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Abstract

Tissue engineering response may be tailored via controlled, sustained release of active agents

from protein-loaded degradable microparticles incorporated directly within three-dimensional (3D)

ice-templated collagen scaffolds. However, the effects of covalent crosslinking during scaffold

preparation on the availability and release of protein from the incorporated microparticles have not

been explored. Here, we load 3D ice-templated collagen scaffolds with controlled additions of poly-

(DL-lactide-co-glycolide) microparticles. We probe the effects of subsequent N-(3-dimethylamino-

propyl)-N0-ethylcarbodiimide hydrochloride crosslinking on protein release, using microparticles

with different internal protein distributions. Fluorescein isothiocyanate labelled bovine serum albu-

min is used as a model protein drug. The scaffolds display a homogeneous microparticle distribu-

tion, and a reduction in pore size and percolation diameter with increased microparticle addition,

although these values did not fall below those reported as necessary for cell invasion. The protein

distribution within the microparticles, near the surface or more deeply located within the micropar-

ticles, was important in determining the release profile and effect of crosslinking, as the surface

was affected by the carbodiimide crosslinking reaction applied to the scaffold. Crosslinking of

microparticles with a high proportion of protein at the surface caused both a reduction and delay in

protein release. Protein located within the bulk of the microparticles, was protected from the cross-

linking reaction and no delay in the overall release profile was seen.
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Introduction

Tissue engineering approaches have emerged as potential therapeu-

tic strategies for the repair of the soft tissue loss due to trauma and

disease [1–7], with most involving the use of three-dimensional (3D)

scaffolds with controlled architecture and biological response

[8–12]. A successful 3D scaffold requires optimal mechanical prop-

erties and porous architecture in addition to a controlled cell-

substrate interaction, low inflammatory response and a controllable

degradation rate. Collagen, as a major constituent of the extracellu-

lar matrix, is widely used as a base material [13–17] and may be

ice-templated to create open porous structures [10, 18, 19]. By con-

trolling the ice nucleation and growth, one can achieve tuneable ar-

chitectural structures with defined pore sizes and transport

pathways [10, 20, 21]. Scaffold architecture can be affected by the

mould design, which can influence the nucleation and growth of ice

[22]. The mechanical properties and stability of the 3D ice-tem-

plated collagen scaffolds are important for cell-biomaterial interac-

tion and, while dependent on the scaffold composition, are routinely

controlled by applying crosslinking processes to the scaffold [18, 19,

23].

The most common methods used for crosslinking collagen-based

scaffolds are ultraviolet (UV) irradiation, dehydrothermal treatment

and N-(3-Dimethylaminopropyl)-N0-ethylcarbodiimide hydrochlo-

ride (EDC) treatment. UV and dehydrothermal treatment can de-

stroy the native structure of the protein inducing fragmentation of

the molecular structure, denaturation of the protein and increasing

degradation rate [24–26]. EDC is a ‘zero length’ crosslinking agent

and along with its by-product (urea) can be easily removed by wash-

ing [27–30]. The use of the EDC method involves a coupling reac-

tion of free amino groups and carboxylate anions.

Ice-templated collagen scaffolds have wide potential application in

the biomedical field including in the treatment of articular lesions [7,

16, 17, 31, 32], and it would be of further benefit if they were able to

deliver specific and targeted biomolecules, over a sustained period, to

optimize and refine the therapeutic response. Poly-(DL-lactide-co-gly-

colide) microparticles (PLGA) systems can offer a controllable release

of the therapeutic agents [33] with complete resorbability [34–37].

The incorporation of nanoparticles/microparticles/microspheres

into 3D ice-templated scaffolds and the consequent protein release be-

haviour has been previously reported [38–44]. However, the effects

of the microspheres on the final scaffold architecture and the effect of

the crosslinking agent on the bovine serum albumin-fluorescein iso-

thiocyanate conjugate (FITC-BSA) drug release was not evaluated,

3D pore size distribution and percolation diameter were not assessed

and the effect of EDC crosslinking on release kinetics of the incorpo-

rated drug model was not considered, although there is evidence that

EDC can affect release in other contexts[45–47].

It is clear that the effect of the addition microparticles on the

structure and accessibility of ice-templated scaffolds are little under-

stood. These effects are important because pore size and percolation

diameter are key factors affecting the cell invasion and nutrient sup-

ply [48]. Furthermore, many applications require the stiffness and

stability achieved via EDC crosslinking [11, 19, 23], without the dis-

advantages inherent in other crosslinking methods. However, the

effects of EDC crosslinking on protein release from microparticles

loaded in 3D ice-templated scaffolds have not been reported.

