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H I G H L I G H T S

� We modelled inter-cell and beat-to-beat repolarization variability in cardiomyocytes.
� We coupled the cells together into cardiac tissue.
� Reducing tissue coupling increased repolarization dispersion in tissue.
� Inter-cell variability had a greater effect on repolarization dispersion.
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a b s t r a c t

Variability in the action potential of isolated myocytes and tissue samples is observed in experimental
studies. Variability is manifested as both differences in the action potential (AP) morphology between
cells (extrinsic variability), and also ‘intrinsic’ or beat-to-beat variability of repolarization (BVR) in the AP
duration of each cell. We studied the relative contributions of experimentally recorded intrinsic and
extrinsic variability to dispersion of repolarization in tissue. We developed four cell-specific parameter-
izations of a phenomenological stochastic differential equation AP model exhibiting intrinsic variability
using APs recorded from isolated guinea pig ventricular myocytes exhibiting BVR. We performed
simulations in tissue using the four different model parameterizations in the presence and the absence
of both intrinsic and extrinsic variability. We altered the coupling of the tissue to determine how inter-
cellular coupling affected the dispersion of the AP duration in tissue. Both intrinsic and extrinsic
variability were gradually revealed by reduction of tissue coupling. However, the recorded extrinsic
variability between individual myocytes produced a greater degree of dispersion in repolarization in
tissue than the intrinsic variability of each myocyte.
& 2014 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/3.0/).

1. Introduction

Dispersion of repolarization is defined as a spatial heterogeneity
in the time of repolarization between different regions of cardiac
tissue. Dispersion of repolarization is associated with arrhythmic risk
(Chauhan et al., 2006). A potential source of dispersion of repolariza-
tion is variability in action potential (AP) morphology and duration in
the myocytes within cardiac tissue. Variability in the AP duration
(APD) of cardiac myocytes may arise from naturally occurring
differences in ion channel density between cells, the spatial location

of the cell within the heart, and circadian rhythms (Jeyaraj et al.,
2012). Cell isolation procedures may also affect the AP of cells that
have been isolated from the myocardium (Yue et al., 1996). We
describe these differences in AP morphology between different
myocytes as ‘extrinsic variability’.

An alternative source of variability in APD is ‘intrinsic’ beat-to-
beat variability of repolarization (BVR) in the same cell. Beat-to-
beat variability in the APD of isolated cells (Zaniboni et al., 2000),
beat-to-beat dispersion of repolarization in tissue (Hondeghem
et al., 2001), and variability in the QT-interval at the ECG level
(Thomsen et al., 2004) have all been reported. At a cellular level,
BVR is an apparently random variation in the APD (Johnson et al.,
2010). This is distinct from alternans, which is a regular short-long
oscillation in the APD between subsequent beats. BVR at both a
cellular and a whole-heart level has been shown to be a predictor
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of arrhythmogenic risk, although the mechanisms by which this
occurs are unknown (Kääb et al., 2003; Johnson et al., 2010).

Extrinsic variability between different cell and tissue samples is
difficult to reproduce experimentally, as it is specific to the sample
under investigation. Computational modelling studies may pro-
vide a method to understand how this extrinsic variability con-
tributes to dispersion of repolarization in the ventricles. Many
simulation studies have focussed on heterogeneities that exist
within the ventricle; for example transmurally, or in an apex-base
direction (Efimov et al., 1996; Viswanathan et al., 1999; Keller et
al., 2012). The first approaches to modelling consequences of
variability in ion channel expression in single cells are now
beginning to appear (Sarkar and Sobie, 2011; Walmsley et al.,
2013; Britton et al., 2013; Gemmell et al., 2014).

Intrinsic beat-to-beat variability at a cellular level has also been
suggested as contributing to dispersion of repolarization in tissue.
Simulation studies by Pueyo et al. (2011), Lemay et al. (2011), and
Heijman et al. (2013) demonstrated that the BVR in isolated cells
induced by stochasticity in ion channel gating is dramatically
reduced when cells are electrotonically coupled in tissue. These
studies all showed that BVR can re-appear as the conductivity of
the tissue decreases.

