1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	Accurate inferences of others' thoughts depend on where
12	they stand on the empathic trait continuum
12 13	they stand on the empathic trait continuum
12 13 14	they stand on the empathic trait continuum
12 13 14 15	they stand on the empathic trait continuum
12 13 14 15 16	they stand on the empathic trait continuum
12 13 14 15 16 17	they stand on the empathic trait continuum
12 13 14 15 16 17 18	they stand on the empathic trait continuum
12 13 14 15 16 17 18 19	they stand on the empathic trait continuum
12 13 14 15 16 17 18 19 20	they stand on the empathic trait continuum
12 13 14 15 16 17 18 19 20 21	they stand on the empathic trait continuum

Abstract

24	This research explores the possibility that a person's (perceiver's) prospects of
25	making a correct inference of another person's (target's) inner states depends on the
26	personal characteristics of the target, potentially relating to how readable they are.
27	Twenty-seven targets completed the Empathy Quotient (EQ) and were classified as
28	having low, average or high EQ. They were unobtrusively videoed while thinking of
29	an event of happiness, gratitude, anger and sadness. After observing targets thinking
30	of such a past event, fifty-two perceivers (participants) in Study 1 were asked to infer
31	what the target was thinking, and fifty perceivers in Study 2 were asked to rate the
32	target's expression – positive or negative. Results suggested that (1) perceivers'
33	accuracy in detecting targets' thoughts depended on which EQ group the target
34	belonged to, and (2) target readability is not a proxy measure for level of target
35	expressiveness. In other words, something about EQ status renders targets more or
36	less easy to read in a way that is not simply explained by expressive people being
37	more readable. We conclude with discussion of the importance of the target's trait as
38	well as situation they experience in determining how accurately a perceiver might
39	infer their inner states.

Key Words: mindreading; retrodiction; accuracy; empathic trait; spontaneous behaviour

45	Accurate inferences of others' thoughts depend on where they stand on
46	the empathic trait continuum
47	Mindreading (known otherwise as mentalizing, empathic accuracy) refers to
48	people's (perceivers') ability to infer what another person (the target) might think,
49	feel, and know for the purpose of interpreting and predicting their behavior (Premack
50	& Woodruff, 1978; Flavell, Miller, & Miller, 1993). Past research on mindreading has
51	explored people's ability to infer others' mental states (e.g., Cassidy Ropar, Mitchell,
52	& Chapman, 2013, 2015; Ickes, Stinson, Bissonnette, & Garcia, 1990; Pillai,
53	Sheppard, & Mitchell, 2012; Pillai et al., 2014; Sheppard, Pillai, Wong, Ropar, &
54	Mitchell, 2016; Wimmer & Perner, 1983); but much of this research largely ignores
55	the characteristics of the target – the person we are making inferences about
56	(Andrews, 2008; Rai & Mitchell, 2004; Wu, Sheppard, & Mitchell, 2016a, 2016b)
57	as if we only need to focus on the features of the situation in order to explain
58	mindreading. The empirical work reported here is novel in seeking to explore the
59	possibility that some aspects of target traits might affect how accurately we make
60	mental state inferences. Specifically, further investigation is needed that focuses on
61	our accuracy in interpreting signals in natural, spontaneous target behaviour, taking
62	into account that the target behaviour (and therefore the signal available for
63	mindreading) will depend on individual differences in the targets, potentially
64	measurable by where they stand on a trait continuum. This research will thus
65	illuminate how accuracy in attributing inner states to others depends on considering
66	their personality traits – something that has been largely overlooked to date.

67	Previous studies have suggested that perceivers are able to infer which situation
68	caused a target's reaction (Cassidy et al., 2013, 2015; Pillai et al., 2012, 2014;
69	Sheppard et al., 2016; Teoh, Wallis, Stephen, & Mitchell, 2017; Kang, Anthoney, &
70	Mitchell, 2017) even though the particular situation experienced by the target
71	provokes a range of reactions across different targets. Worldly events occurring in a
72	given situation (e.g. something that happened to the target, something that the target
73	witnessed or heard) evoke a mental state which in turn gives rise to a signal in the
74	target that is potentially observable to a perceiver (Sheppard et al., 2016; Teoh et al.,
75	2017; Valanides, Sheppard, & Mitchell, 2017). According to Teoh et al (2017), the
76	information available to the perceiver is the target's behaviour (which is signalling
77	something about the target's mind) and from this the perceiver makes a backwards
78	inference to the underlying target mental state (the proximal cause of the target's
79	behaviour - Kang, Schneider, Schweinberger, & Mitchell, 2018) and the perceiver
80	then makes a further backwards inference to the event that evoked the target mental
81	state (the distal cause). This process of 'retrodictive mindreading' (Gallese &
82	Goldman, 1998; Teoh et al., 2017) confers considerable benefits in that we can exploit
83	our ability to read others' minds to know various things in the world, including some
84	things that cannot be apprehended through our ordinary senses. The current study thus
85	was built on the framework of 'retrodiction', by which we explored accuracy in
86	thought inferences from spontaneous target behaviour, in relation with the
87	characteristics of the targets (where they stand on the empathy trait continuum).

88	Note, however, there is no precise correspondence between the particular form of
89	target behavior and the event that triggered the reaction (Zaki & Ochsner, 2011;
90	Russell, Bachorowski, & Fernandez-Dols, 2003). It is not the case, for instance, that
91	when targets listened to an unfortunate story they reliably looked concerned
92	(sometimes they looked amused, sometimes indifferent, sometimes bored, Pillai et al.,
93	2012, 2014). The range of target reactions is linked causally with the situation or
94	state, and while seldom acknowledged in previous research, it seems the particular
95	reaction within that range is explained by the characteristics of the target. Thus,
96	accounts of mindreading would be more comprehensive and useful if they recognised
97	that perceivers (1) have to work with individual differences in how a target's signalled
98	mind is displayed while (2) appreciating that the particular domain of inner state
99	being experienced by the target nevertheless constrains the range of their reactions.
100	A small number of recent studies have begun exploring how characteristics of the
101	target impact upon the perceiver's accuracy in mindreading. Studies conducted by
102	Zaki, Bolger and Ochsner (2008, 2009) suggest that the target's level of expressivity
103	is a significant predictor of perceiver performance in inferring how the target felt.
104	Another recent study was conducted by Sheppard et al (2016), in which perceivers
105	(participants) were asked to identify which of four events the target had experienced
106	after viewing a short mute video of the target. Results suggested that that perceivers
107	were more effective in detecting the minds of neurotypical targets than targets with
108	autism spectrum disorder (ASD); though they rated ASD targets equally expressive as

neurotypical targets, suggesting targets with ASD were expressive in a different way,