In this article, we explore the effects of FITC-BSA-loaded micro-

particles addition on the structure and transport pathways within a

3D ice-templated collagen scaffold using microCT and percolation

analysis. We further investigate scaffolds in which the added

microparticles are of similar size but have very different internal

drug distributions, to explore the effect of EDC crosslinking reac-

tions on protein release.

Materials and methods

Materials reagents and chemicals
Insoluble fibrillar Type I collagen from bovine Achilles tendon CAS

# C9879, phosphate buffered saline (PBS) tablets CAS # P4417, N-

(3-Dimethylaminopropyl)-N0-ethylcarbodiimide hydrochloride (EDC)

CAS # E1769, N-hydroxysuccinimide (NHS) CAS # 130672, etha-

nol (96% V/V) and FITC-BSA CAS # A9771, were purchased from

Sigma-Aldrich, UK. Poly-(lactic-co-glycolic acid) (PLGA 85:15 DLG

5A) with acid end group, item code PS5126a.5, was obtained from

Lakeshore Biomaterials (formerly Lakeshore Biomaterials),

Birmingham, AL, USA. Acetic acid was obtained from Alfa Aesar, UK.

Microparticles fabrication and characterization
Two batches of PLGA 85:15 microparticles were assessed in this study,

named MP-1 and MP-2. PLGA 85:15 microparticles were prepared as

previously described [36, 49]. Microparticles were fabricated from 20%

PLGA in dichloromethane (DCM, Fisher, UK) by the double emulsion

method. The polymer solution plus aqueous solution of deionized water

containing FITC-BSA (Sigma Aldrich, UK) were homogenized using a

high-speed Silverson L5M homogenizer (Silverson Machines, UK). For

MP-1, 1g of PLGA dissolved in 5ml DCM was homogenized with

10mg FTIC-Albumin dissolved in 100ml of deionized water. For MP-2,

2g of PLGA dissolved in 10ml DCM was homogenized with 20 mg

FTIC-Albumin dissolved in 200ml of deionized water. The resultant pri-

mary water in oil (w/o) emulsion was then homogenized again in 0.3%

polyvinyl alcohol (Sigma Aldrich, UK) and the resultant water in oil in

water (w/o/w) double emulsion was left stirring at 300 rpm until the

microparticles hardened and then harvested. To obtain release profiles

from the PLGA 85:15 microparticle batches, 25mg microparticles from

MP-1 and MP-2 were dispersed into 1.5 ml PBS in microtubes. The

microtubes were placed in an incubator at 37�C under shaking at

10 rpm for the entire duration of the experiment (e.g. 59days). About

100ll from the supernatant was collected at the prescribed time points

and analysed for FITC-BSA content. The same volume of fresh PBS was

replenished into the microtubes, simulating the constant dissipation of

the released drug inside the body.

Microparticles were characterized in terms of surface morphol-

ogy, mean microparticle diameter and microparticle size distribu-

tion. Characterization of surface morphology was undertaken using

scanning electron microscopy (SEM). The microparticles were

loaded onto carbon discs (Agar Scientific, UK) mounted on alumin-

ium stubs (Agar Scientific, UK). The microparticles were gold-

coated using Balzers SCD030 gold sputter coater (Balzers Union

Ltd., Liechtenstein). Imaging of the microparticles was done using

JEOL 6060L scanning electron microscope imaging system (JEOL

Ltd., Hertfordshire, UK). The mean diameter and microparticle size

distribution were also investigated using Coulter LS230 microparti-

cle size analyser (Beckman, UK). Microparticle size distribution was

then determined as a function of the microparticle diffraction and

analysed as a function of volume percentage.

Microparticles from each batch were analysed by confocal laser

scanning microscopy (CLSM) carried out on 270 an Olympus

FV1200 microscope (Olympus, JP) to study the distribution of the

FITC-BSA within them.
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Fabrication of 3D ice-templated collagen scaffolds

loaded with PLGA 85:15 microparticles
The 3D ice-templated collagen scaffolds were obtained as previously de-

scribed [19, 50]. Briefly, collagen suspension (1% w/v) was achieved by

hydrating insoluble fibrillar Type I collagen in 0.05M acetic acid for 72h.