In this study, we investigate how dispersion of repolarization in
the ventricular myocardium is affected by the relative contribu-
tions of intrinsic beat-to-beat variability, and extrinsic variability

between different cells. We also investigate how these contribu-
tions are influenced by inter-cellular coupling, as motivated by the
findings of Lesh et al. (1989), Lemay et al. (2011) and Pueyo et al.
(2011), who observed that the degree of coupling between cells
affected dispersion of repolarization.

Our simulations of intrinsic and extrinsic variability are based
on experimental recordings from isolated guinea pig ventricular
myocytes that exhibit both intrinsic and extrinsic variability. We
use a phenomenological model that reproduces both cell-to-cell
(extrinsic) and beat-to-beat (intrinsic) variability (Bueno-Orovio
et al., 2008; Walmsley et al., 2010). We use four parameter sets
that reproduce four specific isolated cell samples so that our
simulations are based on physiological levels of single cell varia-
bility (Walmsley et al., 2010). We then couple these cells into a
simulated tissue using a monodomain approach.

2. Methods

2.1. Reproducing intrinsic beat-to-beat variability

2.1.1. Action potential model
Our phenomenological model of beat-to-beat intrinsic variability

is based on the Bueno-Orovio–Cherry–Fenton (BOCF) phenomen-
ological model, described in detail in Appendix A (Bueno-Orovio
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Fig. 1. Experimental and simulated temporal variability in repolarization. (A) Experimental data showing repeated 1 Hz stimulations of isolated guinea pig ventricular
myocytes from the apex and the base of the heart. Simulated reproductions of the data using four parameterizations of the SDE model are shown below each set of
experimental data. Modified from Walmsley et al. (2010). (B) Poincaré plots of the original experimental data (red) and those generated from the guinea pig apex cell
1 parameter set are shown at pacing cycle lengths of 1000 ms, 400 ms, 300 ms, 260 ms, and 220 ms for the stochastic (black) and deterministic (green dot) versions of the
model. (For interpretation of the references to colour in this figure caption, the reader is referred to the web version of this paper.)
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et al., 2008). We modified the BOCF AP model to incorporate
intrinsic beat-to-beat variability as described by Walmsley et al.
(2010). A Weiner process is a stochastic process whose increment
dWt on the interval ½t; tþΔt� has mean 0 and variance Δt. We
modified Eqs. (A.2)–(A.4) by including a Weiner increment in each,
forming a system of stochastic differential equations (SDEs):

dv¼ 1�H u�θv
� �� �

v1�vð Þ=τ�
v �H u�θv

� �
v=τþ

v

� �
dtþσv dW

v
t ;

ð1Þ

dw¼ 1�H u�θw
� �� �

w1�vð Þ=τ�
w �H u�θw

� �
w=τþ

w

� �
dtþσw dWw

t ;

ð2Þ

ds¼ 1þtanh ks u�usð Þð Þð Þ=2�s
� �

=τs
� �

dtþσs dW
s
t ; ð3Þ

where σv, σw, and σs are constants changing the magnitude of the
Weiner increment (see, for example, Kloeden and Platen, 2011). The
superscript denotes an independent Weiner process for each
variable.

2.1.2. Reproduction of experimentally observed variability
Examples of APs simulated using the parameter sets for the

SDE model derived by Walmsley et al. (2010) for each of the four
cells are shown in Fig. 1A (bottom row). These simulations show
good qualitative and quantitative agreement with both the experi-
mentally recorded action potential morphologies, and spread of
repolarization times shown in Fig. 1A (top row). There was no
variation in the resting potential in the simulations. Fitting of the
noise terms was successful in matching the mean and variance of
the experimental data (Table 1). APD in the simulations and
experiments was quantified by the time from upstroke to 90%
repolarization (APD90). Poincaré plots demonstrate the degree of
temporal variability by plotting the APD90 of each beat against the
APD90 of the preceding beat. Fig. 1B shows Poincaré plots of the
temporal variability in APD for apex cell 1 from the experimental
data and simulations. The fitted noise terms from Walmsley et al.
(2010) are shown in Table 1. For each parameter set we therefore
have the stochastic version as shown in Fig. 1, and also a
deterministic version where each noise term is set to zero.