110	a way that was difficult for perceivers to interpret. In short, the behaviour that reflects
111	the signalled mind might be easier to 'read' in some targets than in others. Yet, to our
112	knowledge, no study has directly examined how individual differences in target
113	characteristics determine perceiver effectiveness in detecting specific target states of
114	mind.
115	Relevant to this matter, Wu et al (2016a) discovered that it was easier for
116	perceivers, after watching a brief sample of behaviour, to identify targets located at
117	the extremities of the continuum of empathic trait than it was to identify targets
118	located in the middle of the continuum. Wu et al speculated that targets located at
119	various points along the continuum might possess minds that vary in their level of
120	readability (how easily a perceiver could infer their inner states). For example, a
121	person who is unusually low in empathy (an extreme case being autism) might signal
122	mental states quite differently than those closer to the middle of the empathic trait
123	continuum (Brewer et al, 2016; Faso, Sasson, & Pinkham, 2015; Sheppard et al,
124	2016). According to Wu et al (2016a, 2017), targets located at empathic trait and big-
125	five trait extremities were easy to identify as being low or high on trait continua.
126	Accuracy in inferring another's mental states might depend on characteristic aspects
127	of targets (Andrews, 2008; Zaki et al., 2008). The purpose of the current research was
128	to test whether or not targets vary in how readable they are depending on where they
129	stand on the empathy continuum.
130	We adapted a procedure of 'retrodictive mindreading,' that was used previously
131	(Pillai et al., 2012, 2014; Cassidy et al., 2013, 2015; Teoh et al., 2017; Valanides et

132	al., 2017; Kang et al., 2017), in which the perceiver "makes a backward inference
133	from the observed action to a hypothesized goal state" (Gallese & Goldman, 1998,
134	p.497). The target was asked to think of something in the past that caused them to
135	experience a particular state, where we assume the target's visible behaviour is an
136	externalization of their inner thoughts (Faso et al., 2015; Valanides et al., 2017).
137	Perceivers were then asked to infer what the targets had been instructed to think about
138	(Valanides et al., 2017). Importantly, we the researchers knew independently what
139	targets had been asked to think (one of four kinds of event), allowing us to compare
140	perceiver judgments of the target's inner state against an objective fact, thus satisfying
141	West and Kenny's (2011) 'truth condition'. The accuracy of perceivers' inferences of
142	targets' inner states can thus be measured objectively as a matter of fact.
143	Study 1
144	Method
145	Based on the procedure developed by Valanides et al (2017) in which targets
146	were cued to think about either positive or negative events they had experienced, in
147	Study 1 targets were filmed while thinking of four autobiographical events, including
148	those that led to positive feelings and those that led to negative feelings. Targets were
149	classified into three groups according to their empathic trait measurable with the
150	Empathy Quotient (EQ, Baron-Cohen & Wheelwright, 2004; Baron-Cohen, 2012):
151	Low EQ, Average EQ and High EQ. We persevered with the trait of empathy in this
152	research (1) to be consistent with the previous findings in empathic trait judgment

153	(Wu et al., 2016a) and (2) because extremities of this trait might be associated with a
154	state that is less easy to read (Sheppard et al., 2016).
155	Perceivers were tasked with inferring which of the four events (a happy event, an
156	event that provoked gratitude, a sad event, and an event that provoked anger) the
157	target was thinking about after watching a short silent video of the target. The study
158	tested: (1) how well perceivers inferred the thoughts of the targets; (2) whether
159	accuracy in inferring the target thoughts varies depending on which EQ group the
160	target belonged to.
161	Participants
162	Fifty-two college students (25 males; $M = 20.67$ years) in Guangzhou and
163	Zhanjiang China participated as perceivers in exchange for monetary compensation.
164	Sample size was calculated using the software G*Power 3 (Faul, Erdfelder, Lang, &
165	Buchner, 2009), affording 95% power to detect a medium effect on the within-
166	subjects factors and 94% power to detect a large effect on the interaction . Perceivers
167	were shown photographs of the targets and were included only if they reported not
168	having seen any of the targets previously. Two additional females were acquainted
169	with one or more targets and were excluded.
170	Materials
171	Video stimuli collection and editing. Videos were collected from 27 college
172	students (targets, 15 females, $M = 21$ years), recruited in exchange for monetary
173	compensation. All had responded to a call to do a screen test advertising the
174	university and to complete questionnaires, and they also were informed they needed

175	to talk of some experiences about themselves before the screen test. One additional
176	male target was excluded due to a technical problem.
177	Targets were individually videoed in a quiet laboratory with a Sony Handycam
178	HDR-SR12 video camera mounted on a tripod placed approximately 1.5 meters away
179	to record the target's face and the top part of their body. The target sat at a desk facing
180	the camera and the researcher sat opposite but out of view of the camera. Unknown to
181	the target, the camera automatically began recording as soon as the target entered the
182	room. At the end, before leaving the laboratory, all targets were fully debriefed and
183	gave written informed consent to use the videos for research purposes.
184	On arrival, targets were issued with a consent form and an information sheet that
185	outlined the tasks they would perform, and were informed they would only be videoed
186	while doing the screen test. Once inside the laboratory, after they read the information
187	sheet and signed the consent form, the researcher began with a brief conversation.
188	After that, the target was asked to think of a specified past event and then talk about
189	the experience. Each target repeated this exercise for six past experiences in total,
190	including a happy experience, an experience that led to a feeling of gratitude, an angry

191 experience, a sad experience, an experience of having breakfast and doing a routine

activity during the weekend – the latter two were filler activities. The focal

experiences (happy, gratitude, anger, sadness) included two of positive valence and
tow of negative valence, but other than that the experiences were not pre-validated

195 with respect to emotional distinctiveness from each other. The order of the

196 experiences was counterbalanced across the targets. The target was asked to spend

197	about 1	minute silentl	v recalling	g each ex	perience	before	talking	about it.
				,	1		0	

Subsequently, the target was asked to read the script of promotional material to the camera after the researcher ostensibly switched to 'record mode'. This 'cover story' of examining whether the target might be talented in promoting the university gave legitimacy to the presence of the camera.

