force components, 
the comparison between prediction and experimental results of the peak 
vertical (Fv_p), stabilised vertical (Fv_s) and horizontal forces is shown in  
Fig. 19. The experimental data come from the study by Aerens et al. 
(2010). For different step size, the analytical model can predict the force 
components well, while the worst prediction results are given by the 
horizontal force, the largest error of which is 19.53 %. As shown in 
Fig. 19(c) and (d), when the tool radius is 10 mm, some discrepancy in 
peak and stabilised vertical forces is observed with prediction error of 
25.77 % and 27.19 %. However, for smaller tool dimension, the pre-
diction is more accurate. Fig. 19(e) and (f) reveals that the tendency of 
force components with the increase of drawing angle is predicted 
accurately, especially the vertical component of peak force. While the 
prediction error of horizontal force shows large values at small drawing 
angles because of the low force level and gradually reversed radial force, 

which is a result of the change in size relationship between Parts A and 
B. As depicted in Fig. 19(g) and (h), the analytical model exhibits higher 
accuracy with thinner sheet. ISF of 2 mm sheet shows the largest pre-
diction deviation of peak vertical and horizontal forces, with error of 
20.13 % and 24.09 %, respectively. The above analysis indicates that, 
the analytical model can predict the vertical and horizontal components 
of both peak and stabilised forces in different ISF conditions. 

3.5. Comparison between the new analytical model and other models 

Since the validation of the developed analytical model is demon-
strated in the above sections, this section aims to compare the new 
analytical model to some force prediction models with high reputation. 
As two of the representative studies for force prediction in ISF, Aerens 
et al. (2010) model is experimental based, while Chang et al. (2019) 
model were derived on the basis of theoretical analysis in ISF. In Aerens 
et al. model, the prediction equation of stabilised vertical force is 
expressed as following (Aerens et al., 2010): 

Fv_s = 0.0716 • Rm • t0
1.57 • dtool

0.41 • Δh0.09 • α • cosα (66)  

where Rm is ultimate tensile strength, dtool is tool diameter and Δh is 
scallop height. 

Chang et al. model calculates the forming force as multiplication of 
the contact area and the through-thickness stress on neutral surface. The 
total force is decomposed to force components by projecting contact 
area in different directions on coordinate planes. 

Distinctively, the new model is more focused on the deformation 
behaviour in ISF and decomposes the effect of different force compo-
nents for separate calculation. The current model also considered the 
change of deformation condition, geometric feature, indentation effect, 
elastic recovery and global bending effect, which are neglected in 
literature but important issues. The only similarity between Chang et al. 
model and this model is that both put the identification of contact region 
in an important position. Chang et al. model uses this to calculate the 
size of contact area, but the new model uses the defined region to 
calculate the localised shear force. 

Adjusted coefficient of determination (R2
adj) and root mean square 

error (RMSE) are used to evaluate and compare the models. Larger R2
adj 

and smaller RMSE indicate more accurate prediction. As shown in  
Fig. 20, the evaluation and comparison are made based on vertical force 
results in ISF of AA3003-O by Aerens et al. (2010). 

For different step size, the prediction results of the new model have 
better agreement with experimental results than Aerens et al. and Chang 
et al. models when the step size is smaller than 0.75 mm, but shows 
worse accuracy with step size of 1 mm. The R2

adj value of the new model 
is 0.1827, which is smaller than Chang et al. model, and this may be a 

Fig. 21. Effect of frictional coefficient on (a) forming force history and (b) stabilised total force Fs, stabilised vertical force Fv_s and horizontal force Fh.  
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result that the prediction results by the new model are always smaller 
than experimental results. However, the smallest RMSE of 27.88 N in-
dicates the good prediction effect of the new model. For different tool 
dimensions, the best prediction is provided by the new model at tool 
radius smaller than 7.5 mm. At a tool radius of 10 mm, the predicted 
force by the new model shows the largest deviation, which also leads to 
the largest RMSE. As presented in Fig. 20(e), more accurate prediction is 
given by the new model at medium and high drawing angles, especially 
from 40◦ to 60◦. The medium R2

adj and RMSE of the new model in Fig. 20 
(f) indicate that the new model can give better prediction than Chang 
et al. model but is less accurate than Aerens et al. model for different 
drawing angles. For different sheet thickness, the best prediction is made 
by Aerens et al. model, while the new model could achieve the best 
prediction accuracy for ISF of thin sheet with thickness of 0.85 mm and 
1.2 mm. It is noteworthy that in some cases the R2

adj values of the 
compared models are 0, and this may be caused by that the prediction is 
always larger or smaller than experiment. It could be concluded that in 
the current study the new model makes better prediction than Aerens 
et al. and Chang et al. models, especially in common ISF conditions. 

