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Abstract 

Soft bending actuators, born with the considerable capacity of structural flexibility and 

environmental adaptability, have been widely favored for years. However, the highly 

nonlinear coupling between force and deformation in such robots are very complex, 

especially considering the external payloads. This paper puts forward a concept of 

eccentric soft bending actuators (ESBAs) that can exhibit different output 

characteristics by modifying the geometric parameters. A virtual trajectory based 

kinematic model is introduced to describe the deformation of ESBAs so that the screw 

theory based product of exponentials (POE) formula is applied to the analysis of such 

soft tentacle-like structures for the first time. Following this, the static model takes the 

input pressure, external payloads, and material parameters into account by utilizing the 

principle of minimum potential energy, making a generalized mathematical expression. 

The proposed model is then verified via finite element methods (FEM), and finally 

through experiments. An application example shows that the Particle Swarm 

Optimization (PSO) is introduced to find appropriate geometric parameters to make an 

ESBA have maximum stiffness.  
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1. Introduction 

Soft robots have demonstrated excellent advantages in terms of human-machine 

interaction, unstructured environment exploration, and bionic systems [1]. Composing 

of materials with Young’s modulus in the order of 104–109Pa, they possess softness, 

body compliance, shape sensing, and power storage features [2, 3]. There are basically 

two types of materials used for them: 1) Smart materials, including shape memory alloy 

(SMA), ionic polymer metal composite (IPMC), dielectric elastomers (DE) and 

responsive hydrogels, that can deform themselves under activation of physical fields or 

in specific chemical environments [4-8]; 2) Traditional elastic materials, such as 

rubbers, plastics, and Ni-Ti alloys, that require additional fluid or cable mechanisms to 

exert actuating forces on their structures [9-11].  

Powered by pneumatic pressure, soft bending actuators are always made of rubbers, 

which are able to bend their body with high power to weight ratio and makes it widely 

developed in previous works. Whitesides et al [12] used a series of pneumatic networks 

(PneuNet) of channels embedded in elastomers that inflate like balloons for actuation. 

In later work, Whitesides et al [13] proposed a new design for PneuNet reducing the 

amount of gas needed for inflation, and thus increased its speed of actuation. Elsayed 

et al [14] introduced a pneumatically actuated silicone module with three cylindrical 

chambers for robotic surgery application, which can almost bend in any direction. 
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Shepherd et al [15] proposed the foam based soft bending and extension actuators that 

have an interconnected open-pore network and require no additional molded air 

channels. Paik et al [16] introduced a vacuum-powered soft pneumatic actuator to 

achieve multimodal locomotion, object manipulation, and stiffness tuning by using just 

a single, shared vacuum power. Fiber-Reinforced actuators are another kind of soft 

pneumatic actuators. Wood et al [17] presented a semicircular elastomeric actuator with 

an air chamber, an inextensible layer at the base and fibers winding along the length of 

the actuator, which can change bending radius by varying the fibers angle. McKibben 

pneumatic muscles, primarily designed to contract and extend in the axial direction, can 

also achieve bending movement if multiple muscles are arranged in parallel [18, 19]. 

In summary, the actuation principle of the soft bending actuators is basically similar, 

and the fluid is used to expand the air chamber, causing the extension of the soft 

material around it. At the same time, the inextensible material is added on the other side 

or the stiffness of the part of the material is higher so that the elongation of the soft 

actuators in the axial direction is different, and the bending phenomenon occurs. 

In the field of robotics, it is essential to understand the mechanical characteristics of 

the actuators, including their displacement and output force [20]. For the soft bending 

actuators, their deformations and force conditions often affect and restrict each other. 

Building an experimental platform is perhaps the most accurate and objective method 

to observe the coupled behaviors of such actuators. Sun et al [21] used experiments to 

obtain the outputs of soft actuators by developing two measurement platforms and then 

gave a simple model to provide physical insight into the observed behaviors. Similarly, 

Wereley [22] et al presented a static model of McKibben artificial muscles by 

experimentally characterizing their behavior with basic geometric parameters. 

However, it can only be targeted at the soft actuators that have already been made, but 

difficult to predict new ones during a design process. Finite Element Method (FEM) is 

a feasible simulation and forecasting tool for soft actuators. Moseley et al developed a 

FEM based method to simulate the displacement and blocked-force performance for a 

soft pneumatic actuator. Such methods can be extended to a diverse range of soft 

materials and design parameters [23]. However, the FEM based approaches are difficult 

to reveal the intrinsic characteristics of soft actuators and hard to find inverse solutions.  