Four separate video clips of each target including thinking of the four emotional 202 events (happy, grateful, angry and sad) were used in this study, making 108 videos in 203 total (27 targets \times 4 videos per target). The average duration of the video clips was 204 21.33 s (SD = 10.24; ranging from 7 s to 38 s) for the Happiness, 23.85 s for the 205 Gratitude (SD = 5.88, ranging from 6 s to 30 s), 21.26 s (SD = 8.36; ranging from 7 s 206 to 34 s) for the Anger, and 22.33 s for the Sadness (SD = 9.10; ranging from 6 s to 35 207 208 s). A one-way repeated-measures ANOVA (F(3, 78) = .70, p = .554) did not detect any difference between the mean duration of the videoclips of the four events. 209 *Empathy Quotient (EQ).* Following a short break for a couple of minutes, the 210

target filled in the Empathy Quotient (EQ). Following a short oreax for a couple of minutes, inc
target filled in the Empathy Quotient (EQ, Baron-Cohen & Wheelwright, 2004). The
EQ questionnaire offers a comprehensive measurement of the trait structure of
empathy. It comprises 40 items (along with 20 filter items) pertaining to a range of
behaviours associated with empathizing, with an overall rating that is useful in
determining individual differences in empathic trait. All targets completed the
Chinese translated version of the EQ questionnaire (adopted from the website:
http://www.autismresearchcentre.com/arc/default.asp).

218	Target EQ scores ranged from 12 to 64 ($M = 37.52$, $SD = 14.45$). A score in the
219	range of 0-32 is low EQ and 11 targets were in this category, 33-52 is average and 10
220	targets were in this category, 53-63 is above average and 5 targets were in this
221	category, and 64-80 is high and 1 target was in this category (Baron-Cohen, 2012).
222	Following Wu et al (2016a) we combined the 'above average' and 'high' categories
223	into one range from 53 to 80 that was re-labeled as a category of high EQ. We then
224	grouped the targets into three EQ categories, with 11 in the Low EQ Group (4 males),
225	10 in the Average EQ group (5 males), and 6 in High EQ group (3 males).
226	Procedure
227	Perceivers were tested individually. A set of 108 target videos (27 targets each
228	contributing 4 videos) was displayed in random order to each perceiver using E-Prime
229	Version 2.0.8.22. In each trial, following a fixation cross ('+') presented for 800 ms,
230	one video clip was displayed; after that, a response screen appeared, presenting a
231	four-forced choice in a fixed order as response options ((1) an angry event, (2) a
232	happy event, (3) a sad event and (4) a grateful event). The perceiver registered his/her
233	inference of the target's thoughts by using the keyboard to select the number '1, 2, 3
234	or 4' for the corresponding options. After the perceiver made the choice the screen
235	moved to the fixation cross in preparation for the next trial. Responses were
236	automatically recorded by the software for later retrieval. Perceivers typically needed
237	about 45 minutes to complete the task.

238

Results

239	Given that signal detection theory (SDT) allows assessment of accuracy and
240	sensitivity that is immune to response bias (the tendency to select one category more
241	frequently than another; Macmillan, 2002; Macmillan & Creelman, 2005), it is widely
242	applied to measure performance across various tasks, such as accuracy in trait
243	judgments (Wu et al., 2016; Wu et al., 2017) and mental state inferences (Pillai et al.,
244	2012, 2014; Valanides et al., 2017; Kang, et al., 2017). We thus adopted SDT to
245	compute participant accuracy (sensitivity) in inferring the thoughts of targets.
246	According to guidelines on calculating SDT (Macmillan, 2002; Macmillan &
247	Creelman, 2005), a correct judgment that a target thought about a particular event
248	counted as a 'hit' while an incorrect judgment that a target recalled the same event
249	counted as a false alarm. Performance of participants across the different target EQ
250	groups over a total of 27 trials for each state was characterised as single values for
251	each perceiver in the form of d-prime (d') for assessing perceiver accuracy in
252	inferring each state. Following Macmillan and Creelman (2005), where the number of
253	hits (or false alarms) was 0, 0.5 was added and the hit rate (or false alarm rate) was
254	then calculated; where the participant made the maximum number of hits or false
255	alarms for a given state, 0.5 was subtracted from the number of hits or false alarms
256	prior to calculating the hit rate or false alarm rate. The d' was then calculated by
257	subtracting the z-score of the false alarm rate from the z-score of the hit rate ($d' = Z$
258	(hit rate) – Z (false alarm rate), where function Z (<i>p</i>), $0 \le p \le 1$). In addition, according
259	to SDT outlined by Macmillan and Creelman (2005), we represent the base-rate as the
260	'criterion' (c) for choosing any particular response category with the statistic c: the

more negative the value of c, the more perceivers were in favour of choosing this particular category, irrespective of whether correct; but when c is more positive, it implies perceivers were against choosing the particular category, meaning they were conservative in this case. Criterion c was calculated by -0.5 x (Z (false alarm rate) + Z (hit rate)).