4. Discussions 

As shown in Sections 2.5 and 2.6, the frictional coefficient between 
forming tool and sheet material has an influence on the forming force in 

ISF, while the model validation in Sections 3.3 and 3.4 indicates that the 
tool dimension and sheet thickness have more effect on the prediction 
accuracy than other process parameters. This section discusses possible 
improvement with the consideration of lubrication condition on the 
forming force and the effect of tool-sheet dimensional interaction on the 
prediction accuracy. 

4.1. Effect of lubrication condition 

As there are only lubricant types but no definite frictional coefficient 
given in previous publications, only a sensitivity analysis on the effect of 
frictional coefficient is discussed without detailed validation in this 
section. The analytically predicted force history, stabilised total force, 
and force components with different frictional coefficient can be found 
in Fig. 21. Other process conditions of the studied cases are the same as 
the base test as given in Section 3.3. 

As shown in Fig. 21, the frictional coefficient does not have any in-
fluence on the vertical force but has an obvious influence on the hori-
zontal force. This is also indicated by the analytical modelling process. 
As the horizontal force is much smaller than the vertical force, the total 
force is less influenced by frictional coefficient, i.e., lubrication condi-
tion. In the analytical results, a wide range of frictional coefficients are 
applied, only slight change of the total force is observed. This is 
consistent with the testing result from Duflou et al. (2007a), in which, 
with the use of lubricants, the peak force varied between 350 N and 

Fig. 22. Effect of the ratio rtool/t0 on (a) comparison between predicted peak force Fp and stabilised force Fs and experimental results from Duflou et al. (2007a). The 
specific tool radius and sheet thickness for different rtool/t0 values are marked in (a) and (b). 
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365 N and the stabilised force was about 320 N in all cases. It is only in 
the case with no lubricant used that the peak force reached 375 N. 
Therefore, the lubrication condition may have a notable influence on the 
horizontal force and the accurate identification of frictional coefficient 
between forming tool and sheet material in ISF plays an important role 
in the prediction of horizontal force, which may be beneficial to the 
improvement of the analytical model. 

4.2. Effect of the tool-sheet interaction on prediction accuracy 

As investigated by Silva et al. (2011), the interaction between sheet 
thickness and tool radius has an influence on material formability, 
deformation, and fracture behaviour. This section assesses the tool-sheet 
interaction and its effect on the forming force prediction accuracy. 

In Section 3, the prediction accuracy of the new analytical model is 
reduced with the increase of the tool radius and the sheet thickness. 
When the sheet is relatively thin compared to the tool dimension, the 
local deformation may be close to the behaviour in stretch forming, 
where stretching, bending and through-thickness shearing dominate the 
material deformation. The indentation effect becomes more obvious 
when the sheet thickness is larger in ISF. This makes a slight change of 
deformation behaviour in ISF, which is essential to the analytical deri-
vation of the model. Therefore, the ratio between the tool radius and the 
sheet thickness rtool/t0 should be considered as an important parameter 
in ISF. Fig. 22 gives the effect of ratio rtool/t0 on the comparison between 
the analytical results and experimental stabilised force Fs and peak force 
Fp from Duflou et al. (2007a) in ISF of AA3003-O. With ratio rtool/t0 from 
4.16 to 5.88, there are two prediction values for a certain rtool/t0. This is 
because for the same ratio rtool/t0, the tool radius and sheet thickness are 
different and lead to different predicted forces. As shown in Fig. 22, for 
ISF of AA3003-O, the most favourable prediction of the stabilised force 
Fs and the peak force Fp is given when the ratio rtool/t0 reaches 3.3 and 
5.88, respectively, for ISF of AA3003-O. In the conditions of smaller or 
larger ratio rtool/t0, less accurate prediction is observed, which reflects 
that the new model does not have enough flexibility to capture the 
change of local deformation behaviour due to the tool-sheet dimensional 
relationship. Therefore, further improvement is needed to make the 
analytical model more robust in more extensive range of tool dimension 
and sheet thickness. 

5. Conclusions 

This work provides a novel analytical method to predict the forming 
force history in ISF. A number of less investigated but important issues 
are considered in the modelling, which gives more insight and me-
chanics explanation of the complicated and instable forming process. 
The main conclusions of this work can be drawn as follows:  

(1) A novel force prediction model is developed and implemented for 
ISF with analytical method by revealing the deformation mech-
anism and localised tool-sheet contact. The validity is confirmed 
by a series of ISF tests with different shapes, materials, and 

process parameters. The developed model is also validated by 
effective prediction of the forming force history in ISF processing 
of TA1 cranial plate. 

(2) Sudden changes in deformation state, contact condition, thick-
ness distribution under contact, local material deformation and 
global bending are cooperatively considered in the analytical 
model. The factors are proven to be essential in predicting 
forming force history and force components in ISF. This work also 
presents the first attempt for the peak force prediction, which is 
well modelled and validated.  