2.2. Two-dimensional tissue simulations

2.2.1. Modelling conduction in tissue
All simulations were performed in a two-dimensional tissue

sheet of dimension 1 cm �1 cm. Inter-cellular coupling was
simulated using a monodomain approach, where Eq. (A.1) was
spatially extended to

∂u
∂t

¼∇ � D ∇uð Þ� Jfiþ Jsoþ Jsi� Jstim
� �

: ð4Þ

We applied zero-flux Neumann boundary conditions to the tissue.
In all simulations, the stimulus was applied at the left-hand edge
of the tissue (xo0:03 cm).

We used four different values of the diffusion coefficient D to
investigate the effects of reduced coupling upon temporal

variability of repolarization. In the original BOCF model
D¼1.171 cm2 s�1 was used for tissue simulations, based on experi-
mental measurements of human ventricular cell dimensions and
cytoplasmic resistivity (Bueno-Orovio et al., 2008), giving a con-
duction velocity of 72 cm s�1. Simulations were also performed at
50%, 10%, and 5% of this value (D¼0.586 cm2 s�1, 0.117 cm2 s�1,
and 0.059 cm2 s�1, respectively), giving conduction velocities of
51 cm s�1, 23 cm s�1 and 16 cm s�1, respectively.

2.2.2. Determining the effect of intrinsic variability alone
To investigate the effect of intrinsic BVR alone without extrinsic

variability between cells, we created a sheet of tissue with a
homogeneous AP model. We repeated this for each of the four
parameter sets in Section 2.1, giving four different sheets of tissue.
50 stimuli were applied at a pacing cycle length of 1000 ms. We
repeated the simulations for both the deterministic version and
the stochastic versions of the AP model to observe the effects of
intrinsic variability alone. In order to ensure that simulations using
the stochastic AP models were comparable, the same pseudo-
random number sequence was used for each stochastic simulation.
A different sequence was generated for each node in the
computational mesh.

2.2.3. Effect of fast pacing rates on dispersion of repolarization
We also investigated the consequences of the alternans-like

behaviour induced in the stochastic AP model at short cycle
lengths shown in Fig. 1B. In order to determine whether this
alternans affected the magnitude of dispersion of APD measured in
the intrinsic beat-to-beat variability case we used apex cell 1. The
simulations had an initial cycle length of 230 ms, where alternans-
like behaviour began to appear in the stochastic cell model using
the apex cell 1 parameter set (Fig. 1B). The cycle length was
reduced in 2 ms intervals after every 40 beats in the simulation
until conduction block occurred. Conduction block was defined as
a failure of the stimulus to lead to excitation of the entire tissue.
Simulations were performed for both the deterministic and the
stochastic models to determine the degree of BVR in tissue due to
intrinsic variability.

2.2.4. Comparing the relative effects of intrinsic and extrinsic
variability

In order to simulate the effect of extrinsic inter-cell variability,
one of the parameter sets corresponding to the four cells in
Section 2.1 was applied to the cell model at each node in the
computational mesh. The parameter sets were applied randomly
with equal probability. Simulations were performed for both the
deterministic (extrinsic variability only) and the stochastic version
(extrinsic and intrinsic variability) of the resulting tissue model. 50
stimuli were applied at a pacing cycle length of 1000 ms. The same
spatial distribution of cell parameter sets was used for both the
deterministic and the stochastic simulation to enable direct
comparison between results.

2.2.5. Data analysis
Simulation results were analysed by recording APD90 after each

simulation. We did not perform these analyses where xr0:25 cm
or xZ0:75 cm to prevent electrotonic effects arising from the
Neumann boundary conditions or the stimulus site influencing the
APD90 arising from the cell model (Cherry and Fenton, 2011). The
maximum dispersion of APD was measured as the maximum
difference in APD90 across the region 0.25 cm rxr0:75 cm at
each node in the mesh. The difference in APD90 between the
stochastic and the deterministic simulation was also computed
for every stimulus. Furthermore, when considering BVR across

Table 1
Experimental and simulated variability in APD90.