Table 1 shows the means of hit rate (M_{HR}) , false alarm rate (M_{FAR}) , d-prime $(M_{d'})$ 266 and criterion (M_c) of each mental state in each target EQ group, along with t values of 267 one-sample t tests of each $M_{d'}$ where the comparison value is zero: If perceivers were 268 unable to infer each of the four target thoughts, this would yield a $M_{d'}$ of zero for that 269 thought. According to the results of one-sample t tests for each $M_{d'}$ presented in Table 270 1, perceivers were able to detect what targets were thinking when they were recalling 271 272 either a happy or sad event across the three target EQ groups. Yet, perceivers were not equally effective in inferring a given thought, as shown in Table 1 and Figure 1. 273 Specifically, perceivers were notably accurate in inferring the states of happiness and 274 275 gratitude for targets with low EQ but had difficulty in inferring these two positive states when the targets had high EQ. In addition, perceivers were effective in inferring 276 sadness in the high EQ group and inferring happiness in the average EQ group. 277 Table 1 & Figure 1 here 278 A repeated-measures ANOVA (with the three target EQ groups and the four 279 mental states as the within-subjects factors) confirmed the results displayed in Figure 280 1: There were main effects related with the three target EQ groups (F(2, 102) = 9.94, 281

282 p < .001, Cohen's f = .44) and the four mental states (F(3, 153) = 4.58, p = .004,

283	Cohen's $f = .30$), and a significant interaction between the two factors (Greenhouse-
284	Geisser adjusted F (4.96, 253.06) = 14.50, $p < .001$, Cohen's $f = .53$).
285	Simple-effects analyses for the interaction between Target EQ Group and the
286	States revealed the following results. Firstly, the main effects of the four states were
287	found in both the low ($F(3, 153) = 14.07, p < .001$, Cohen's $f = .52$) and the high EQ
288	groups ($F(3, 153) = 14.39$, $p < .001$, Cohen's $f = .53$) but not in the average EQ group
289	($F(3, 153) = 1.15, p = .330$). According to post hoc LSD tests, in the low EQ group,
290	perceivers were most accurate in detecting the thought of happiness compared with
291	the other target states ($ps \le .003$), while in the high EQ group, perceivers were more
292	accurate in inferring sadness compared with the two positive states ($ps < .001$).
293	Secondly, except for the thought of anger ($F(2, 102) = .84, p = .435$), main
294	effects associated with the three other states were significant across the three target
295	EQ groups (Happiness: Green-house Geisser adjusted F (1.67, 85.33) = 38.70, p
296	< .001, Cohen's $f = .74$; Gratitude: $F(2, 102) = 12.52$, $p < .001$, Cohen's $f = .49$;
297	Sadness: Green-house Geisser adjusted $F(1.70, 86.43) = 3.28, p = .050$, Cohen's f
298	= .25). Post hoc LSD tests revealed the following: (1) perceivers were most accurate
299	in inferring happiness when the targets were low in EQ ($ps < .001$) and least accurate
300	when the targets had high EQ ($ps < .001$); (2) perceivers were least accurate in
301	detecting gratitude in the high EQ group ($ps < .001$); (3) perceivers more accurately

303 summary, how accurately perceivers inferred target thoughts depended on the EQ

scales the targets belonged to and on what targets had been asked to think about.

305	As demonstrated in Table 1, it seemed perceivers adopted different criteria (M_c)
306	when inferring what events the targets were thinking. A repeated-measures ANOVA
307	(with the four states as the within-subjects factor) for the M_c across the three target
308	EQ groups confirmed the results in Table 1: $F(3, 153) = 14.84$, $p < .001$, Cohen's f
309	= .53. Post hoc LSD revealed the mean c associated with sadness was significantly
310	lower than the mean c associated with the other three states ($ps < .001$), suggesting
311	that generally perceivers were inclined to judge targets were thinking about a sad
312	event when observing the target recalling any given autobiographic emotional
313	experience.
314	Study 2
315	Method
316	Study 1 demonstrated that perceivers were generally able to detect the thoughts of
317	happy and sad events, and the accuracy in inferring target thoughts depended on
318	where the target stood on the empathic trait continuum and on which event the target
319	was cued to think about. While the targets were recalling experiences, signals to their
320	inner states perhaps leaked out to a greater or lesser degree, such as smiling or
321	frowning. According to Soscia (2007), the happy and grateful events should arouse
322	positive inner states, and the angry and sad events should arouse negative inner states.
323	Thus, one might ask whether perceivers (in Study 1) were merely classifying target
324	expressions as positive or negative (Kang et al., 2018) as a rather simplistic way of
325	
	attributing specific thoughts to them. To investigate this possibility, Study 2 explored

327	if the pattern of such judgments could reductively explain their inferences of target
328	inner states. If not, then presumably perceivers are doing something more than merely
329	classifying target expressions when asked to infer target inner states. Specifically, if
330	perceivers merely classified target expressions as a strategy for making judgments
331	without needing to infer target inner states, they would identify a positive expression
332	when the target thought about either a happy or a grateful event, and identify a
333	negative expression when the target recalled either an angry or a sad experience. If so,
334	then perceivers' ratings of target expressions would be indistinguishable from their
335	inferences of targets' inner states (Kang et al, 2018). The purpose of Study 2 was to
336	investigate this possibility.

337 **Participants**

Fifty college students (22 males; M = 20 years) in Zhanjiang China voluntarily participated as perceivers. None had participated in Study 1. The sample size was determined using the G*Power 3, affording 95% power to detect a medium effect on the within-subjects factors. None of the perceivers had prior acquaintance with any of the targets. Four additional females were excluded for quitting in the middle of the task.

344 **Procedure**

The procedure was similar to Study 1 except after viewing each target video, the perceiver rated the target's expression on a five-point scale (from negative to positive). The perceiver registered his/her judgment by using the keyboard to select

Results and Discussion

351	Table 2 summarizes perceivers' mean ratings of target expressions for each of the
352	four states (Happy, Grateful, Angry, Sad) in each of the three target EQ groups, along
353	with the corresponding one-sample t tests (comparing the means of expression ratings
354	against the neutral point 3). The data show that perceivers generally rated target
355	expressions positively when targets had been thinking of a time they felt happy;
356	perceivers generally rated targets neutral when targets had been thinking of a time
357	they felt grateful, and perceivers generally rated target expressions negatively when
358	targets had been thinking of events that made them feel sad and angry. A one-way
359	repeated-measures ANOVA revealed a significant difference in ratings of target
360	expressions among the four events targets were cued to think about: Greenhouse-
361	Geisser adjusted F (2.22, 108.91) = 1991.22, $p < .001$, Cohen's $f = 6.31$. Post hoc
362	LSD tests suggest targets were rated most positively when thinking of something
363	happy ($ps < .001$) and most negatively when thinking of something sad ($ps < .001$);
364	target expressions were rated more positively when thinking of a time they felt
365	grateful than when thinking of a time they felt angry ($p = .002$).