(3) The analytical model enables detailed prediction of forming force 
components and gives a direct correlation to different material 
deformation modes. The experimental data and prediction results 
show distinctive characterisations of both the vertical and hori-
zontal forces in forming different geometries under plane strain 
and biaxial tension conditions.  

(4) Compared with the models developed by Aerens et al. and Chang 
et al., the new model in this study shows advantages in predicting 
both peak and stabilised forces. It can reflect the remarkable 
fluctuation of forming forces in ISF of truncated pyramid parts 
and hence give more accurate prediction in most ISF cases.  

(5) The selection of frictional coefficient and the interaction between 
tool dimension and sheet thickness may affect the prediction re-
sults. The prediction accuracy can be further improved by more 
precise measurement of frictional coefficient and more precise 
reflection of deformation behaviour with the change of tool-sheet 
dimensional relationship. 
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Appendix A. Derivation of thickness distribution in the whole contact region in 3D space 

To derive the thickness distribution of the whole contact region, the 3D coordinate system should be used. As mentioned in Section 2.1 and 
illustrated in Fig. 2, for a proposed position on the top surface of the sheet, the spherical coordinates are (rtool,φ,θ). 

If the selected position is in ND region, it must be in Part A. Through this position, the thickness along the circumferential direction would vary 
from t0 at the position of (rtool,β,θ) as shown in Fig. A1(a), to the thickness at the projection position on the workpiece meridional cross-section, the 
coordinates of which are supposed as (rtool,φp,π). The relationship between φ and φp can be expressed as following: 

φp = − arcsin(sinφ • cosθ) (A1) 

The thickness of the projection position (rtool,φp, π) can be obtained as below: 
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tp = t0 −
t0 • (1 − cosα) • [β + arcsin(sinφ • cosθ) ]

α + β
(A2) 

According to the assumption, the thickness from (rtool,β,θ) to (rtool,φp,π) is linearly distributed along a circular arc, and the arc angle (ω) can be 
approximately expressed as following: 

ω =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(rtool • β)2
− (rtool • β1)

2
√

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

rtool
2 − (rtool • sinβ1)

2
√ =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
β2 − β1

2
√

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1 − (sinβ1)
2

√ (A3) 

The thickness reduction rate ρd of ND region along workpiece circumferential direction may be calculated as following: 

ρd =
t0 −

[
t0 −

t0•(1− cosα)•(β− β1)
α+β

]

̅̅̅̅̅̅̅̅̅̅̅
β2 − β1

2
√

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1− (sinβ1)

2
√

=
t0 • (1 − cosα) • (β − β1) •

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1 − (sinβ1)
2

√

(α + β) •
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
β2 − β1

2
√ (A4) 

As a result, the thickness at position (rtool,φ,θ) in ND region can be written as the expression below: 

t = tp + ρd •
rtool • φ • sinθ

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

rtool
2 − (rtool • sinφ • cosθ)2

√ (A5) 

And Eq. (13) in Section 2.2 can be obtained for the thickness distribution in ND region. 
In OD region as shown in Fig. A1(b), the thickness increases from the projection position on the workpiece meridional cross-section along the 

circumferential direction with the same increase rate ρd. In Part A, the relationship between φ and φp is given as Eq. (A1), while in Part B, it can be 
calculated as following: 

φp = arcsin(sinφ • cosθ) (A6) 

Subsequently, no matter in Part A or B, the thickness of the projection position can be expressed as Eq. (A2) uniformly, and the thickness at position 
(rtool,φ,θ) in OD region is derived the same to Eq. (13) in ND region. 

In ER region, as the thickness increase Δter at the maximum elastic recovery position is given in Eq. (5), combining the thickness expression tc under 
the tool centre position in Eq. (9), the increase rate ρer along the circular arc in Fig. A1(a) and (b) can be calculated using the following equation: 

ρer =

[
exp

(
1
2 •

σc
E

)
− 1

]
•

t0•(1− cosα)•β
α+β

arccos
{

1 −
[
exp

(
1
2 •

σc
E

)
− 1

]
•

t0•(1− cosα)•β
rtool•(α+β)

} (A7) 

For the proposed position (rtool,φ,θ), the φp coordinate of the projection position is derived as Eq. (A1) in Part A or Eq. (A6) in Part B of ER region. 
The thickness of the projection position is derived as Eq. (A2), the same as the ones in ND and OD regions. Therefore, in the workpiece circumferential 
direction, the thickness in both Part A and B of ER region can be uniformly expressed as the below equation: 

t = tp + ρer •
− rtool • φ • sinθ

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

rtool
2 − (rtool • sinφ • cosθ)2

√ (A8) 

Embedding Eqs. (A2) and (A7) in Eq. (A8), it gives the thickness expression in ER region as Eq. (14) in Section 2.2. 
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