On the other hand, analytical models have been used as an effective way to estimate 

the deformation and output forces. The pseudo-rigid-body approach was first proposed 

by Howell [24]. The deformation of flexible structures can be discretized to many short-

length links hinged by torsion springs, so that classical methods for a rigid body can be 

used for analysis. Satheeshbabu and Krishnan [25] used a modified pseudo-rigid-body 

model to captures the axial and bending stiffnesses of contracting fiber reinforced 

elastomeric enclosures. Venkiteswaran and Su [26] presented a three-spring based 

pseudo-rigid-body model for short beams to calculate the deflection of a soft joint made 

of elastomer material. However, it may introduce deviation by using virtual links to fit 

a continuous curve, especially when analyzing large bending deformation of the slender 

structures. Then the constant curvature based approach was proposed to describe the 

deformation of continuum robots by establishing the mappings between the 

configuration space and task space [27]. Nevertheless, it is very complicated since a 

large number of coordinate frames need to be built on each segment of the robot to fit 

the deformation by using the homogeneous coordinates transformation [28, 29]. Screw 

theory is the algebra of vectors, such as forces and velocity, that arises in the kinematics 

and dynamics of rigid bodies [30]. It was extended for revisiting the classic theory of 

Timoshenko beams by Selig and Ding [31] in 2009. Then Ding and Dai [32] proposed 

a screw theory and Lie Groups based method to investigate the deflection problems in 



serial and parallel mechanisms with compliant links. Qi et al [33] used a framework of 

a screw theory including a twist deflection, a wrench, and the compliance matrix to 

establish the analytic model of a continuum robot. The same framework was also 

published in [34] combining the Euler-Bernoulli Beam theory to analyze a multi-

backbone continuum robot. However, all the above methods assumed that the 

deformation of the bending structures is small, and the statics is solved by introducing 

a compliance matrix that is difficult to express in the case of soft actuators. There were 

also many other models of the rod-driven continuum robots with backbones [35, 36]. 

In [37], the principle of the virtual power was utilized for dynamics of the multi-

backbone continuum. But it is not suitable for the fully soft actuators made of silicone 

rubber. Trivedi et al [38] presented a geometrically exact model for soft manipulator 

that incorporates the effects of material nonlinearities, distributed weight and payload. 

However, considering a soft bending actuator as a beam model is not efficient to 

characterize its internal geometric relationship if the structure of the actuator is not 

symmetric. Munro et al [10] presented a static model for pneumatic muscles that 

considered the mechanical and the geometric properties. Bishop-Moser et al [39] 

analyzed the statics of fiber-reinforced pneumatic actuators that consider the fiber 

angles to obtain the rotation deformation when pressurized. But both two models are 

one-dimensional which is not suitable for the bending actuators usually working in a 

two-dimensional sagittal plane. Polygerinos et al [40] proposed a quasi-static analytical 

model for soft fiber-reinforced bending actuators based on Newtonian mechanics and 

have been implemented in bending control. Trivedi et al  [41] developed optimal 

designs for soft robotic manipulators, OctArm, involving the Cosserat rod theory and 

the genetic algorithm-based optimizer to maximize the load capacity of the arm. Walsh 

et al [42] presented a nonlinear elasticity based analytical model of the fiber-reinforced 

soft actuators with an optimization to identify the design parameters for actuators that 

follow a certain trajectory upon pressurization. However, previous models assume 

actuators have constant curvature or consider the output displacement by ignoring 

external forces, which leads to an incomplete analysis of performance.  

In this paper, we put forward a concept of eccentric soft bending actuators (ESBAs). 

It can be seen as a generalized case of the conventional fiber-reinforced soft bending 

actuators so that a generalized model can be introduced. A concise but effective 

kinematic model is developed by involving the trajectory of a virtual rigid manipulator 

and the screw theory based POE formula is applied to the analysis of such soft actuators 

for the first time. Regarding the statics, the pressure input and external payloads are 

taken into account by utilizing the principle of minimum potential energy instead of 

previously reported Newtonian mechanics. Different from measuring the blocked-force 

on a fixed point, we focus on the stiffness index to describe the large and nonlinear 

displacement coupled with the payload in ESBAs.  

The arrangement of this paper is as follows: Section 2 introduces the concept of the 

ESBAs. Section 3 gives a detailed analysis for proposed ESBAs including the 

kinematics and statics. Section 4 describes how the FEM model and experimental 

platform are developed, and then the proposed analytical model is validated by sets of 

simulation and experimental results. Section 5 gives a further case study about how to 

design an ESBA with maximal stiffness to explain the effectiveness of the above model. 

In Section 6, the conclusions and outlooks are presented. 

 

2. Concept of ESBAs 

Like classical soft bending actuators, ESBAs also rely on the chamber and the 

inextensible layer to generate different expansion rates at different layers in the axial 



direction when producing a bending operation under pressure. It is a more generalized 

situation of conventional cylindrical fiber-reinforced soft actuators because the 

geometric parameters of the chamber can be modified, whose analytic model becomes 

a generalized approach for this type of actuators. The fabrication process of these 

actuators is shown in Figure 1. The ESBA used in this study is composed of silicone 

rubber curing in a 3D-printed mold whose length and external radius are marked as L 

and r1, respectively. The position and radius of the inserted Plexiglas bar determine the 

eccentric distance d and the radius r2 of the chamber, respectively. Then, a nylon fiber 

mesh is implanted close to the bottom as an inextensible layer. To avoid the rubber 

expanding in the radial direction, Kevlar fibers are double helix winded.  

