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Abstract6

Deep sea debris is any persistent man-made material that ends up in the

deep sea. The scale and rapidly increasing amount of sea debris are endan-

gering the health of the ocean. So, many marine communities are struggling

for the objective of a clean, healthy, resilient, safe, and sustainably harvested

ocean. That includes deep sea debris removal with maneuverable underwater

machines. Previous studies have demonstrated that deep learning can suc-

cessfully extract features from seabed images or videos, and are capable of

identifying and detecting debris to facilitate debris collection. In this paper,

the lightweight neural network (termed DSDebrisNet), which can leverage

the detection speed and identification performance to achieve instant detec-

tion with high accuracy, is proposed to implement compound-scaled deep

sea debris detection. In DSDebrisNet, a hybrid loss function considering

the illumination and detection problem was also introduced to improve per-

Preprint submitted to Science of the Total Environment November 13, 2022

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=4290258

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

wed



formance. In addition, the DSDebris dataset is constructed by extracting

images and video frames from the JAMSTEC dataset and labeled using a

graphical image annotation tool. The experiments are implemented on the

deep sea debris dataset, and the results indicate that the proposed method-

ology can achieve promising detection accuracy in real time. The in-depth

study also provides significant evidence for the successful extension branch

of artificial intelligence to the deep sea research domain.

Keywords:7

Deep sea debris, deep learning-based detection method, Marine pollution,8

Seafloor.9

1. Introduction10

The history of marine debris can be traced back to entanglement reports11

and plastics ingestion and edible reports from the 1960s. In the early 1970s,12

the presence of plastic on the ocean floor was discovered from some comments13

and had a strong effect on marine animalsSoliño et al. [2022]. In the early14

1980s, growing concern about the impact of marine litter led to a series of15

conferences on marine debris. By the end of 1980, the problems related to16

marine debris were well understood and observations were transferred to re-17

search on effective solutions to the problem Galgani et al. [1996]; Zhang et al.18

[2021]. Plastic production has grown dramatically over the past few decades19

Topouzelis et al. [2021]. In 2021, the report ‘From Pollution to Solution:20

a global assessment of marine litter and plastic pollution’ reveals that ma-21

rine debris impacts the health of ecosystems, wildlife, and humans Schmaltz22

et al. [2020]; UNEP [2021]. As typical, global cumulative production of plas-23
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tics is estimated to grow from 9.2 million tons in 2017 to 34 million tons24

by 2050 Geyer [2020]. Consequently, it is urgent to reduce the amount of25

uncontrolled or poorly managed waste flowing into the ocean Schlining et al.26

[2013]; Woodall et al. [2014].27

The deep sea is the ultimate concentration of land debris and environmen-28

tal pollutants Zhang and Peng [2022]; Agostini et al. [2021]. Debris Tracker is29

an open data citizen science movement that aims to track and prevent ocean30

plastic pollution, thereby addressing the global challenge through widespread31

awareness and action Jones et al. [2022]. Unquestionably, deep sea debris can32

definitely break, smother, and even destroy sensitive ecosystems Cui et al.33

[2020]; Cau et al. [2019], so the sustainable development of the ocean requires34

an active treatment of marine litter Botero et al. [2020]; Amon et al. [2020].35

Therefore, the intellectualization of debris detection is a critical prob-36

lem for the sustainable development of the marine environment and marine37

ecology all over the world Nurlatifah et al. [2021]. Effectively tackling the38

problem of deep sea debris requires a wide range of actions Peng et al. [2018].39

With the help of submersibles, which are underwater robots, the seafloor en-40

vironments can be visualized, sampled, and surveyed for scientific analysis41

Fulton et al. [2019]. The deep sea debris database provided by the Global42

Oceanographic Data Center (GODAC) of the Japan Agency for Marine Earth43

Science and Technology (JAMSTEC) is available for Marine Earth Science44

and Technology [2018].45

To effectively remove deep sea debris, detection algorithms must be able46

to operate in near real-time on remotely operated vehicle underwater plat-47

forms Xue et al. [2021a]. In terms of detection methods, image processing48
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Figure 1: The overall description of the DSDebris dataset. (a) General bathymetry and

location of the study area, jointly with the detailed location of observation points marked

with red points, (b) Distribution of different classes in the JAMSTEC dataset, including

videos and images, (c) Distribution of different classes in the DSDebris dataset, which is

more balanced.
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techniques and deep learning methods LeCun et al. [2015] are both available.49