After homogenization and removal of air bubbles, PLGA 85:15 micropar-

ticles were mixed with the collagen slurry at levels of 3, 5, 11, 22 and

44mg�ml�1. The resulting slurries were poured into six-well plates

(Thermo Scientific, UK). Freeze-drying was carried out with a VirTis

advantage benchtop freeze-drier (BioPharma Process Systems, UK),

using a constant cooling rate of 1�C�min�1 to a final freezing tem-

perature of �20�C. The temperature was held for 200 min to en-

sure freezing was complete, at which point the ice was sublimed

under a vacuum of 80 mTorr at a temperature of 0�C, maintained

for 20 h. Figure 1 summarizes the stages of the scaffold manufac-

ture process.

Scaffold stabilization
The 3D ice-templated collagen scaffolds were crosslinked using a molar

ratio of EDC to NHS to COOH of 0.5:0.2:1 using ethanol (95% v/v) as

solvent. This was defined as a 10% crosslinking condition [51]. After in-

cubation for 2h at room temperature, the scaffolds were washed exten-

sively with deionized water before freeze-drying once again using the

same freeze-drying protocol as described above. The microstructure of

the 3D ice-templated collagen scaffolds with and without the PLGA

85:15 microparticles was analysed by SEM (JEOL 5800, JEOL, Welwyn

Garden City, UK). Gold-coated samples were imaged at 10kV.

X-ray micro-computed tomography
Quantitative X-ray micro-computed tomography (lCT) analysis was

performed using a Skyscan 1172 (Bruker, Belgium) with a pixel size

of 2.44lm. The scans were taken at 25 Kv and 137 lA, using a 0.2�

step size and a frame average of 2 and 180� rotation. Skyscan’s

NRecon software was used to reconstruct the raw shadow projections

into 3D data sets (version 1.6.9.8 Bruker, Belgium). Three cubic

regions of interest (ROIs) were defined within each scaffold (1 mm3)

to allow investigation of structure. All the analysis was carried out us-

ing CTAn software (version 1.17.7.2 Bruker, Belgium). 3D pore

analysis was carried out in CTAn [52]. The CTAn software was also

used for calculation of percolation diameter as described previously

by Ashworth et al. [53] using CTAn’s shrink wrap feature by identify-

ing the accessible volume of a virtual object that infiltrates through en-

tire ROI. Briefly, by increasing the diameter ‘d’ the virtual object the

corresponding length of the accessible pore volume ‘l’ in z direction

can be measured using the relationship:

L ¼ L0ðd � dcÞ�&thetasym;

where # is a percolation constant equal to 0.88 for 3D systems [54].

The total number of PLGA 85:15 microparticles within a 3D ice-

templated collagen scaffold was calculated from a 2.44 lm pixel size

3D data set using CTAn software. Briefly, 1 mm3 ROI were used to

assess the number of microparticles per unit volume. The images

were threshold and binarized followed by an individual 3D object

analysis using CTAn software.

In vitro FITC-BSA release profiles from 3D ice-templated

collagen scaffolds
Release profiles were measured in similar condition as described

for microparticles batches (MP-1 and MP-2). Briefly, the 3D ice--

templated collagen scaffolds loaded with PLGA 85:15 micropar-

ticles (MP-1 and MP-2) were placed in PBS at 37�C under shaking

at 10 rpm. The 5 mm diameter samples from 3D ice-templated col-

lagen scaffolds for each condition MP-1 and MP-2 loaded at

22 mg�ml�1 were placed in microtubes. At each time point (1, 3, 4,

7, 10, 15, 21, 31, 43 and 59 days) 100 ll of the buffer was removed

and stored at �20� C until further analysis. A fresh 100 ll of the

buffer was added to the samples and they were re-incubated until

the following time point. The amount of the FITC-BSA released

Figure 1. Schematic stages of producing 3D ice-templated collagen scaffolds loaded with PLGA 85:15 microparticles. The SEM image uses false colour.
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was quantified measured by fluorescence read using a FLUOstar

Optima (BMG Labtech, Offenburg, Germany) plate reader at

485 nm excitation, 520 nm emission. The concentration of the

FITC-BSA was calculated by comparison to the standard curve of

FITC-BSA. Six replicates for each condition were used, and the

data points are shown as mean 6 standard deviation (SD).

Statistical analysis
Statistical significance was calculated using one-way analysis of vari-

ance. All statistical analysis was carried out using the standard sta-

tistics package in Origin Pro 2015 (Origin Lab, USA).

Results

Size, morphology and protein entrapment
The FITC-BSA loading percentage was 1% for both batches.