3D printed mould

Plexiglas bar

Inextensible layer

Kevlar fibers

Air tube

Chamber

d

L

r1

r2

 

Figure 1. Fabrication and specification of the soft actuator 

 

By proposing the above concept of ESBAs, researchers have more freedom to design 

the resulting deformation and stiffness of actuators, through the implementation of 

different combinations of the eccentric distance d and the radius of the chamber r2. 

Therefore, the characters of ESBAs become more complicated and less intuitive. For 

instance, if we require maximum stiffness at a desired bending position of the ESBA, 

we must make the moment generated by air pressure as large as possible. Generally, 

with the greater air pressure input P, the farther eccentric distance d and the larger radius 

of chamber r2, the greater moment the actuator will generate on each cross section. 

However, all these variables will jointly affect the actual bending position of the ESBA 

leading the bending angle larger. Then the question becomes how to determine the 

values of these three variables to make a trade-off between stiffness and position. This 

curiosity drove us to carry out a generalized modeling analysis that can describe all of 

these factors. 

 

3. Modeling of the ESBA 

3.1 Kinematics 

In the previous works [27], it is necessary to establish a large number of local 

coordinate systems on the flexible body to solve the kinematics of such bending 

structures. On the other hand, the POE formula, which is based on the screw theory and 

essentially based on the characteristics of rigid body motion, can use only two 

coordinate frames, the base frame S and the tool frame T, to solve the kinematics using 

a more concise expression. These make POE formula a superior alternative to the 

Denavit-Hartenberg method in rigid-body robots [43-45].  

This section will introduce a method for representing the deformation curve of 

ESBAs by motion trajectory of a virtual rigid robot in the sagittal plane. The trajectory 

generated by the endpoint of the series rotating joint robot is a combination of multiple 

tangentially connected arcs in the sagittal plane perpendicular to the joint axis. This 



method has a concise form to build the kinematics of soft actuators according to the 

following steps: 
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Figure 2. A typical case of the ESBA under external force 

a) Assume a typical case of the ESBA when under the external payload applied at the 

endpoint, Q, in the horizontal direction, and divide the ESBA into n equal segments as 

shown in Figure 2. The inextensible layer of the ESBA within the sagittal plane, the 

brown line, is on the ventral side whose length is L.  

b) In the sagittal plane, set the base frame S at the starting point of the inextensible 

layer. The x-axis is parallel to the tangential direction of the inextensible layer, and the 

direction is vertically downward. The y-axis is perpendicular to the tangential direction 

of the inextensible layer, and the direction is horizontal to the right.  

c) Imagine there is a virtual rigid robot possessing n revolute joints whose rotation 

angles are θ=[θ1, θ2, …, θn] about the z-axis, as shown in Figure 2. Its initial 

configuration (θ=0) lies along the y-axis with the endpoint located at the origin of the 

base frame S, depicted by the green dashed line. The length of the ith link is unknown 

but the distance from the ith joint to the origin of the base frame S is represented by li. 

Note that, li and θi are also the bending radius and bending angle of each segment of 

the ESBA, respectively. Thus, the geometric relationship between the rotation angle θi, 

joint distance li and trajectory length of the virtual rigid robot (i.e. the length of the 

actuator L) can be derived as 

i i

L
l

n
 , ( 1,2,..., )i n                        (1) 

d) Set the tool frame T at the end of the virtual rigid robot. The transformation 

between tool and base frames at θ=0 is given by a unit matrix gst(0)=I. The screw 

motion of each joint is written according to the screw theory. Note that  
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are unit vectors in the direction of the twists. Then we choose any point qi∈3 on the 

joint axis (i=1,2,…,n)  
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The vector n  can be converted into homogeneous coordinate of a 4×4 matrix ˆ
n  by 

the hat operator [44], and the details are shown in Appendix (a). Combining the 

individual joint motions, the kinematics map gst :Q→SE(3), is given by the POE 

formula 

3 31 1 2 2
ˆ ˆˆ ˆ

( ) e e e e (0)
0 1

n n

st stg
        

   
 


R P

g                 (2) 

where R and P=[x;y;0] are the orientation and the end position of the ESBA. 

The number of n depending on the complexity of the deformation and required 

accuracy. Increasing the number of n results in a higher resolution of the analytical 

model owing to a higher number of segments to describe the deformation and vice versa. 

3.2 Statics  

The banding angle θ of the ESBA is coupled with the forces such as air pressure, 

restraining force of fiber and external payload. To establish the static model, in this 

section, the principle of minimum potential energy is used since there is no need for 

establishing Newtonian equilibrium equations in every segment [46]. Note that this part 

of analysis returns to ESBA itself, not the virtual rigid robot. The total potential energy 

is expressed as 

a r f+ +U P V U U U                             (3) 

where P is the air pressure, and ΔV is the volume change of the chamber. Ua, Ur, and  

Uf are the potential energy of the rubber in the axial, radial direction and the potential 

energy of external forces, respectively [47]. Then we obtain θ=[θ1;θ2; θ3;…, θn] by 

taking the derivative of the function U and setting it equal to zero, which means the 

total potential energy is minimum in this state:  
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The calculation of each term will be explained as follows. 