Image processing techniques Huang et al. [2021] typically do not require50

a large amount of training data and are essentially unsupervised Politikos51

et al. [2021]. However, these technologies are limited by various factors,52

such as lighting effects, complex scenarios, and so on. The upper issues53

can be better tackled with deep learning methods. To identify the floating54

marine plastics, deep learning VGG16 Simonyan and Zisserman [2015] ar-55

chitecture is adopted to distinguish bottles, buckets, and straw debris. The56

performance of six well-known deep convolutional neural networks (CNNs),57

namely VGG19 Simonyan and Zisserman [2015], InceptionV3 Szegedy et al.58

[2016], ResNet50He et al. [2016], Inception-ResNetV2 Szegedy et al. [2017],59

DenseNet121 Huang et al. [2017], and MobileNetV2 Howard et al. [2017], are60

utilized as feature extractors according to three different extraction schemes61

for the identification of underwater marine debris. Faster-RCNN Ren et al.62

[2017] with transfer learning of ResNet-50 architecture was employed to de-63

tect the debris. With dataset JAMSTEC, four deep learning architectures,64

including YOLO (You only look once) Redmon et al. [2016], Faster RCNN,65

Tiny-YOLO, and Single Shot MultiBox Detector (SSD) Liu et al. [2016] with66

MobileNetv2 were trained using standard fine-tuning procedures to demon-67

strate the effectiveness of deep learning for the deep sea debris detection68

problem. Meanwhile, the one-stage detection network ResNet50-YOLOV369

was constructed to improve the detection performance of deep sea debrisXue70

et al. [2021b]. Previous studies have confirmed that the development of deep71

learning methods Ren et al. [2022] can facilitate the oceanographic research72

Han et al. [2022]; Chen et al. [2022], including marine debris removal, while73
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there is little research to improve detection speed and real-time detection to74

ensure efficient debris collection procedures.75

The objective of this paper is to solve the problem of instant detecting76

debris with the deep neural network. The underwater videos and images77

are degraded by uneven absorption of light due to the particles in the wa-78

ter. A lightweight deep learning model named DSDebrisNet is proposed in79

this paper. The main contributions include three aspects: (1) The number80

of parameters, operation cost, and weight of the proposed DSDebrisNet are81

decreased, thus greatly improving the operation speed; (2) The proposed DS-82

DebrisNet is easier to deploy to maneuverable underwater machines because83

of the lightweight neural network; (3) Experiments of deep sea debris de-84

tection indicate that proposed DSDebrisNet methodology can achieve better85

index results and higher speed than the competing detection methods.86

The remaining parts of the paper proceed as follows. Section 2 illustrates87

the dataset and problem formulation. Next, the deep sea debris detection88

methodology is addressed systematically in Section 3. Then, section 4 illu-89

minate the experimental results to demonstrate the strength of the proposed90

DSDebrisNet. Finally, some remarks are concluded in Section 5.91

2. Preliminaries92

2.1. Data description93

The JAMSTEC launched deep sea debris database in March 2017. This94

dataset provides type-specific marine debris data collected from the deep sea95

in the form of photos and videos, which have been taken dating back from96

1983 with the help of ROVs and submersible, ”SHINKAI6500”, ”HYPER-97
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DOLPHIN”, etc. Only a few cases have been investigated at the deepest98

depths of the oceans and this dataset also consists of marine litter present99

at depths greater than 6000m as well. The general bathymetry and location100

of the study area are illustrated in Fig.1(a).101

Figure 2: The location analysis of the objects to be detected with the bounding boxes.

(a) Distribution of 100 random bounding boxes, (b) and (c) are the position and size

normalization plots of random bounding boxes, respectively.

The videos and photos of the JAMSTEC database are categorized by102

shapes and materials, the categories including fishing gear, cloth, glass,103

metal, plastic, rubber, and natural debris. In addition, corresponding in-104

formation on debris sunken to the deep sea by the locations is also available.105

The number of glass and rubber is at least 82 and 84, respectively, while the106

number of plastic is at most 2787. There is a highly unequal distribution of107

classes, the imbalance of the dataset can also be seen intuitively in Fig.1(b).108