Figure 2A shows a representative image of the surface morphology

of the microparticles produces from water in oil in water (w/o/w)

emulsion method using PLGA 85:15. The microparticles have a

smooth, spherical and largely non-porous morphology. A typical

size distribution of the PLGA 85:15 microparticles is shown in

Fig. 2B. The mean microparticle size was 19 6 8.5 lm.

The fluorescence distribution within the microparticles from

each batch is displayed in Fig. 3. In the MP-1 batch, the FITC-BSA

is localized near the surface of the microparticles (Fig. 3A). In con-

trast, the FITC-BSA within the microparticles from the MP-2 batch

is distributed within the depth of the microparticles apparently par-

tially within protein-loaded cavities (Fig. 3B).

Incorporating of PLGA 85:15 microparticles into 3D ice-

templated scaffolds
To assess the effect of microparticles addition on scaffold architec-

ture, 3D ice-templated collagen scaffolds loaded with PLGA 85:15

microparticles loaded with FITC-BSA were studied. lCT and SEM,

were used to reveal the distribution of the PLGA 85:15 micropar-

ticles within the 3D ice-templated collagen scaffold (Fig. 4), and to

evaluate the internal structure of the 3D scaffolds.

Using the reconstructed 3D images from lCT, the total number

of microparticles per unit volume was acquired (Fig. 5A) and the

mean pore size and percolation diameter of the scaffolds evaluated

(Fig. 5B and C). The addition of PLGA 85:15 microparticles into the

3D ice-templated collagen scaffolds results in a drop in the percola-

tion diameter and pore size.

FITC-BSA release studies
Figure 6 shows the release profiles from the MP-1 and MP-2 micro-

particles alone (i.e. when not incorporated into the scaffold) (green

profile), and from the microparticles incorporated in the crosslinked
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Figure 2. Representative SEM micrograph (A) and microparticles size distribution (B) of PLGA 85:15 microparticles.

Figure 3. CLSM cross section of PLGA 85:15 microparticles showing the protein distribution inside the microparticles: (A) for the MP-1 batch and (B) for the MP-2

batch microparticles.
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Figure 4. Morphological architecture of 3D ice-templated collagen scaffolds loaded with PLGA 85:15 microparticles at various concentrations. Representative

SEM images and two-dimensional lCT data set showing the distribution of PLGA 85:15 microparticles within 3D ice-templated collagen scaffolds (SEM magnifi-

cation �250 and scale bar 200 lm).

Figure 5. Results of microCT analysis: (A) total number of PLGA 85:15 microparticles per unit volume (n¼ 3); (B) pore size analysis (n¼4); and (C) percolation di-

ameter (n¼ 4). Data are represented as mean 6 SD.
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scaffolds (red profile) over 60 days in vitro (Fig. 6). The MP-1

microparticles alone release more quickly than those from MP-2

alone, and have a lower overall loading.

Once loaded and crosslinked within the ice-templated collagen

scaffolds, the MP-1 microparticles (red profile) exhibit a 7-day delay

in release (Fig. 6A). In contrast, the MP-2 microparticles loaded in

the collagen scaffolds (red profile) begin release immediately with

no delay (Fig. 6B).

Discussion

The scaffolds displayed a homogeneous distribution of PLGA 85:15

microparticles at all loading levels studied. Increasing the micropar-

ticle concentration from 3 to 44 mg�ml�1 in the slurry resulted in a

decrease in both mean pore size and percolation diameter. The in-

creasing number of microparticles within the 3D ice-templated

collagen structure changes the architecture of the struts and by de-

fault the dimensions of the pores inside the scaffolds. This modifies

the pathway within the 3D ice-templated collagen scaffolds by re-

ducing the available volume of the pores. However, the minimum

percolation diameter observed in this study of 60 lm is larger than

the threshold value reported by Ashworth et al. [53] below which

cell invasion was significantly inhibited for periodontal ligament

fibroblasts. This suggests that cell invasion should not be unduly re-

stricted by the changes in pore morphology found with any of the

microparticle additions reported here. It is likely that the diffusion

of the FITC-BSA to the exterior solution will be slowed slightly by

the solid fraction of the scaffold, but again, any effects from the

small differences in scaffold structure resulting from microparticle

addition are likely to be minimal.

The release profile of FITC-BSA from the microparticles alone

was strongly correlated with the internal protein distribution. FITC-

BSA release from the MP-1 microparticles was rapid, reaching a

Figure 6. FITC-BSA release profile from MP-1 (A) and MP-2 (B) PLGA 85:15 microparticles before (green) and after (red) loading within the 3D ice-templated colla-

gen scaffolds (dashed lines represent the standard deviation of each experiment).