Parameter Apex 1 Apex 2 Base 1 Base 2

Mean (exp) (ms) 219.5 133.7 286.5 185.8
Variance (exp) 37.69 16.80 75.56 21.88
σv 0 0 0 0
σw 0.0012 0.0015 0.0011 0.0011
σs 0.0012 0.002 0.0013 0.0012
Mean (sim) (ms) 223.5 127.3 268.7 182.3
Variance (sim) 39.22 17.64 77.97 23.73
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multiple beats in the tissue, we calculated the mean APD90 in the
tissue during each activation.

2.2.6. Numerical implementation and simulation software
Simulations in tissue were performed using the finite element

method, as implemented in the open source cardiac simulation

package Chaste (Mirams et al., 2013). The deterministic or the
stochastic cell model was applied to each node of the tissue mesh
as appropriate. The solution of the deterministic ODE at each node
in the mesh was determined using a forward Euler scheme, and
the stochastic SDE models were solved using an Euler–Marayama
scheme (Kloeden and Platen, 2011). Independent Weiner pro-
cesses were generated for each node in the tissue and each
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stochastic variable at that node. Numerical convergence for both
the deterministic and stochastic schemes was established and a
spatial discretization of 0.01 cm, PDE time step of 0.01 ms, and an
ODE/SDE time step of 0.00125 ms were used in this study, as
described in Appendix B. A user project containing all of the code
used in this study is available to download from the Chaste
website (http://www.cs.ox.ac.uk/chaste).

3. Results

3.1. Intrinsic variability alone has a small effect on AP dispersion

Tissue simulations of intrinsic variability only showed temporal
variability in the mean repolarization time for each of the four
parameter sets, shown in Fig. 2. Variability in mean APD90

between beats increased slightly as the diffusion coefficient D
was decreased. This was quantified by calculating the variance in
mean APD90 across all 50 beats (see Table 2). The distribution of
mean APD90 for the stochastic simulations with intrinsic varia-
bility was centred on the mean APD90 of the deterministic
simulations (no intrinsic variability) in all cases. The beat-to-beat
variance in mean APD90 also increased with the variance in APD90

of the underlying cell (Table 2, see brackets after cell name for
isolated cell variance in APD90).

Spatial dispersion in the APD90 resulting from intrinsic varia-
bility, as measured by the variance in the difference between the
stochastic and the deterministic simulation for each beat is shown
in Fig. 2B. Fig. 2B shows that the variance increased as D decreased
for each parameter set, demonstrating an increase in dispersion of
APD90 resulting from intrinsic variability.

The difference between the deterministic and stochastic simu-
lations did not increase with the number of beats, as shown in
Fig. 2C, showing that intrinsic variability does not cause increased
tissue level BVR over time in tissue. The maximum difference
between the stochastic and deterministic simulations increased as
the diffusion coefficient decreased. The largest difference observed
was in base cell 1 with D¼ 0.059 cm2 s �1, with a difference of
2.20 ms from the deterministic simulation.

Heat maps of the APD in the stochastic case for base cell 1 are
shown in Fig. 3, demonstrating the increase in dispersion in APD
resulting from intrinsic temporal variability in the cell model at
low conductivities. A slight dispersion of APD arising from bound-
ary effects can also be seen at higher conductivities, explained by
the dependence of the size of the boundary effect with the

conductivity of the tissue (Cherry and Fenton, 2011). This was also
present in the deterministic simulations. The dispersion created a
variance in both the deterministic and stochastic models at D¼
1.171 cm2 s�1 of up to 0.18 ms2 in the deterministic case and
0.4 ms2 in the stochastic case (base cell 1).

3.2. Intrinsic variability can produce tissue level alternans at fast
pacing rates

We ran simulations starting at a cycle length of 230 ms, and
reduced the cycle length by 2 ms after every 40 beats until a
conduction block occurred at a pacing cycle length of 222 ms.
Fig. 4A shows a plot of mean APD90 recorded at all four values of D
over 160 beats. Mean APD90 can be seen to oscillate dramatically in
response to a change in cycle length, but oscillations are damped
over time in both the deterministic and the stochastic cases,
leaving a small beat-to-beat alternans in mean APD90.