In this paper, the debris detection dataset, defined as the Deep Sea De-109

bris dataset, or DSDebris dataset, is built by extracting video frames and110

combining them with the original image. It is noted that the imbalance of111

the original dataset is reduced by controlling the number of images extracted112

from the video and image enhancement, the distribution of different classes113
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in DSDebris dataset is shown in Fig.1(c). Then, the bounding boxes are114

labeled with a graphical image annotation tool. Meanwhile, the annotations115

are saved as XML files to support the specific format.116

Finally, the DSDebris dataset contains about 11,600 images divided into117

seven categories: fishing gear, cloth, glass, metal, natural debris, plastic,118

and rubber. To facilitate image processing, we adjusted the resolution of119

all images to 480*320. At the same time, due to the discrete distribution120

characteristics of deep sea garbage individuals, the images in the DSDebris121

dataset may contain more than one debris individual, meaning that some122

images contain multiple debris categories. The detailed information is shown123

in Table.1.124

Table 1: The detailed number of different objects in the JAMSTEC and DSDebris datasets.

1 

 

            Dataset 

Categories 
JAMSTEC DSDebris 

Fishing net Rope 194 2003 

Cloth 253 2518 

Glass 82 1161 

Metal 1075 1999 

Natural debris 877 2268 

Plastic 2787 3768 

Rubber 84 1285 

Total 5352 15002 

 

Table 2. Comparison of evaluation indicators and speed for different methods. 

Indicators 

Methods 
MAP0.5 MAP0.5:0.95 FPS 

ResNet50-Faster R-CNN 71.9 42.3 12 

ResNet50-SSD 78.7 47.7 17 

YOLOV3 83.4 48.4 30 

DSDebrisNet 92.8 72.4 60 

 

 

Methods 

Category 

ResNet50-

Faster R-CNN 

ResNet50-

SSD 
YOLOV3 DSDebrisNet 

Cloth 45.5 52.3 61.7 96.1 

Fishing net  Rope 76.3 76.9 86 92.5 

Glass 87.3 92.8 91.6 97.5 

Metal 68.9 83.4 85.2 92.2 

Natural 70.7 74.5 82.5 87.3 

Plastic 62 74.4 79.4 84.7 

Rubber 92.5 96.6 97.6 99.5 

 

Further, the size of the target object is crucial for the performance of125

the detection network. To represent the distribution of location and size,126

the ground truth of 100 objects is randomly selected, as shown in Fig.2(a).127

At the same time, the bounding boxes are normalized to obtain the detailed128

position coordinates of the object, namely x, y, width and height, x and y are129
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the coordinates of the left top point of the bounding box, width and height130

are the width and height of the object. By carefully observing the x and y131

comparison graph in Fig.2(b), it can be indicated that most objects are in the132

central region of the image. Further, the width and height map in Fig.2(c)133

verifies the rationality of the aspect ratio. So the DSDebris dataset can reflect134

the complexity of deep sea environment as well as meet the distribution135

pattern required by the detection network.136

2.2. Problem formulation137

To better describe the detection process of deep sea debris, let x ∈ R3×N
138

denote the input image or the frame of video with N = m× n pixels, where139

m and n are defined as the number of rows and columns in the input image,140

respectively, k ≡ {1, 2, · · · , K} denotes a vector of K class labels. The141

purpose of detection is to achieve multiple instances of object location with142

the bounding box and the corresponding object class. The task associated143

with object localization is to discern whether a position x:,i belongs to the144

object of a certain class k. For this purpose, a feature extractor f (·) and s145

score estimator e (·) are learned to extract the pixel-level features Z = f (x) ∈146

RC×N and estimate the localization score Y ∗ = e (Z) ∈ RK×N respectively.147

For fully supervised object localization, the pixel-level localization mask Y ∈148

RK×N is adopted as supervision for Ŷ to learn f (·) and e (·). It is noted that149

the element Yk,i identifies whether or not pixel i belongs to the object of the150

class k.151

Inspired by the one-stage YOLO networks, the detection problem is for-152

mulated as a regression problem that predicts the offsets and confidence of153

each anchor box and suppresses overlapping predictions with non-maximum154
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suppression. Here, the input image is divided into s× s grid, each grid pre-155

dicts B anchor box and the corresponding confidence score, which is defined156

as confidence = Pr (Object) × IoU (GT, pred), wherePr (Object) ∈ [0, 1].157

Thus, the pixel-level features are transformed into grid-level features and the158

pixel-level localization mask Y ∈ RK×N is the anchor box, the score esti-159

mator e (·) is the K class probabilities. The feature vector of f (·) can be160

described as follows:161

f̂ = B × {confidence, x, y, h, w, ϕ} (1)

where B is the number of prior anchor boxes, (x, y) , h, w represents the center

coordinates, height, and width of prior anchor boxes predicted, respectively,

and ϕk is the probability that the prior anchor box belongs to the category

k. The ϕ should satisfy the constraint
∑K

k=1 ϕk = 1. The object function of

the detection pipeline can be formulated as follows:

Figure 3: The workflow of the proposed methodology to detect and clean deep sea debris

with DSDebrisNet for maneuverable underwater machines.