Figure 7. Schematic action mechanism of the EDC on the FITC-BSA within the PLGA 85:15 microparticles batches (MP-1 and MP-2).
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plateau after 4 days (Fig. 6A). This is consistent with the location of

the majority of the protein at the surface of the microparticles

(Fig. 3A). In contrast, the MP-2 microparticles gave a slow release

continuing over 60 days (Fig. 6A). In these microparticles, the pro-

tein is located within the internal bulk of the microparticles (Fig. 3B)

leading to the longer release time.

As seen in Fig. 6B, the release from the microparticles embedded

within the crosslinked scaffolds differed from that of the micropar-

ticles in isolation. When within the scaffold, MP-1 and MP-2 micro-

particles, release less FITC-BSA than the microparticles alone. The

release from the crosslinked scaffolds containing MP-1 was delayed

by 7 days, but no such delay in release was observed for the scaffolds

containing MP-2. Hence the protein distribution in the micropar-

ticles influences the effect of crosslinking on release.

EDC crosslinking involves the use of lysine (Lys, K) residues-free pri-

mary amino groups and carboxylate groups from glutamate (Glu, E)

and aspartate (Asp, D) residues. Glutamate can be found in the

GFOGER motif within triple-helical collagen structure, and aspartate in

the RGD sequence of gelatine, both identified as high-affinity integrin

binding sites [55–57]. The use of such amino acids during crosslinking

can affect the integrin binding sites and consequently in vitro cell behav-

iour on collagen-based materials [58, 59]. A series of studies confirmed

that the crosslinking of collagen-based materials is crucial in achieving

suitable mechanical properties but, at the same time alters the cell re-

sponse [11, 58]. The ice-templated collagen scaffolds loaded with PLGA

microparticles (MP-1 and MP-2) were crosslinked at a molar ratio of

0.5:0.2:1 of EDC:NHS relative to the collagen carboxylic acid groups,

defined as 10% crosslinking condition. The crosslinking percentage was

chosen based on previous work indicating that a lower crosslinking lev-

els will retain more native-like integrin engagement binding sites [58].

EDC/NHS crosslinking has been shown to improve resistance to

degradation of collagen more effectively than dehydrothermal treat-

ments. The use of EDC/NHS to crosslink collagen-based materials

prove an increase enzymatic resistance, upregulation of proinflam-

matory and angiogenic factors in vitro [60–62]. In vivo collagen-

based materials crosslinked by EDC/NHS reveal good cell infiltra-

tion, scaffold degradation and remodelling [63–65].

While crosslinking of the collagen scaffold is beneficial, the pro-

tein active agent within the microparticles may also take part in the

reaction. Like collagen, FITC-BSA contains Lys, Asp and Glu resi-

dues [55]. As a consequence, the FITC-BSA from the scaffold em-

bedded PLGA 85:15 microparticles is strongly affected by the

crosslinking process.

Figure 7 shows the proposed mechanism of action of EDC on the

MP-1 and MP-2 PLGA 85:15 microparticles. Under the conditions

studied, the 95% ethanol-based crosslinking solution containing

EDC and NHS acts only at the surface regions of the microparticles

and does not penetrate the full bulk. Only protein present at or near

the surface of the microparticles is affected by the reaction. Since the

MP-1 microparticles have more surface protein, more is crosslinked

and inactivated, delaying and reducing the overall release. In MP-2,

more of the protein is protected within the bulk of the microparticles

and no delay in release is seen.

Conclusions

We have shown that protein-loaded PLGA 85:15 microparticles may

be incorporated within ice-templated collagen scaffolds with homoge-

neous distribution. The process reduces the dimensions of both the

pores and the percolation diameter of the scaffolds, but these parame-

ters did not fall below those reported as necessary for cell invasion.

The application of EDC crosslinking, routinely used to stiffen

and stabilize collagen scaffolds influences the release from the

microparticles. Protein located within the bulk of the microparticles

is protected from the crosslinking reaction and demonstrated a re-

lease profile that was both immediate and sustained. The protein

distribution inside the microparticles therefore plays a crucial role in

determining the drug delivery profile and its response to the cross-

linking. These data may be of clinical utility in the design of scaf-

folds combining microparticles and bioactive molecules for

sustained molecular and regenerative therapies.

Supplementary data

Supplementary data are available at REGBIO online.
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