3.2.1 The potential energy of the compressed air 

Poisson’s ratio of silicone rubber is close to 0.5, so it is usually assumed to be 

incompressible [48]. Therefore, when the ESBA bends, each segment’s volume change 

is mainly due to the volume change of the air chamber under pressure. Thus, the 

potential energy of the compressed air in Equation (3) is expressed as  
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3.2.2 The potential energy of the rubber 

Silicone rubber is a hyperelastic and nonlinear material, previously described by 

Neo-Hookean, Yeoh, Mooney-Rivlin, and Ogden constitutive models [49]. However, 

when the strain is in the range of 0–1, the stress almost increases linearly so Young’s 

modulus E is still suitable for analyzing the soft actuators [13, 14, 50]. 

When the ESBA bends, the potential energy of the rubber in the axial direction Ua 

can be calculated by subtracting the potential energy of the part occupied by the air 

chamber from the potential energy of the solid cylinder. In Figure 3(a), the area of the 

shaded region is dSsld=2r
2 

1 sin2αdα and the detail is shown in Appendix (b). For the ith 

segment, the elongation in the axial direction of the shaded region on the solid cylinder 

is λsld=r1(1–cosα)θi. The potential energy of the shaded region on the solid cylinder in 

the axial direction is 
2
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Similar, the area of the shaded region on the air chamber is dScmb=2r
2 

2 sin2βdβ. For 

the ith segment, the elongation in the axial direction on the air chamber is λcmb= (r1+d–

r2cosβ)θi. The potential energy of the shaded region on the air chamber in the axial 

direction is  
2
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nE
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
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Thus, the potential energy of the rubber in the axial direction Ua can be expressed as:  
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Figure 3. The cross-section of inflating chamber 

 

For elastic potential in the radial direction, we assume that the cross sections of the 

chamber as shown in Figure 3(b) are always circles whose radii are r2+Δr2i after 

expanding and ignore the small impact of this assumption on the eccentric distance d. 

This is reasonable because the outer surface of the ESBA has fiber constraints that limit 

radial expansion. As the volume of the rubber is invariable, the volume of the rubber 

before and after deformation can be presented as  
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Then the radii change of the chamber can be derived as 
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This results in a discontinuous distribution of wall thickness, but since r2 is small, 

and as the number of segments increases, the steps of adjacent segments can be ignored. 

Along the radial direction of the chamber the rubber has the same stress P, so here we 

assume the strain in the radial direction is also the same because of the same Young's 

modulus. Therefore a special case in the sagittal plane can be presented as ε=Δr2i/(r1–

r2). In the red triangle in Figure 3(b), ω is an internal angle between edge d and edge 

r1d, and then r1d can be derived by using cosine law, where 
2 2 2

1d 1 sin cosr r d d                        (11) 

is the only positive solution as r1>d. In every sector of the ith segment, the approximate 

average area under pressurized air is  
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sctr 1d ( + )d
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                       (12) 

and the initial length in the radial direction is rintl= r1d–r2. The potential energy in the 

radial direction of the rubber is then calculated by integrating every sector’s potential 

energy in each segment and adding them all: 
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3.2.3 The potential energy of external forces 

The external forces also generate potential energy to the system including external 

payloads, gravity, and restraints in the radial direction initiated by the Kevlar fibers [47]. 

In this model, the payload is applied to the endpoint of the ESBA at an angle of Ω with 

respect to the vertical direction as shown in Figure 2, therefore this part of the potential 

energy is  

pyl sin ( ) cosyF l x F                        (14) 

We then consider that the center of gravity is located at the geometric center of every 

segment, and their coordinates (xi, yi) can be calculated by replacing θn in Equation (2) 

with θi/2. The potential energy caused by gravity is  

grvty
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MgL Mg
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n
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Reinforced fibers do negative work on the ESBA, but only in the axial direction. The 

tension η in the fibers follows their winding direction, which can be decomposed as 

shown in Figure 4.  

L

ρ
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Figure 4. The fiber of ESBA and its force condition 

 

Note that, we do not care about the potential energy in fibers which is very small, but 

we consider its restraining force as one of the external forces. In this way, the restraining 



force of fibers in the radial direction balance the radial expansion force from the 

chamber which is 

r 2 1 TOL2 2 ( + )N r L r P                        (16) 

where  
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=
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i

 
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presents the total bending angle. N=(L+r1θTOL)/(2πr1tanρ) indicates the number of turns 

per fiber. Through this, restraining force in the axial direction is derived as 

a r2 2 tan   , and the displacement in the axis direction is approximate to r1θTOL, 

whose product indicates the external potential energy generated by the fibers shown as: 
2 2 2

fbrs 1 2 TOL4 tanP r r                      (18) 

The potential energy of external forces is then shown as: 

f pyl grvty fbrsU                           (19) 

 

4. FEM and Experimental Validations  

4.1 The prototype 

We choose the Silicone rubber (Elastosil M4601, Wacker Chemie AG) to build the 

prototype according to the method mentioned in Section 2 and the parameters of the 

ESBA are summarized in Table 1. Note that the mass of the prototype is just 35g. 