366

Table 2 about here

As revealed in Table 2 and Figure 2, perceivers generally rated targets as having
positive expressions when they (the targets) were thinking of something happy and

369	rated targets as having negative expressions when they (the targets) were thinking of
370	something sad, regardless of target EQs. When targets were thinking of a time they
371	felt grateful, perceivers rated those targets with high EQ positively but rated those
372	with either low or average EQ negatively. Surprisingly, perceivers rated targets with
373	average EQ as having positive expressions when those targets were thinking of an
374	event that made them feel angry. In short, ratings of target expressions were
375	influenced by target EQ status as well as the kind of event the target was thinking
376	about – but the pattern formed by these ratings was quite different than would have
377	been expected if perceivers were making a simplistic link between the valence and
378	strength of target expressions and what targets were thinking.
379	Figure 2 about here
380	To confirm the above results, we carried out a 3×4 repeated-measures ANOVA,
381	with the three target EQ groups and the four kinds of event targets were thinking
382	about (Happy, Grateful, Sad, and Angry) as within-subjects factors. Results showed
383	main effects related to the three target EQ groups (Greenhouse-Geisser adjusted F
384	(1.59, 77.70) = 2627.28, p < .001, Cohen's $f = 7.11$) and what targets had been asked
385	to think about (Greenhouse-Geisser adjusted F (2.22, 108.91) = 1991.22, $p < .001$,
386	Cohen's $f = 6.19$), and a significant interaction between the two factors (Greenhouse-
207	
387	Geisser adjusted F (2.02, 99.17) = 1019.67, $p < .001$, Cohen's $f = 4.43$).

kinds of target thought revealed the following results. Firstly, in each EQ group,

390	perceivers rated the valence of target expressions differently according to what targets
391	had been asked to think about: for the low EQ group, Greenhouse-Geisser adjusted F
392	(1.50, 73.58) = 681.74, p < .001, Cohen's $f = 3.62$; for the average EQ group,
393	Greenhouse-Geisser adjusted F (1.60, 78.48) = 1182.54, $p < .001$, Cohen's $f = 4.77$;
394	for the high EQ group, Greenhouse-Geisser adjusted F (2.03, 99.37) = 1862.83, p
395	< .001, Cohen's $f = 5.99$. Secondly, for each kind of target thought, perceivers rated
396	target expressivity differently between the three EQ groups: for happiness,
397	Greenhouse-Geisser adjusted $F(1.73, 84.81) = 861.31, p < .001$, Cohen's $f = 4.07$);
398	for gratitude, Greenhouse-Geisser adjusted $F(1.54, 75.62) = 3840.31, p < .001,$
399	Cohen's $f = 8.59$; for sadness, Greenhouse-Geisser adjusted $F(1.32, 64.63) = 144.15$,
400	p < .001, Cohen's $f = 1.66$; for anger, ($F(2, 98) = 475.40$, $p < .001$, Cohen's $f = 3.02$.

To examine how perceiver ratings of target expressions for each kind of target 401 402 thought depends on target EQs, post hoc LSD tests were carried out on the main effects associated with kind of target thought. Results were as follows: (1) when 403 targets were thinking of a time they felt happy, perceivers rated their expressions 404 more positively if they were in the average EQ group than if they were in the low and 405 high EQ groups (ps < .001); (2) when targets were thinking of a time they felt 406 grateful, perceivers rated their expressions most positively when those targets were in 407 408 the high EQ group (ps < .001), and more positively when they were in the low EQ 409 group than in the average EQ group (p = .001); when targets were thinking of a time they felt sad, perceivers rated their expressions most positively when they were in the 410 high EQ group (ps < .001), and rated equally those in the low EQ and the average EQ 411

412	groups; when targets were thinking of a time they felt angry, perceivers rated them
413	more positively when those targets were in the average EQ group than when they
414	were in the other two groups ($ps < .001$), and more positively in the high EQ group
415	than in the low EQ group ($p < .001$).

416

General Discussion

Study 2 revealed that perceivers rated target expressions most positively when 417 those targets were thinking of a time they felt happy; they rated targets most 418 419 negatively when those targets were thinking of a time they felt sad. Consistent with this, Study1 showed that perceivers were generally able to detect the thoughts of 420 targets when they were recalling either a happy or a sad event. Taken in isolation, 421 422 these associations raise the possibility that perceivers based their judgments of target inner states on their classification of target facial expressions (but see Kang et al, 423 2018). 424

However, perceivers' ratings of target expressions (Study 2) were rather different 425 than their inferences of target thoughts (Study 1) in many other respects. For example, 426 in spite of rating target expressions positively when those targets had high EQ and 427 were cued to think of a time they felt happy and a time they felt grateful, perceivers 428 429 were inaccurate in inferring thoughts of happiness and gratitude (Study 1); but perceivers were more accurate in inferring that targets were thinking of a time they 430 felt grateful if those targets had low EQ. In addition, perceivers rated expressions 431 most positively for those targets who were in the average EQ group when thinking of 432

433	a time they felt happy; but they were most accurate in inferring happy thoughts in the
434	low EQ target group (in Study 1). Perceivers generally rated expressions negatively
435	when targets were thinking of a time they felt sad and yet were accurate in inferring
436	the thoughts of sadness specifically in targets located in the high EQ group. In
437	summary, nuances in the pattern of perceivers' accurate inferences of four kinds of
438	target inner states across three target groups who differed in their EQ is far from fully
439	illuminated by perceivers' ratings of target expressions. In short, it seems perceiver
440	inferences of target inner states amounts to more than merely rating expressions as
441	positive or negative, a conclusion which is highly consistent with that drawn by Kang
442	et al. (2018). Presumably, then, the quality rather than the valence/ strength of target
443	expression is what signals their inner states. Precisely what form these signals take is
444	beyond the scope of the design and methods of the current study and remains
445	something to pursue in future research.
446	Nevertheless, the results offer new information concerning people's ability to
447	read others' minds and we shall summarise the highlights. Although there was an
448	equal number of each of the four target events presented, perceivers did not impute an
449	equal number of states; rather, they were biased to judge that targets were recalling a
450	sad event. According to West and Kenny (2011), many findings in mindreading
451	research are unclear in cases where biased responding might be an issue. According to
452	them, the problem can only be solved by satisfying the 'truth condition' such that a
453	measure of mindreading accuracy can be separated from response bias. The 'truth