L = LGIoU + Lconfidence + Lclassification (2)

10

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=4290258

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

wed



As the loss function of bounding box regression, the GIoU method can162

overcome the shortcomings of IoU Wang et al. [2022a] and makes full use of163

the advantages of IoU. Supposing B = (x, y, h, w) is the prediction box, Bgt =164

(xgt, ygt, hgt, wgt) is the ground truth box, and C represents the smallest165

convex closed box containing B and Bgt, the calculation of GIoU loss can be166

formulated as follows:167

IoU =
|B∩Bgt|
|B∪Bgt|

LGIoU = 1− IoU + |C−(B∪Bgt)|
|C|

(3)

The basic components of Lconfidence and Lclassification are binary cross-168

entropy (BCE) loss. Lconfidence reflects the confidence error between the169

ground truth box and the predicted box, as shown as follows:170

Lconfidence

=
s×s∑
i=0

B∑
j=0

ℓobjij

[
Ci

gtlog (Ci) +
(
1− Ci

gt
)
log (1− Ci)

]
−

s×s∑
i=0

B∑
j=0

ℓnoobjij

[
Ci

gtlog (Ci) +
(
1− Ci

gt
)
log (1− Ci)

]
(4)

where Ci
gt, Ci are the confidence of the ground truth box and predicted box,171

respectively. and the value of ℓobjij is 1 if the jth prior anchor box in the ith172

grid cell contains the object to be detected, and 0 otherwise. While ℓnonobjij is173

the opposite of ℓobjij .174

Classification loss can evaluate the classification ability of the model175

through binary cross-entropy, the calculation of Lclassification can be formu-176

lated as follows:177
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Lclassification =
s×s∑
i=0

B∑
j=0

ℓobjij

∑
k∈classes[

pi
gt (k) log (pi (k)) +

(
1− pi

gt (k)
)
log (1− pi (k))

] (5)

where pi (k) is the predicted probability that the predicted box can be cat-178

egorized as the class k, while pi
gt (k) is the label of the ground truth box,179

pi
gt (k) ∈ {0, 1}.180

3. Methodology181

As the state-of-the-art object detection system, the superior flexibility of182

YOLO Wang et al. [2022b] facilitates rapid deployment in the mobile hard-183

ware platforms of maneuverable underwater machines. According to different184

depths and widths, the YOLOv5 network is divided into four structures Wang185

and Liu [2022]. Considering the lightweight requirements, the focus of this186

study is to improve the design of YOLOv5s architecture. Specifically, the187

adopted YOLOv5s is the smallest model with 14.10M memory size of the188

YOLO series. However, the identification accuracy and response time can-189

not meet the requirements of maneuverable underwater machines, especially190

when moving at a higher speed.191

Following the architecture of YOLOv5s, the basic framework DSDebris-192

Net also includes input, backbone, neck, and output. The input videos or193

images are degraded by light scattering and absorption in underwater sit-194

uations, so the input is first improved with the slide stretching approach,195

the augmentation process has low computational cost and requirements for196

hardware devices. The backbone part is composed of CBS (Convolution197
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+ BatchNorm + SiLU), C3 X, and Spatial Pyramid pooling - fast (SPPF)198

modules. Feature pyramid network (FPN) Lin et al. [2017] and path aggre-199

gation network (PAN) Ni et al. [2020] modules are used to realize multi-scale200

information fusion Yu et al. [2022]. Finally, the network predicts both the201

category and position of target boxes. The architecture of the DSDebrisNet202

is illustrated in Fig.3. The detailed structure of different modules is explained203