Moreover, the total length of the ESBA is also relatively short, thus, the analysis in the 

following will ignore the influence of gravity. 

Table 1 Parameters for the proposed ESBA 

Description Symbol Value 

Initial length L 135mm 

External radius r1 8mm 

The radius of the chamber r2 3mm 

Eccentric distance d 4mm 

Angle of fibers ρ 10° 

Mass M 35g 

 

4.2 The FEM setup 

The commercial FEM software Abaqus/CAE (SIMULIA, Dassault Systèmes) is used 

to evaluate the proposed analytical model and prototype of ESBA under various 

pressures and external forces to validate them in the simulation.  

The elastomeric samples were tested by uniaxial tensile experiment, ignoring the 

nonlinearity of the material as mentioned in Section 3.2.2 [13], and Young’s modulus 

of E=0.54MPa was obtained by the linear fitting. In addition, Young’s modulus of the 

Kevlar fiber and inextensible layer was assigned to 31067MPa and 6500MPa with 

Poisson’s ratio of 0.36 and 0.2 based on material properties, respectively [40]. We 

imported a simplified 3-D model, built in SolidWorks (SolidWorks, Dassault Systèmes), 

to reduce the time of calculation by ignoring minor details such as the grooves at the 

outer face. The winding fibers were generated by an open source code [40]. The silicone 

rubber and fibers were modeled using solid tetrahedral quadratic hybrid elements 

(Abaqus element type C3D10H) and quadratic beam elements (Abaqus element type 

B32), respectively. After defining boundary conditions that we fixed the ESBA at one 

end, the pressure was applied to all the internal walls of the chamber and the payload 

was exerted at the other end in the horizontal direction. Here, we present one of the 



FEM results, whose corresponding design parameters and input pressure are also shown 

in Figure 5. The bending angle of the ESBA under these parameters is 259.5°with a 

constant radius of curvature as there is no payload added. However, if there are external 

payloads, it will clearly bend with a non-constant radius of curvature as can be seen in 

Section 4.4.2. Later, we will continue to carry on a detailed analysis of this 

characteristic. 

L=135mm
r2=3mm
d=4mm

ρ= 10°

P=0.25Mpa
F=0N

259.5°

Y

Z

X

 

Figure 5. A FEM result without payloads 

 

4.3 The experimental platform 

To validate the analytical and FEM models, an experimental platform was 

constructed as shown in Figure 6(a). The proximal end of the ESBA was clamped to an 

aluminum frame in the vertical direction to reduce the influence of gravity. A 3D 

Guidance trakSTAR (Ascension Corp., USA) was chosen to measure the position by 

attaching a probe on the end with accuracy up to 0.1mm. A high-definition camera (Eos 

6D, Canon Inc., Japan) was also used to capture the deformation of ESBAs from the 

side view, and then the bending angles of photos were measured on the computer by 

the commercial CAD software AutoCAD (Autodesk Inc.). We used to tension and 

compression tester (ZQ-21B, Zhiqu Corp., China) to provide an external payload in the 

horizontal direction. The air inlet was connected with a proportional valve (IVT2000, 

SMC Corp., Japan) to control the input air pressure by varying the analog voltage. Here, 

we also present one of the test results under the same conditions as given in Figure 5 

for the FEM simulation. The bending angle is 251.8° as is shown in Figure 6(b). 
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Probe
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Figure 6. The experimental platform and a test result 

 

 



4.4 Validation 

To validate the analytical model there is a question about how many segments are 

required to ensure a good approximation of the deformation without unnecessary 

computational cost. Additionally, under different loading conditions, the proper number 

of the segment will also change. In the unloaded case, the bending deformation of the 

ESBA is of constant radius of curvature, so only one segment is required. However, 

when external forces are applied the bending deformation of the ESBA will exhibit the 

non-constant radius of curvature, so it needs multiple segments. Generally, with the 

growth of the number of segments n, the resolution of the analytical model will increase 

at the expense of computational time. How to determine a proper number of segments 

in a specific condition will be analyzed in Section 4.4.2. 