454 condition', as they define it, is satisfied if we can compare the perceiver's judgment

455	against an objective fact and our method was designed to do this. Specifically, when
456	the perceiver judged, for example, that the target had been asked to think of
457	something that made them feel grateful, we can then compare this judgment against
458	the objective fact of whether or not the target was actually asked to think of
459	something that made them feel grateful. Using the method of SDT for coding data
460	controls for biased responding and uneven base rates; it is then possible to focus on
461	mindreading accuracy that stands apart from issues with base-rate bias.
462	Using an unbiased measure (SDT) of mindreading accuracy, the results revealed
463	notable performance in that by observing a short silent video of targets, the perceivers
464	were systematically able to determine whether those targets were thinking of
465	something happy and something that made them feel sad. The targets were merely
466	sitting quietly while thinking: They were not asked to act in any way, they were not
467	communicating and they were not engaging with anything external. The results are
468	thus striking in showing that perceivers can observe somebody who is sitting quietly
469	and guess what they are thinking. In addition, because the method and data-coding
470	allows us to separate response-bias from mindreading accuracy, the findings reported
471	here are perhaps the strongest and clearest demonstration to date of this aspect of
472	human ability (cf Teoh et al, 2017).
473	We assume that the target's thought leaked out into their behaviour, taking the
474	form of a mind that was perceptible to the perceiver. The perceivers then presumably
475	translated by way of inference, more or less precisely, the observable target behaviour

476 into an internal target state (Gallese & Goldman, 1998). It could have been that

477	perceivers were only crudely able to discriminate between occasions when targets
478	were thinking of something positive and something negative, but nothing more
479	precise, as was the case in past research (North, Todorov, & Osherson, 2010;
480	Valanides et al., 2017). Impressively, though, the results here show that perceivers
481	demonstrated levels of accuracy in a finer-grained four-way discrimination.
482	The finding that mindreading accuracy varies depending on the EQ status of the
483	target supports Wu et al.'s (2016a & 2016b) general prediction that targets located at
484	various points along the continuum might possess minds that vary in their level of
485	readability. However, Wu et al. had not considered the possibility that target
486	readability depends on their EQ status in combination with the particular content of
487	thought targets were experiencing. Hence, the results reveal a complexity in the
488	demands placed on perceivers that had not previously been anticipated or considered.
489	Those with low EQ were most readable while those with high EQ were least readable:
490	Why do specifically positive thoughts leak out as an interpretable signal more lucidly
491	in targets with low EQ than in targets with high EQ? Perhaps positive thoughts have a
492	different content or quality in those with low EQ compared with those who have high
493	EQ – indeed, perhaps targets differed in their willingness or ability to think of
494	something on cue, depending on their EQ status. It will surely be a challenge for
495	future research to detail a link between thought content, quality of signal and EQ
496	status in targets.

According to the 'lens model' (Back, Schmukle, & Egloff, 2011), accuracy in
mindreading might be decided by the clues related with different factors—the target,

499	the perceiver and the interaction between them. In terms of the targets, they might
500	behave in different ways depending on how empathizing they are. For example, the
501	targets might emit different kinds of signals, including facial expressivity and bodily
502	movements. Low EQ targets might show more positive signals when thinking
503	something positive while high EQ targets might emit rather strong negative signals
504	when recalling a sad event. Further research could test such possibilities by coding
505	targets' signals (facial expressions and bodily movements) and explore the ways by
506	which they play a role in perceiver judgments of target minds. Another possibility is
507	that perceivers might have adopted different strategies to interpret targets with
508	different levels of EQ. Future research could employ eye-tracking along with
509	behavioural measurements to examine whether or not perceivers use different
510	strategies to observe targets with different EQ levels.
511	Previous studies have demonstrated perceiver abilities to detect which situation
512	caused a target's reaction (Pillai et al., 2012, 2014; Cassidy et al., 2013, 2015;
513	Sheppard et al., 2016; Teoh et al., 2017), to infer how others felt (Zaki et al., 2008;
514	2009), to infer what another person is thinking (Ickes et al., 1990; Valanides et al.,
515	2017), and to judge where a stranger is located along trait continua (Wu et al., 2016a,
516	2017); the current research expanded these findings by suggesting perceiver capability
517	in inferring specified target thoughts, and the accuracy of such mindreading, was
518	affected by target EQ status as well as the events experienced by the target.
519	

References

- Andrews, K. (2008). It's in your nature: A pluralistic folk psychology. *Synthese*, 165,
- 523 13-29. doi:10.1007/s11229-007-9230-5
- 524 Back, M. D., Schmukle, S. C., & Egloff, B. (2011). A closer look at first sight: Social
- relations lens model analysis of personality and interpersonal attraction at zero
- acquaintance. European Journal of Personality, 25, 225-238. doi: 10.1002/per.790
- 527 Baron-Cohen, S., & Wheelwright, S. (2004). The empathy quotient: An investigation
- of adults with Asperger Syndrome or High Functioning Autism, and normal sex
- differences. Journal of Autism and Developmental Disorders, 34, 163-175.
- 530 doi:10.1023/B:JADD.0000022607.19833.00
- Baron-Cohen, S., (2012). Zero Degrees of Empathy: A New Theory of Human Cruelty
- 532 and Kindness. London: Penguin Books.
- 533 Brewer, R., Biotti, F., Catmur, C., Press, C., Happé, F., Cook, R., & Bird, G. (2016).
- 534 Can neurotypical individuals read autistic facial expressions? Atypical production of
- emotional facial expressions in Autism Spectrum Disorders. Autism Research, 9, 262–
- 536 271. doi: org/10.1002/aur.1508
- 537 Cassidy, S., Ropar, D., Mitchell, P., & Chapman, P. (2013). Can adults with autism
- spectrum disorders infer what happened to someone from their emotional response?
- 539 Autism Research, 7, 112-123. doi:10.1002/aur.1351
- 540 Cassidy, S., Ropar, D., Mitchell, P., & Chapman, P. (2015). Processing of
- spontaneous emotional responses in adolescents and adults with Autism Spectrum
- 542 Disorders: effect of stimulus type. *Autism Research*, 8, 534-544. doi:10.1002/aur.1468