in the following subsections.204

3.1. Deep sea debris image enhancement205

Mosaic, mixup, and slide stretching approaches are employed to achieve206

data enhancement. Mosaic splices four different images by randomly zoom-207

ing, clipping, and arranging them, enriching the detection dataset and in-208

creasing the number of small targets to improve the robustness of the net-209

work. Mixup randomly reduces the transparency of two different images210

and superimposes them, complicating the target and also improving the ro-211

bustness. The two different data enhancement methods can process multiple212

images at the same time, reducing the number of graphics processing units213

(GPUs) and improving the training speed. Meanwhile, adaptive image scal-214

ing is used instead of traditional unified scaling to improve the detection215

reasoning speed.216

3.2. Feature extractor backbone layer217

The backbone layer consists of CBS, C3 X, and SPPF modules, the218

detailed structures are shown in Fig.4. The basic CBS module is com-219

posed of convolution, batch normalization, and SiLU activation function220
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x× sigmod (x), and the SiLU function Elfwing et al. [2018] can be expressed221

in Eq.6.222

Figure 4: The detailed structure of CBS, C3 X, C3F X, and SPPF modules in the Back-

bone layer.

SiLU =
x

1 + e−x
(6)

The traditional focus structure is replaced with the first CBS structure223

with a 6× 6 convolution layer. Although both can theoretically achieve the224

same effect while the CBS structure is more efficient. Increasing or decreasing225

the number of 1× 1 convolution kernels in the C3 X module can control the226

number of channels. The downsampling process uses a CBS structure with a227

step size of 2 to prevent information loss, replacing the traditional maxpool228
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or avgpool. All of the five CBS structures in the backbone adopt convolution229

with a step size of 2 to make the original image subsampling 32 times, and230

the size of the feature matrix decreases from 640× 640 to 20× 20. The first231

CBS can increase the number of channels from 3 to 32, and the last four CBS232

can double the number of channels. While the C3 X module keeps the size233

of the feature map and the number of channels. Finally, the SPPF module234

is adopted to improve efficiency instead of the previous SPP module. SPPF235

uses the convolution kernel size of 5×5, 9×9, and 13×13 to make MaxPool236

and Concat with the original feature graph. The structure is parallel while237

more parameters are generated and the speed is slower due to the larger238

convolution kernel size. SPPF uses two 5× 5 to replace 9× 9 and three 5× 5239

to replace 13× 13, although the structure is serial, the parameters are fewer.240

The feature map size of the backbone is 20× 20× 512.241

3.3. Multi-scale fusion neck layer242

FPN module and PAN module are combined in the Neck structure. FPN243

module can realize the fusion of multi-scale information, that is, low-level244

detail information and high-level semantic information are fused to increase245

the receptive field of low-level, thus enabling low-level to obtain more con-246

text information when realizing small target detection. The bottom-up PAN247

module is added after the top-down path of FPN to ensure the integrity and248

diversity of the feature, moreover, the detection efficiency can be enhanced249

by preserving spatial information. The structure of the FPN and PAN mod-250

ule in the neck layer is illustrated in Fig.5 in detail. There are four C3F X251

modules in the neck layer for extracting detailed features. C3F X module is252

similar to C3 F module in the Backbone layer, the difference is that there253
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is no shortcut connection in ResX. The step size of the last two CBS struc-254

tures in Neck is 2 instead of maxpool to realize downsampling. After passing255

through the Neck layer, three feature maps of different scales are obtained256

for detection, with sizes of 80×80×128, 40 × 40 × 256, and 20 × 20 × 512,257

respectively.258

Figure 5: The detailed structure of the FPN and PAN modules in the Neck layer.

3.4. Detection output layer259

Three feature maps of different scales, respectively 80×80×36, 40×40×36,260

and 20 × 20 × 36, are obtained through convolution operation in the out-261

put layer, as shown in Fig.6. Different feature maps can detect objects of262

different sizes, which facilitates compound-scaled deep sea debris detection.263

Specifically, larger feature maps detect small objects because of their smaller264
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receptive fields, and smaller feature maps detect larger objects. The value265

of the third dimension 36 × 36 represents the prediction of 3 anchors, each266

anchor will generate the category probabilities, 4 position coordinates, and267

a confidence score. Finally, the non-maximum suppression operation is im-268

plemented to screen the target boxes.269

Figure 6: The anchor box feature map of the output layer. The red grid is responsible for

predicting debris, and there are three anchor boxes for each grid.