We compute the variance within the APD90 map at each beat in
order to evaluate the degree of dispersion in the APD, as shown in
Fig. 4B. The dispersion is comparable between the stochastic and
deterministic simulations following a change in pacing cycle
length. In fact, the stochastic model displayed a reduced change
in the mean value in the beats immediately following the change
in cycle length as compared to the deterministic model, as is also
seen in the isolated cell simulation in Fig. 1B. The transient
increase in variance was due to the change in cycle length

Table 2
Summary of intrinsic variability only simulations μAPD: the mean APD90 in the simulated tissue over one beat. Mean(μAPD): average of μAPD over all beats in the simulation. Var
(μAPD): variance in μAPD over all beats in the simulation. Det.: deterministic simulations. Stoch.: stochastic simulations. Variance in brackets below each cell is from the
isolated cell simulations shown in Fig. 1, shown for comparison.

Cell D (cm2 s�1)

1.171 0.586 0.117 0.059

Apex cell 1 Det. Mean(μAPD) (ms) 219.8 219.8 219.7 219.7
(var. 39.22 ms2) Stoch. Mean(μAPD) (ms) 219.8 219.8 219.7 219.7

Stoch. Var(μAPD) (ms2) 0.020 0.023 0.033 0.037

Apex cell 2 Det. Mean(μAPD) (ms) 134.3 134.3 134.3 134.3
(var. 7.64 ms2) Stoch. Mean(μAPD) (ms) 134.3 134.3 134.3 134.3

Stoch. Var(μAPD) (ms2) 0.012 0.014 0.020 0.021

Base cell 1 Det. Mean(μAPD) (ms) 288.4 288.4 288.3 288.3
(var. 77.97 ms2) Stoch. Mean(μAPD) (ms) 288.4 288.4 288.4 288.3

Stoch. Var(μAPD) (ms2) 0.041 0.047 0.065 0.067

Base cell 2 Det. Mean(μAPD) (ms) 190.8 190.8 190.8 190.8
(var. 23.73 ms2) Stoch. Mean(μAPD) (ms) 190.8 190.8 190.8 190.8

Stoch. Var(μAPD) (ms2) 0.013 0.016 0.022 0.025
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inducing a global alternans in both models that was modulated by
boundary effects. To remove this effect, we also examined the
mean and variance of the APD once the oscillations have stabilized
in the final ten beats of the AP at each cycle length. For these beats,
the mean value of the APD shows a moderately increased
variability at low D as compared to the deterministic model.
However, there is an increase in variance in the stochastic model,
but not in the deterministic model, as the diffusion coefficient of
the tissue is reduced, showing that the dispersion of the APD90

increases when including intrinsic variability at low values of D.
The overall effect of intrinsic variability on the simulation can

be measured by calculating the maximum difference between the
stochastic and deterministic simulations, as shown in Fig. 4C, for
all values of D. The difference between the stochastic and deter-
ministic simulations increases as D is reduced. The maximum

difference for the lowest value of D (0.059 cm2 s�1) is bounded by
71.5 ms, again smaller than the APD range in the stochastic
version of apex cell 1 (31.4 ms).

In the simulations with intrinsic variability, we observed
phenomena that resembled a spatially discordant beat-to-beat
alternans. Fig. 5 shows a sequence of six APD maps in the
stochastic model from the end of the 228 ms pacing cycle length
section of the pacing protocol at the lowest value of D
(0.059 cm2 s�1). In the deterministic simulations, there is almost
no spatial heterogeneity in the APD90, and similarly with D¼
1.171 cm2 s�1 almost no dispersion is observed in the stochastic
model. At D¼ 0.059 cm2 s�1, the stochastic simulations show a
modest spatially heterogeneous alternation in the simulated
APD90 that is not present in either the equivalent deterministic
recording at the same value of D, or in either the stochastic or
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difference at each beat is shown. (For interpretation of the references to colour in this figure caption, the reader is referred to the web version of this paper.)
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deterministic recording for D¼1.171 cm2 s�1. The maximum
amplitude of the oscillations is approximately 2 ms.