- 543 Faso, D. J., Sasson, N. J., & Pinkham, A. E. (2015). Evaluating Posed and Evoked
- 544 Facial Expressions of Emotion. Journal of Autism and Developmental Disorders, 45,
- 545 75-89. doi: 10.1007/s10803-014-2194-7
- 546 Faul, F., Erdfelder, E., Buchner, A., & Lang, A. G. (2009). Statistical power analyses
- ⁵⁴⁷ using G*Power 3.1: Tests for correlation and regression analyses. *Behavior Research*
- 548 *Methods*, *41*, 1149-1160.
- 549 Flavell, J. H., Miller, P. H., & Miller, S. A. (1993). Cognitive development (3rd ed.).
- 550 Englewood Cliffs, NJ: Prentice-Hall.
- 551 Gallese, V., & Goldman, A. (1998). Mirror neurons and the simulation theory of
- 552 mindreading. *Cognition*, 2(12), 493-501. doi:10.1016/S1364-6613(98)01262-5
- Ickes, W., Stinson, L., Bissonnette, V., & Garcia, S. (1990). Naturalistic social
- 554 cognition: Empathic accuracy in mixed-sex dyads. Journal of Personality and Social
- 555 *Psychology*, *59* (*4*), 730-742. doi:10.1037/0022-3514.59.4.730
- 556 Kang, K., Anthoney L., & Mitchell, P. (2017). Seven- to 11-year-olds' developing
- ability to recognize natural facial expressions of basic emotions. *Perception*, 46,
- 558 1077-1089. doi: 10.1177/0301006617709674
- 559 Kang, K., Schneider, D., Schweinberger, S.R. & Mitchell, P. (2018). Dissociating
- neural signatures of mental state retrodiction and classification based on facial
- 561 expressions. *Social Cognitive and Affective Neuroscience*. 933-943. doi:
- 562 10.1093/scan/nsy061
- 563 MacMillan, N. A. (2002). Signal detection theory. In H. Pashler (Ed.), Stevens'
- 564 handbook of experimental psychology (3rd ed.). J. Wixted (Ed.), Vol. 4: Methodology

- *in experimental psychology* (pp. 43–90). New York, NY: John Wiley & Sons.
- 566 MacMillan, N. A., & Creelman, C. D. (2005). Detection theory: A user's guide (2nd
- 567 *ed.*). Mahwah, NJ: Lawrence Erlbaum.
- North, M. S., Todorov, A., & Osherson, D. N. (2010). Inferring the preferences of
- others from spontaneous, low-emotional facial expressions. *Journal of Experimental*
- 570 Social Psychology, 46, 1109-1113. doi:10.1016/j.jesp.2010.05.021
- 571 Pillai, D., Sheppard, E., & Mitchell, P. (2012). Can people guess what happened to
- 572 others from their reactions? *PLoS ONE*, *7*(*11*), e49859.
- 573 doi:10.1371/journal.pone.0049859
- ⁵⁷⁴ Pillai, D., et al. (2014). Using other minds as a window onto the world: Guessing what
- happened from clues in behaviour. Journal of Autism and Development Disorders, 44,
- 576 2430-2439. doi:10.1007/s10803-014-2106-x
- 577 Premack, D., & Woodruff, G. (1978). Does the chimpanzee have a theory of mind?
- 578 *The Behavioral and Brain Sciences*, *4*, 515-526. doi: 10.1017/S0140525X00076512
- 579 Rai, R. & Mitchell, P. (2004). Five-year-olds' difficulty with false belief when the
- sought entity is a person. *Journal of Experimental Child Psychology*, 89, 112-126.
- doi: 10.1016/j.jecp.2004.05.003
- 582 Russell, J. A., Bachorowski, J. A., & Fernandez-Dols, J. M. (2003). Facial and vocal
- expressions of emotion. *Annual Review of Psychology*, *54*, 329-349.
- 584 doi:10.1146/annurev.psych.54.101601.145102

- 585 Sheppard, E., Pillai, D., Wong, G. T., Ropar, D., & Mitchell, P. (2016). How easy is it
- to read the minds of people with Autism Spectrum Disorder? *Journal of Autism and*
- 587 Developmental Disorders, 46, 1247-1254. doi:10.1007/s10803-015-2662-8
- 588 Soscia, I. (2007). Gratitude, delight, or guilt: The role of consumer's emotions in
- predicting postconsumption behaviors. *Psychology & Marketing*, 24 (10), 871-894.
- 590 doi:10.1002/mar.20188
- Teoh, Y., Wallis, E., Stephen, I.D., & Mitchell, P. (2017). Seeing the world through
- other minds: Inferring social context from behaviour. *Cognition*, 159, 48-60.
- 593 doi:10.1016/j.cognition.2016.11.003
- Valanides, C., Sheppard, E., & Mitchell, P. (2017). How accurately can ohter people
- infer your thoughts—And does culture matter? *PLoS ONE*, *12(11)*: e0187586.
- 596 doi:10.1371/journal.pone.0187586
- 597 West, T. V. & Kenny, D. A. (2011). The truth and bias model of judgment.
- 598 Psychological Review, 118, 357-378. doi:10.1037/a0022936
- 599 Wimmer, H., & Perner, J. (1983). Beliefs about beliefs: Representation and
- 600 constraining function of wrong beliefs in young children's understanding of
- deception. *Cognition*, *13*, 103-128. doi:10.1016/0010-0277(83)90004-5
- Wu, W., Sheppard, E., & Mitchell, P. (2016a). Being Sherlock Holmes: Can we sense
- empathy from a brief sample of behaviour? British Journal of Psychology, 107 (1), 1-
- 604 22. doi:10.1111/bjop.12157