4. Experimental results and analysis270

In this study, the loss function adopted in the training of DSDebrisNet271

includes classification loss Lclassification, confidence loss Lconfidence and bound-272

ary box position loss LGIoU . Based on GIoU loss ?, DSDebrisNet can opti-273

mize the distance losses for regressing the parameters of a bounding box to274

maximize the metric value.275

4.1. Evaluation metrics276

Deep sea debris detection determines whether the bounding box contains277

debris, thereby adjusting the location and size of the bounding box to ac-278

commodate the debris. The debris is to be detected if it has an intersection279
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over union (IoU) value greater than 0.5 for any bounding boxes generated by280

the detector. The performance of the detector is mainly evaluated by mean281

average precision (mAP ). Specifically, precision can reflect the closeness be-282

tween the detection results and the ground truth. Recall is the evaluation and283

prediction of whether all debris has been identified, which reflects the pro-284

portion of correctly determined positive cases in the total positive samples.285

The precision-recall (P-R) curve Cui et al. [2019] can measure the quality of286

the object detection method, the specific formulas are as follows:287

Precision =
area of Intersection

area of Detected box
(7)

Recall =
area of Intersection

area of Object
(8)

With the P-R curve, AP can be obtained by calculating the average288

value of the precision value corresponding to each recall value. Before AP289

calculation, to smooth the P-R curve and reduce the influence of curve fluc-290

tuation, interpolation is first carried out on the P-R curve. Given a recall291

value ri, the Pinterp (ri+1) used for interpolation is the maximum precision292

value between the next recall value ri+1 and the current ri value. Usually,293

AP is calculated by averaging the precision over a set of evenly uniformly294

recall levels {0, 0.1, 0.2, · · · , 1.0}. Here mAP0.5, and mAP0.5:0.95 are chosen295

as the specific metrics, mAP0.5:0.95 is the mean of ten AP over the recall296

levels {0.5, 0.55, · · · , 0.95}. The AP and mAP0.5 can be described in the297

following equations:298
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AP =
n−1∑
i=1

(ri+1 − ri)Pinterp (ri+1) (9)

mAP =

∑K
i=1AP i

K
(10)

4.2. Implementation details299

The proposed DSDebrisNet is implemented by the PyTorch framework300

with Inter(R) Core (TM) i7- 11700K @3.60GHz, 64GB memory, NVIDIA301

GeForce RTX 3090. 80% of the DSDebris dataset is used for training and302

the remaining 20% is employed as the test dataset. To increase the diversity303

of the dataset, hue, saturation, and exposure are set to 0.015, 0.7, and 0.4,304

respectively. At the same time, mosaic data augmentation combines four305

images into one image by random scaling, random cropping, and random306

arrangement is adopted to identify the smaller-scale objects Bedford and307

Hanson [2022]. The optimizer is stochastic gradient descent (SGD) and the308

momentum factor is set to 0.937. The learning rate adopted the one cycle309

method to slowly increase and then decrease. In the last part of the training,310

the learning rate decreased lower than the previous minimum value. Us-311

ing this strategy not only speeds up training but also helps to prevent the312

model from falling into steep regions of the loss plane, making the model313

more inclined to look for minima in flatter parts, thus alleviating overfitting.314

Considering the similar distribution between the DSDebris dataset and the315

COCO dataset Yang et al. [2022], we employed the pre-trained model of316

YOLOV5 for fine-tuning instead of K-means clustering for anchors recalcu-317

lation to speed up the convergence of the DSDebrisNet. Meanwhile, all the318
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images are transformed into 640time640 by adaptive image scaling and then319

fed into the DSDebrisNet. The batch size and CPU thread are set to 64320

and 4, respectively. During the test procedure, non-maximum suppression321

(NMS) was used to remove some repeated prediction boxes, the IoU of NMS322

was set to 0.45, and 300 epochs are sufficient for the proposed network to323

converge.324

The trends of loss value in the training and testing process of DSDe-325

brisNet, including bounding box loss, confidence loss, and classification loss,326

represent the differences between the predicted value and the true value, as327

shown in Fig.7. The fast loss decrease of DSDebrisNet in the training pro-328

cess indicates that the proposed DSDebrisNet can locate the target position329

with high convergence speed. At the beginning of training, the loss function330

value of 30 epochs drops sharply. When the epoch reaches 100, the loss value331

tends to be stable. DSDebrisNet updates the network parameters with the332

loss function. The convergence positions of each loss function in the training333

and testing process are less than 0.03, which demonstrates that the model334

has good robustness, thus realizing the effective prediction of the model.335

The detailed values of mAP0.5, and mAP0.5:0.95 in the training process336

are shown in Fig.8(a). It can be seen that the curve rises steadily without337

significant oscillations. Meanwhile, the confidence-precision and confidence-338

recall curves, as shown in Fig.8(b) and Fig.8(c) respectively, visualize how the339