3.3. Extrinsic variability between cells has a greater effect on
dispersion of repolarization than intrinsic variability in APD

As in the intrinsic beat-to-beat variability-only simulations, the
mean APD90 of the deterministic simulations was constant over all
beats when including extrinsic variability between cells. There was
a beat-to-beat variability in mean APD90 in the stochastic simula-
tions that also included beat-to-beat intrinsic variability in the
cells (Fig. 6A). Thus, given extrinsic variability in tissue generated
from our four cells using a uniform random variable at each node,
including intrinsic temporal variability, induces beat-to-beat varia-
bility in mean APD90 behaviour in tissue.

The variability in APD90 grows as D decreases due to the
unmasking of extrinsic variability in the AP between cells, as
shown by the increase in variance in the APD90 shown in Fig. 6B.
The variance in the APD90 for the simulations of extrinsic varia-
bility between cells-only (deterministic) was slightly lower than
when both extrinsic variability between cells and intrinsic varia-
bility from beat-to-beat in each cell were simulated (stochastic) as
shown in Fig. 6B. However, there is still a much larger increase in
the variance in the extrinsic variability-only case than is observed
for any of the intrinsic variability only cases from Section 3.1. At
the lowest value of D, the variance reaches a maximum of 6.1 ms2,
which remains smaller than each simulated cell's variance in APD,
which ranges between 17.64 ms2 for apex cell 2 and 77.97 ms2 for
base cell 1 (Table 2). The difference between the deterministic and
stochastic simulations remained at similar values to those seen for
the intrinsic variability only simulations, being bounded between
�1 ms and þ2 ms at the lowest value of D (0.059 cm2 s�1). This is
again dramatically smaller than the dispersion in the isolated cell
simulations, which ranged between 22.3 ms for apex cell 2 and
47.1 ms for base cell 1.

Heat maps of both deterministic and stochastic simulations
from the final beat are shown in Fig. 7B, together with the
underlying cell distribution in Fig. 7A. This figure demonstrates
the increase in dispersion of repolarization as D is reduced. The
maximum dispersion observed is 11 ms with D¼ 0.059 cm2 s�1.
As the differences arising from the extrinsic variability between
the simulated cells are much larger than those resulting from
intrinsic temporal variability in the simulated cells, the heat maps
in Fig. 7 are almost identical.

4. Discussion

In this study we have applied cell-specific parameterizations of
a phenomenological AP model representing intrinsic temporal
variability and extrinsic inter-cell variability to investigate con-
sequences of variability in tissue. We have previously shown that a
simple phenomenological model can reproduce cellular recordings
of BVR (Walmsley et al., 2010). Using this model, we have now
investigated the extent to which the intrinsic cellular APD impacts
tissue level dispersion of APD, as well as the role of extrinsic cell–
cell variability in APD. We have further investigated how this
spatial dispersion in APD is affected by the coupling of the tissue.

In tissue simulations with intrinsic temporal variability only,
we observe spatial dispersion of APD resulting from temporal
variability in the APD of each of the four cells investigated. The
dispersion of APD increases as the diffusion coefficient D is
decreased, in accordance with previous studies. The dispersion
resulting from temporal variability in the APD alone is relatively
low. In absolute values, the maximum difference between simula-
tions with and without intrinsic variability observed was around
2 ms in the case of base cell 1. We observed similar results at fast
pacing rates, with the alternans observed both with and without
intrinsic variability being damped in tissue. Intrinsic temporal
variability in the APD produced a similarly low contribution to
dispersion in the APD at fast pacing rates. BVR as observed in
tissue is therefore unlikely to arise from cellular BVR alone. This
does not exclude a role for ectopic activity such as early after
depolarizations (Sato et al., 2009), or delayed after depolariz-
ations (Johnson et al., 2013). We did not observe either of these
phenomena in the four cells we investigated.

We additionally investigated whether the alternans-like beha-
viour observed in an intrinsic variability-only cell model at short
pacing rates could cause increased dispersion of repolarization.
Some simulations resemble a spatially discordant alternans in the
simulations, which has been shown in animal models to be
arrhythmogenic (Myles et al., 2008). The amplitude of this oscilla-
tion is small (2 ms) The amplitude of both the beat-to-beat and the
spatially discordant alternans was dramatically lower than those
in the single cell simulations (see Fig. 1B). One explanation for this
phenomenon is that the stochastic nature of beat-to-beat varia-
bility in the model has resulted in some cells entering alternans
with a long APD, and others entering alternans with a short APD,
so that the overall behaviour in different regions is out of phase,
but the difference is heavily damped by diffusion.