- 605 Wu, W., Sheppard, E., & Mitchell, P. (2016b). The game is afoot: A response to three
- insightful commentaries. *British Journal of Psychology*, 107 (1), 33-35.
- 607 doi:10.1111/bjop.12168
- 608 Wu, W., Sheppard, E., & Mitchell, P. (2017) Judging personality from a brief sample
- of behavior: It is relatively easy to detect who is unique on a trait. *European Journal*
- 610 *of Personality*, *31*, 685-700. doi:10.1002/per.2116
- 611 Zaki, J., Bolger, N., & Ochsner, K. (2008). It takes two: The interpersonal nature of
- empathic accuracy. *Psychological Science*, *19*, 399-404. doi:10.1111/j.1467-
- 613 9280.2008.02099.x
- ⁶¹⁴ Zaki, J., Bolger, N., & Ochsner, K. (2009). Unpacking the informational bases of
- empathic accuracy. *Emotion*, *9*, 478-487. doi:10.1037/a0016551
- ⁶¹⁶ Zaki, J. & Ochsner, K. (2011). Reintegrating the study of accuracy into social
- 617 cognition research. *Psychological Inquiry*, 22, 159-182.
- 618 doi:10.1080/1047840X.2011.551743
- 619

621

- 622
- 623
- 624 625

626

627

- 629
- 630

631 Tables

632	Table 1. Means and standard deviations (SD) of hit rates (M_{HR}), false alarm rates (M_{FAR}), d-
633	prime (M_d) , criterion (M_c) of each mental state across the three target EQ groups and within
634	each target EQ group, along with t values of one-sample t tests for d' (comparing with 0), 95%

635 confidence intervals (95% CIs) of each $M_{d'}$ and Cohen's *d* in Study 1

Target	States	M_{HR}	M _{FAR}	$M_{d'}$	M_c	95%CIs	t	Cohen's
EQs								d
Across	Н	.27 (.10)	.22 (.08)	.17 (.29)	.73 (.28)	[.09, .25]	4.24***	.57
three	G	.25 (.12)	.24 (.08)	0 (.34)	.74 (.32)	[09, .10]	.04	0
EQs	А	.22 (.08)	.21 (.07)	.03 (.29)	.83 (.24)	[06, .11]	.63	.10
	S	.35 (.10)	.31 (.10)	.11 (.26)	.45 (.24)	[.04, .19]	3.13**	.42
Low EQ	Н	.29 (.13)	.17 (.10)	.48 (.42)	.82 (.38)	[.36, .59]	8.25***	1.14
	G	.30 (.18)	.23 (.09)	.17 (.53)	.68 (.37)	[.02, .32]	2.31*	.32
	А	.21 (.12)	.20 (.08)	03 (.51)	.89 (.30)	[17, .12]	69	06
	S	.36 (.15)	.35 (.14)	.03 (.47)	.40 (.33)	[10, .16]	.42	.06
Average	Н	.28 (.14)	.22 (.09)	.18 (.45)	.71 (.28)	[.06, .30]	2.91**	.40
EQ	G	.26 (.15)	.22 (.11)	.08 (.51)	.77 (.38)	[06, .22]	1.10	.16
	А	.23 (.11)	.21 (.08)	.05 (.35)	.82 (.32)	[05, .15]	1.03	.14
	S	.34 (.13)	.31 (.09)	.10 (.39)	.48 (.26)	[01, .21]	1.76	.26
High EQ	Н	.23 (.15)	.30 (.11)	25 (.53)	.70 (.36)	[40,11]	-3.47***	47
	G	.17 (.13)	.26 (.11)	33 (.55)	.86 (.33)	[48,18]	-4.31***	60
	А	.25 (.16)	.21 (.07)	.08 (.50)	.79 (.34)	[06, .22]	1.20	.16
	S	.35 (.15)	.26 (.13)	.25 (.49)	.57 (.37)	[.11, .39]	3.67***	.51

638 Notes: $p^* < .05$, $p^{**} < .01$, $p^{***} \le .001$; Cohen's d = 0.2, 0.5 and 0.8 respectively represents small, 639 medium and large size; A = Anger, H = Happiness, S = Sadness, and G = Gratitude.

645	Table 2. Means of perceiver ratings (M_R) and standard deviations (SD) of each mental state in
646	each target EQ group and across the three EQ groups, along with t values of one-sample t tests
647	(comparing with the neutral point 3), 95% confidence intervals (95% CIs) of each M_R and
648	Cohen's <i>d</i> in Study 2

Target EQs	States	$M_R(SD)$	95% CIs	t	Cohen's d
Across three	Н	3.10 (.03)	[3.09, 3.11]	27.16*	-3.33
EQs	G	3.00 (.02)	[3.00, 3.01]	.39	0
	А	2.96 (.02)	[2.96, 2.97]	-49.59*	-2.00
	S	2.86 (.02)	[2.86, 2.87]	-17.57*	-7.00
Low EQ	Н	3.04 (.03)	[3.04, 3.05]	11.28*	1.33
	G	2.84 (.03)	[2.83, 2.85]	-35.20*	-5.33
	А	2.84 (.02)	[2.84, 2.85]	-52.70*	-8.00
	S	2.82 (.03)	[2.81, 2.83]	-37.19*	-6.00
Average EQ	Н	3.23 (.03)	[3.22, 3.24]	52.85*	7.67
	G	2.81 (.04)	[2.80, 2.82]	-33.48*	-4.75
	А	3.04 (.03)	[3.03, 3.05]	10.14*	1.33
	S	2.83 (.05)	[2.81, 2.84]	-22.45*	-3.40
High EQ3	Н	3.04 (.04)	[3.03, 3.05]	6.68*	1.00
	G	3.35 (.02)	[3.34, 3.35]	107.30*	17.50
	А	3.00 (.04)	[2.99, 3.01]	.03	0
	S	2.94 (.01)	[2.94, 2.94]	-30.26*	-6.00

- 651 Note: *p** < .001