DSDebrisNet predicts the positive class. It can be seen that the precision340

and recall indexes of rubber debris are high because of the distinguishing341

features to identify. While plastic debris is the worst, the reason for this342

phenomenon is that the size of plastic debris is very different, resulting in343
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Figure 7: Loss curve during the (a) training and (b) testing process of DSDebrisNet.

low precision and recall.344

4.3. Comparisons with other methods345

The Faster R-CNN, which is the originator of the two-stage detection346

network, and SSD, which is known as a one-stage monitoring network with347

the pyramid-shaped feature hierarchy, and YOLOV3, which is the most im-348

portant in the YOLO series of one-stage monitoring networks are selected349

as comparative detection methods. Previous studies have demonstrated that350

two-stage detection networks should be combined with an efficient classifi-351

cation backbone to improve the detection performance and ResNet 50 can352

do. Consequently, three competing networks are Resnet50-Faster R-CNN,353

Resnet50-SSD, and YoloV3.354

The mAP0.5 and mAP0.5:0.95 of different models are shown in Table. 2 in355

detail. It can be seen that Resnet50-Faster R-CNN, as a two-stage detection356
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Figure 8: Evaluation indexes of the detection results. (a) mAP curve, (b) F1 score curve,

(c) Precision curve, and (d) PR curve.
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Figure 9: Visualized detection results of different methods. (a) Ground truth, (b)

ResNet50-Faster R-CNN, (c) ResNet50-SSD, (d) Yolov3, and (e) DSDebrisNet.
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network, cannot compare with the one-stage detection network DSDebrisNet357

in both accuracy and speed. Specifically, the mAP0.5 is 92.8, mAP0.5:0.95 is358

92.8 72.4, and the number of frames per second (FPS) is up to 60. Con-359

sequently, the performance of the proposed one-stage network DSDebrisNet360

can reach the expectation of video detection.361

Table 2: Comparison of evaluation indicators and speed for different detection methods.

1 

 

            Dataset 

Categories 
JAMSTEC DSDebris 

Fishing net Rope 194 2003 

Cloth 253 2518 

Glass 82 1161 

Metal 1075 1999 

Natural debris 877 2268 

Plastic 2787 3768 

Rubber 84 1285 

Total 5352 15002 

 

Table 2. Comparison of evaluation indicators and speed for different methods. 

Indicators 

Methods 
mAP0.5 mAP0.5:0.95 FPS 

ResNet50-Faster R-CNN 71.9 42.3 24 

ResNet50-SSD 78.7 47.7 34 

YOLOV3 83.4 48.4 52 

DSDebrisNet 92.8 72.4 60 

 

 

Methods 

Category 

ResNet50-

Faster R-CNN 

ResNet50-

SSD 
YOLOV3 DSDebrisNet 

Cloth 45.5 52.3 61.7 96.1 

Fishing net  Rope 76.3 76.9 86.0 92.5 

Glass 87.3 92.8 91.6 97.5 

Metal 68.9 83.4 85.2 92.2 

Natural 70.7 74.5 82.5 87.3 

Plastic 62.0 74.4 79.4 84.7 

Rubber 92.5 96.6 97.6 99.5 

 

For intuitive comparison, the detection results obtained by the DSDebris362

along with comparative methods are illustrated in Fig.9. The first column363

is the ground truth, and the second, third, fourth, and last columns are the364

detection results of ResNet50-Faster R-CNN, ResNet50-SSD, YOLOV3, and365

DSDebrisNet, respectively. From the comparison, it can be seen that the366

proposed method can achieve promising detection results with the providen-367

tial bounding box. Other methods generate more bounding boxes and have368

a higher recall, while the detection accuracy is lower.369

Furthermore, the quantitative evaluations of detection results are summa-370

rized in Table.3 for more efficient comparisons, tabulating the subclass AP0.5371

in detail. It can be inferred that the proposed DSDebrisNet can achieve the372

highest value. In contrast, the AP0.5 value of Rubber is 99.5, indicating that373

Rubber objects are the easiest to detect because of their single shape. Recip-374

rocally, plastic debris had the lowest AP0.5 values for all methods, indicating375
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that despite the large size of the data, detection is more difficult due to deep376

sea pressures that squeeze plastic into different patterns.377

Table 3: Quantitative performance comparison among the different methods in terms of

AP0.5 for each class.