When including extrinsic variability between cells, we observed
a spatial dispersion in APD that was visible even at the highest value
of D (1.171 cm2 s�1). At the lowest value of D (0.059 cm2 s�1) this
dispersion reached a value of 11 ms (Fig. 7), an order of magnitude
larger than that observed in the temporal variability simulations in
the intrinsic variability only cases (Fig. 3). This increase in dispersion
resulting from inter-cell extrinsic variability alone can also be
measured quantitatively by observing the large increase in variance
in the extrinsic variability-only simulations as compared to the
change in variance observed in the intrinsic variability-only simula-
tions. Including intrinsic temporal variability in the extrinsic varia-
bility simulations resulted in a relatively small further increase in
the dispersion as measured using variance. We conclude that the
extrinsic cell-to-cell variability between the four cells we investi-
gated provided a greater contribution to dispersion of repolarization
in tissue than their intrinsic beat-to-beat variability.

Note that the degree of dispersion resulting from intrinsic beat-
to-beat variability alone is too small to be detected even by micro-
electrode recordings. The dispersion observed in the signal when
extrinsic variability is included is large enough that it could be
detectable using microelectrode arrays. With a more spatially orga-
nized cell distribution, the dispersion, and hence its detectability,
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would increase; as seen in previous studies (Viswanathan et al.,
1999).

When attempting to parameterize a model based on the AP
morphology recorded from an individual cell, information on the
conductances of all currents making up the observed AP are not
available. Even if such information were available, ionic currents
are modified by many factors, rendering them a ‘moving target’
(Roden, 2008; Carusi et al., 2012). Zaniboni et al. (2010) have
shown that, due to poor parameter identifiability from the AP
morphology alone, multiple behaviours in tissue are possible from
apparently identical biophysically detailed models. Simplified
phenomenological models such as the BOCF model therefore offer
an alternative method for reproducing inter-cell variability based
upon reproducing the APs recorded from individual cells (Fenton
and Karma, 1998; Mitchell and Schaeffer, 2003; Bueno-Orovio
et al., 2008, 2012). This method may avoid some of the risks
associated with over-fitting biophysically detailed models to an
individual AP, whilst still allowing investigation of the conse-
quences of the observed behaviour. An alternative approach would

be to use a calibrated population of biophysically detailed models
based upon AP recordings from a large number of cells, as
proposed by Britton et al. (2013), and then using the resulting
parameter distributions to parameterize a tissue model containing
extrinsic variability between cells.

Variability in resting potential was observed in the experiments
(Fig. 1). As our work was focussed on intrinsic beat-to-beat
variability, and the variability in the resting potential of these four
cells was not correlated with their action potential durations, we
did not include this effect. Future work using a modified phenom-
enological model, or a biophysically detailed model could consider
the impact of this effect on dispersion of repolarization in tissue.

4.1. Limitations

The consequences of some cellular-level phenomena such as
raised resting potential and accommodation of the AP in response
to a change in pacing frequency cannot be investigated using the
BOCF model. However, the more recent Bueno-Orovio et al. (2012)
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model does allow the inclusion of APD accommodation. In this
study, our primary objective was to investigate the consequences
of BVR in tissue. Therefore, we did not take into account mechan-
isms such as stochastic ion channel gating that may explain the
source of fluctuations in membrane potential that lead to BVR.
Exploring how stochastic gating phenomena contribute to BVR
requires a biophysically detailed model for which a Markov
formulation could be used within the framework of the Langevin
equations (Dangerfield et al., 2012). We instead used a constant
additive noise term within a phenomenological model as this
approach was capable of reproducing the observed behaviour in a
simple manner.