 

4.4.1 Bending without payload 

Using the design parameters in Table 1, we use an input pressure of 0.2MPa without 

an external payload to obtain the bending angles by an analytical model, FEM model 

and experiments as presented in Figure 7(a). The results of these three methods are 

179.5°, 183.1°, and 176.8°, respectively, with resulting errors of the analytical model 

and FEM model, are 2.7° and 6.3° but both under 5% of the total experimental 

displacement. We then increased the pressure from 0-0.2MPa to get more 

comprehensive results presented in Figure 7(b) where we found that the bending angle 

increases faster as the pressure is greater. Other angles of winding fibers at 5°, 15°, and 

20° were also tested as shown in Figure 7b. It was found in these tests that the larger 

fiber angle results in a smaller bending output of the ESBA with the same air pressure 

due to greater component force in the axial direction of the ESBA.  

0 0.05 0.1 0.15 0.2
Pressure(Kpa)

0

50

100

150

200

A
n

g
le

(d
e

g
)

ρ=5°
ρ=10°
ρ=15°
ρ=20°

ANAEXP FEM

Analytical Result=179.5°
FEM Result=183.1°
Experimental Result=176.8°

L=135mm,r2=3mm,d=4mm,ρ= 10°
P=0.2Mpa,F=0N

(a) (b)
   EXP , FEM  and ANA  represent experimental , FEM and analytical results 

 

Figure 7. Input pressure against bending angle results※ 

 

4.4.2 Bending under the payload 

To achieve the desired bend angle of 90° using the parameters given in Table 1 the 

analytical and FEM models predict a required pressure of 0.123MPa and 0.121MPa 

respectively. Experimentally, it was found that a pressure of 0.124MPa was required. 

First, we applied a payload at the end in the horizontal direction from 0-2N gradually. 

In this condition, multiple segments are required to approximate the deformation of the 

ESBA prototype with a non-constant radius of curvature. Therefore, we continued to 

increase the number of segments in the analytical model until the gap is small enough 

to accept, which is obtained by comparing the results of the n segment and n+1 segment. 



By increasing the number of segments, the end position and the bending angle of the 

ESBA under a payload of 1N and 2N in the horizontal direction are calculated by the 

analytical model, and the results of FEM and experiment are shown in Figure 8. 
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Figure 8. The shape of ESBA under the horizontal external payload: (a) the FEM results,  

(b) the experimental results and (c) analytical results 

We found that the greater the number of segments used in the analytical model, the 

higher the resolution of the resulting deformation especially when the non-constant 

radius of curvature occurs. Additionally, the numerical results under 2N payload in the 

horizontal direction are shown in Table 2, where θEXP, θFEM present the bending angle 

obtained from the experiment and FEM simulation, respectively. For the analytical 

results, θ=[θ1;θ2; θ3;…, θn] shows the bending angle of each segment. eθ=θTOL–θEXP or 

eθ=θTOL–θFEM is the bending angle error of the whole EBSA for the analytical model or 

FEM simulation against the prototype. The coordinate (x, y) presents the position of 

ESBA in S frame at the endpoint Q and exy is the distance of the FEM or analytical 

results compared with the experimental data.  

Table 2 Results of ESBA under the 2N payload in the horizontal direction 

Results EXP FEM n=1 n=2 n=3 n=4 

EXP / FEM / (deg) 28.8 32.4 (22.1) (-1.4, 26.2) (-3.3, 7.1, 21.4) (-3.3, 2.1, 9.0, 17.6) 

TOL  28.8 32.4 22.1 24.8 25.2 25.4 

θe (deg) N/A 3.6 -6.7 -4.0 -3.6 -3.4 

x (mm) 133.5 125.6 131.6 133.0 133.2 133.3 

y (mm) 8.1 15.3 25.7 12.7 10.2 9.2 

xye (mm) N/A 10.7 17.7 4.6 2.1 1.1 

In Table 2, the error of the total bending angle eθ decreases from -6.7° to -3.4° and 

the error of the end position exy decreases from 17.6mm to 1.1mm with the number of 

segments increasing. As mentioned above, the criteria for deciding how many segments 

to participate in the calculation is whether the two results of n segments and n+1 

segments are close enough. Note the gaps between the three segments and four 



segments for the bending angle and end position are 0.2° and 1.0mm, respectively. 

Though the deformation described by four segments has a higher resolution, we think 

the three-segment analytical model is enough for analyzing the case that the ESBA 

bends with or without payload. 
We then applied a payload at the end in the vertical direction from 0-2N gradually. 

The end position and the bending angle of the ESBA under the payload of 1N and 2N 

in the vertical direction are shown in Figure 9. Similarly, we found that the bending 

angle of ESBA decreases when the external payload increases in the vertical direction. 

The numerical results under 2N payload in the vertical direction are shown in Table 3, 

where the bending angle errors for the analytic model and FEM model are -1.5°and -

3.0°, respectively. In addition, the position errors for the analytic model and FEM model 

are 2.4mm and 4.9mm, respectively. These results prove that the proposed model can 

describe the deformation caused by a payload in any direction in the sagittal plane. For 

example, if an external payload acts on a point between the base and endpoint of the 

actuator, it can be considered that the proximal part from the base to the acting point is 

affected by the payload while the rest part from the acting point to the endpoint will 

bend without payload. 