1 

 

            Dataset 

Categories 
JAMSTEC DSDebris 

Fishing net Rope 194 2003 

Cloth 253 2518 

Glass 82 1161 

Metal 1075 1999 

Natural debris 877 2268 

Plastic 2787 3768 

Rubber 84 1285 

Total 5352 15002 

 

Table 2. Comparison of evaluation indicators and speed for different methods. 

Indicators 

Methods 
mAP0.5 mAP0.5:0.95 FPS 

ResNet50-Faster R-CNN 71.9 42.3 24 

ResNet50-SSD 78.7 47.7 34 

YOLOV3 83.4 48.4 52 

DSDebrisNet 92.8 72.4 60 

 

 

Methods 

Category 

ResNet50-

Faster R-CNN 

ResNet50-

SSD 
YOLOV3 DSDebrisNet 

Cloth 45.5 52.3 61.7 96.1 

Fishing net  Rope 76.3 76.9 86.0 92.5 

Glass 87.3 92.8 91.6 97.5 

Metal 68.9 83.4 85.2 92.2 

Natural 70.7 74.5 82.5 87.3 

Plastic 62.0 74.4 79.4 84.7 

Rubber 92.5 96.6 97.6 99.5 

 As aforementioned, three different scaled feature maps of 17 layer, 20378

layer and 23 layer are feed to the output layer. Thus facilitates compound-379

scaled deep sea debris detection. Here, the detection heatmap of the first380

and second examples in Fig.9 are drawn in Fig.10 to illustrate the detailed381

information. It can be concluded that larger feature maps detect smaller382

objects because they have smaller receptive fields, and smaller feature maps383

detect larger objects.384

4.4. Instant detection of video385

As previously identified, the performance of the proposed DSDebrisNet386

can meet the requirement of real-time video detection. As shown in Fig.11,387

two different deep sea debris videos with single objects and two videos with388

multiple objects are selected from JAMSTEC dataset, which can display the389
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Figure 10: Detection heatmap of the first and second examples in Fig.9 with DSDebrisNet.

(a) and (c) are the heatmap of the first and second examples, (b) and (d) are the statistical

information of different scales.
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real scene of deep sea debris with maneuverable underwater machines. By de-390

tecting the debris in the videos, the stability and generalization performance391

of the proposed DSDebrisNet method are verified. Although the temporal392

channel is not utilized to extract features for the sake of being lightweight,393

the proposed DSDebrisNet can accurately and efficiently detect debris with-394

out latencies in the video. Consequently, the DSDebrisNet is competent to395

detect deep sea debris from videos of maneuverable underwater machines,396

building sustainable oceans Lincoln et al. [2022] feasibly and practically.397

5. Conclusion and future work398

This paper proposes a deep sea debris detection methodology that directly399

detects debris via a lightweight DSDebrisNet. Firstly, the DSDebris dataset400

was built for the training and testing of the proposed DSDebrisNet based401

on the JAMSTEC dataset by extracting video frames and combining them402

with the original images. In this process, the imbalance of the dataset was403

analyzed and overcome, and the bounding boxes are annotated. Then, the404

DSDebrisNet was constructed following the encoder-decoder architecture. In405

addition, a hybrid loss function considering the illumination and detection406

problem was also introduced to improve performance. The benefit of the407

DSDebrisNet is that it requires relatively few epochs to achieve satisfactory408

detection results with high speed. Its superior performance has been veri-409

fied in experimental results. Furthermore, the detection experiments on the410

videos were also conducted to prove that the real-time capability of DSDe-411

brisNet can support the building sustainable ocean with the maneuverable412

underwater machine.413
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Figure 11: Instant deep sea debris detection of video through trained DSDebrisNet.
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Although the effectiveness of DSDebrisNet method has been demonstrated,414

it does not always guarantee satisfactory detection results. The proposed415

method can detect debris in the case of incorrect classification because of the416

indistinguishable feature. However, it is still worthy of consideration since417

it achieves better results than other competitive methods. In future work,418

the authors will focus on the utilization of multiple frames on the temporal419

channel to improve detection performance. The authors believe that there is420

significant potential to exploit the proposed method to realize the detection421

task of maneuverable underwater machines’ video.422
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