 

Figure 9. The shape of ESBA under the vertical external payload: (a) the FEM results,  

(b) the comparison with 1N and (c) the comparison with 2N 

 

Table 3 Results of ESBA under the 2N payload in the vertical direction 

Results EXP FEM ANA 

EXP / FEM / (deg) 28.8 32.4 (12.4, 15.7, 23.6) 

TOL  53.2 50.2 51.7 

θe (deg) N/A -3.0 -1.5 

x (mm) 119.2 122.6 120.9 

y (mm) 50.8 47.3 49.1 

xye (mm) N/A 4.9 2.4 

 

4.4.3 Stiffness  

In this section, we focus on the mechanical performances of the ESBA with regards 

to stiffness. Conventionally, the output force of the soft actuators is the only standard 

to evaluate their mechanical characteristics. To measure this, the endpoint of the soft 

actuator was kept still and the blocked-force measured by a force sensor while 

increasing the air pressure as reported in [23, 40]. However, this is not suitable, because 

soft actuators are usually accompanied by large nonlinear displacements when under 

external forces. 

Taking the stiffness in the horizontal direction as the example, we started at a bending 

angle of 90°, and then applied a payload tangentially to the tip of the actuator as shown 

in Figure 8(b). The relationship between the payload and the corresponding position of 



the endpoint Q is shown in Figure 10, where the line, stars, and cycles are the results of 

the analytical model, FEM model, and experiments, respectively. It was found that the 

slope of the curve in the graph is not constant. Therefore, stiffness is defined as the ratio 

of the change of force to the resulting displacement K=ΔF/Δy, where ΔF and Δy are the 

changes of force and displacement, respectively, with respect to the initial conditions 

(bending angle of 90°, zero payload).  

   EXP , FEM  and ANA  represent experimental , FEM and analytical results
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Figure 10. The relationship between the payload and the position of endpoint※ 

 

For example, starting from the initial conditions, when the payload increases from 

0N to 0.5N, the stiffness calculated by the analytical model, FEM model and 

experiment is 40.6N/m, 43.5N/m and 39.3 N/m, respectively. However, if the payload 

increases to 1N, the results become 31.2N/m, 33.7N/m and 29.1N/m, respectively. Then 

by applying a payload of 2N, the results are 26.4N/m, 28.3N/m, and 25.7N/m, 

respectively as shown in Figure 11. We found that even under the same initial condition, 

the increase of payload will result in reduction in stiffness.  
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   EXP , FEM  and ANA  represent experimental , FEM and analytical results

 

Figure 11. The stiffness change with respect to different payloads※ 
 

4.4.4 Parameter Sweeps  

In this section, we will reveal how geometric parameters affect the bending angle as 

well as the stiffness in the horizontal direction. For the bending angle without payload, 

we demonstrate the analytical results of the bending angle changing with two single 

variables, the radius of the chamber r2 and the eccentric distance d, respectively but 

with the same fiber winding angle  =10° and input air pressure P = 0.2Mpa, as shown 

in Figure 11. Different sets of orthogonal FEM simulation and experiment were also 

carried out using r2=2,4,6 and d =0,2,4,6 under the same conditions. In Figure 12(a), 

for the same eccentric distance, the bending angles tend to increase with the increase of 



r2, especially close to the outer radius of the ESBA (r1=8mm). This is because the radius 

of the chamber will have a squared effect on the cross-sectional moment generated by 

the pressure. Meanwhile, we also found that increasing r2, rather than d, has a more 

pronounced effect on the bending angle, as shown in Figure 12(b). 
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Figure 12. Geometric parameters of ESBA against bending angle results 

 

The analytical model was then utilized to carry out a full analysis of the impact of 

the design parameters on the bending angle. The possible geometric parameters, r2∈

(0,8), d∈(0,8), r2+d<8, are taken into account because of the geometric constraints. 

The bending angles are shown in Figure 13(a) under the same input air pressure 0.2Mpa. 

The conclusion can be drawn that the bending angle is significantly increased by 

upgrading the radius of chamber r2.  

For the analysis of the stiffness, in the following text, the stiffness is referring to the 

value calculated in the range of 0N to 2N similar to Section 4.4.3. The possible 

geometric parameters are the same as the above analysis. It is noted that, in order to 

ensure all the ESBAs’ initial angle is 90°, the input air pressure is changeable according 

to its design parameters. This means that before calculating the stiffness, we need to 

find the air pressure that makes each ESBA just bend to 90° and then apply the payload. 

The stiffness with the geometric parameters changed is shown in Figure 13(b) by the 

3D surface. 

(a) (b)

 
Figure 13. The performance of ESBA against geometric parameters 

 

However, regarding the stiffness, the surface in Figure 13(b) does not have 

monotonicity. Instead, the general trend is that the smaller eccentric distance, d, and 

radius of the chamber, r2, the greater stiffness the ESBAs have because they need more 



pressure to bend to 90°, which leads to a larger moment. Nevertheless, when the radius 

is small enough, the area of pressure will quickly decrease, leading to a small moment.  

 

5. Optimal design of ESBA 

Through the above analysis, the relationship obtained by enumeration is tedious. 

Moreover, we still do not know what the exact best values of the design parameters are. 

Therefore, in this paper, the Particle Swarm Optimization (PSO) is introduced to find 

the best solutions containing radius of the chamber r2 and the eccentric distance d to 

find the maximal stiffness with the same condition as mentioned in Section 4.4.3 [51, 

52]. Based on the experience of the literature and the complexity of the proposed model, 

we firstly initialize a population of particle PN=30 and give the random positions and 

velocities on two dimensions in problem space. As in our case, the outer radius of the 

ESBA r1 is limited to 8mm, the radius of chamber r2 and eccentric distance d are also 

limited to a range from 0 mm to 8mm and the sum of these two variables must be less 

than 8 mm. 

The fitness function was the formula for calculating the stiffness. The best position 

of particles was defined as the maximal stiffness and the optimization process are 

shown in Figure 14, where each circle represents a solution within the two-dimensional 

space and different colors indicate the different iterations. In the beginning, all of the 

particles are randomly scattered in the possible positions. After about 10 iterations, the 

solution with maximum stiffness has been found. After 50 iterations, all particles are 

concentrated near the optimal solution that is d=0, r2=1.5305, and the maximal stiffness 

is 45.2974 N/m, which is consistent with the trend of analysis in Section 4.4.4 by 

parameter sweeps. The maximum bending angle and the maximum stiffness appear in 

the place where the eccentric distance d is zero. This is because the initial condition to 

evaluate the stiffness is firstly set by regulating the input air pressure to make ESBA 

bend to an initial angle of 90°. Then, the external payload is applied to identify the 

stiffness. In this way, different input air pressure is required to keep the initial bending 

angle constant while d and r2 are changed. However, the different input air pressure 

itself also affects the stiffness of the actuator. Therefore, the optimization process 

eventually converges on to relatively small values of d and r2, but implicates a high 

value of the input air pressure, to achieve maximum stiffness.  

(a) (b)

 

Figure 14. The process of PSO to find maximal stiffness 
 

A new prototype is fabricated with the optimized parameters to validate if the 

proposed strategy is effective. In this case, the input air pressure of 0.2317Mpa is 

assigned so that the ESBA can bend to 90° without being subjected to external payloads 

in the initial state. The comparison results are shown in Figure 15, where the 

deformation obtained by the analytical model is basically consistent with the 

experimental results with the maximum error of bending angle and position are -3.0° 



and 4.9mm, respectively. The experimental stiffness with 2N payload in the horizontal 

direction is calculated as 46.6200 N/m, which is also close to the optimized results 

45.2974 N/m. In this way, we found the best design parameters and get rid of the ‘trial 

and error’ methods utilized in previous works.  
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Figure 15. The validation with the optimized parameters 
 

6. Conclusion 

Soft actuators have various output characteristics such as nonlinear deformation, 

passive flexibility, and coupling of force-displacement, which is hard to describe when 

interacting with environments. In this paper, we proposed a concept of ESBAs that is a 

common situation for fiber-reinforcement soft bending actuators but can provide more 

combinations of design parameters to adapt to different required performances. 

To obtain a kinematic-static coupling model, we solved the kinematics by 

introducing the screw theory based POE formula for its concise mathematical 

expression. The statics includes the effects of the input pressure, external payloads and 

design parameters on ESBAs. Through the presented model, FEM model and 

experiments, we found how the parameters affect the bending angle as well as the 

stiffness that is:  

a) If the maximum bending angle is the design target, the radius of the chamber, rather 

than the eccentric distance, should be preferentially increased under the same other 

conditions. 

b) If the maximum stiffness is the design target, there is no monotonous relationship 

between the design parameters and the outputs, and an optimization algorithm is 

required. 

Therefore, this paper provides a relatively comprehensive analytic model of ESBA, 

which can be used for the optimization based design. The generalized model also helps 

to better understand the characteristics of conventional cylindrical fiber-reinforced soft 

actuators. In addition, it paves a way for the future investigation on more complicated 

applications such as the 3-D deformation under payloads acting on any position along 

the actuator length. 

 

 

Appendix:  

a. In the framework of screw theory, the vector n called twist which has the form  

n

n n

n

q




  
  
 

, 



where 
3

n   is a unit vector in the direction of the twist axis and 
3

nq   is any 

point on the axis. The vector n  can be converted into homogeneous coordinate of 

4×4 matrix ˆ
n  by the hat operator.  

n
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0 0

n n nq 
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. 

b. In Figure 3, the height of the shaded rectangle is  1 1d cos sin dr r   and the 

width is 12 sin dr   . Therefore, the area of the shaded region is 
2 2

sld 1d 2 sin dS r   , 

which is also the small element of the circular area. 
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