The nodes of a finite element mesh do not represent cells as
such, but represent the homogenized behaviour of a small volume
of cells. Thus, the level of extrinsic variability at each node will not
correspond exactly to that in the isolated cells used for parame-
terization. Our intrinsic variability data arise from the number of
ion channels (or, assuming uniform ion channel density, the
membrane surface area) of a single cell. This may differ from the
number of ion channels/surface area of membrane in the tissue
volume represented by the AP model at a single mesh node, and so
a future refinement of the variability to match mesh element size
may be in order. At very low levels of cellular coupling, it may be

necessary to use a discrete modelling approach as assumptions
used in the monodomain model may break down. The approach
presented here also inherits a limitation from the data set used for
its parameterization. We only use four cells, and they come from
different areas of two different hearts. Without further experi-
ments we cannot say whether this variability arises as a result of
abnormal cells, or in some way embodies the variability across one
heart. Our conclusions are relevant to the coupling together of
these four cells in tissue, rather than directly to the hearts in
question.

In the real heart, the diffusion coefficient D is an anisotropic
tensor whose principal direction follows the fibrous arrangement
of myocytes within the myocardium (Hooks et al., 2007). In our
simulations we have considered only isotropic diffusion coeffi-
cients. The interaction between fibre orientation and dispersion of
repolarization arising from extrinsic and intrinsic variability may
merit future study.

4.2. Conclusions

We have developed a phenomenological model capable of
reproducing both intrinsic beat-to-beat variability in APD from an
isolated guinea pig ventricular myocyte, and extrinsic variability in
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Fig. 8. Variables and currents in the BOCF phenomenological model. The model is simulated using the human endocardial cell parameter set from Bueno-Orovio et al.
(2008). (A) shows the behaviour of the four model variables u (black), v (red), w (blue), and s (green), when paced at a cycle length of 1000 ms. (B) and (C) show the
behaviour of the total current (black), and the individual currents Jfi (red), Jsi (blue), and Jso (green), when the cell is paced at 1000 ms. The time axes in (B) and (C) have been
shortened to show structure of the currents, with (B) showing the whole AP and (C) showing the upstroke only. (For interpretation of the references to colour in this figure
caption, the reader is referred to the web version of this paper.)
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the AP between different cells. In this study, extrinsic and intrinsic
variability were incorporated into tissue simulations. We conclude
that, for the guinea pig APs used in this study, the degree of inter-cell
variability makes a larger contribution to spatial dispersion in APD90

than beat-to-beat variability. The degree of dispersion in APD90

increases as tissue coupling is decreased. Furthermore, if BVR
manifests in tissue, then it is likely to be as a result of ectopic
activity, instead of the naturally occurring APD90 variability observed
in isolated cardiac myocytes.

Acknowledgements

The authors would like to thank Dr. Alfonso Bueno-Orovio and
Dr. Gil Bub for helpful discussions, and Dr. Christian Bollensdorff
and Maya Bahoshy for the provision of the guinea pig AP data. J.W.
was supported by the Engineering and Physical Sciences Research
Council through the Systems Biology Doctoral Training Centre, and
through a Medical Research Council Centenary Award (to B.R.). G.
R.M. gratefully acknowledges support from an NC3Rs/EPSRC Stra-
tegic Award in Mathematics and Toxicology (NC/K001337/1), and a
Sir Henry Dale Fellowship jointly funded by the Wellcome Trust
and the Royal Society (Grant number 101222/Z/13/Z). B.R. has been
supported by Medical Research Council Career Development,
Centenary, and Industrial Partnership Awards, and receives a
Wellcome Trust Senior Research Fellowship in Basic Biomedical
Sciences. K.B. is supported by ARC Discovery Grant DP120103770:
From genes to organ function: Understanding how heterogeneity
in tissue modulates cellular behaviour in the heart.

Appendix A. The BOCF action potential model

The BOCF AP model has four variables, u, v, w, and s. u is the
dimensionless membrane potential, rescaled to a biophysically
relevant membrane potential using the formula Vm ¼ VuþVR,
where V and VR have dimensions of mV. v, w, and s are
dimensionless variables whose decay controls the magnitude of
the current. The model equations used in this study are as follows:

du
dt

¼ � Jfiþ Jsoþ Jsi� Jstim
� �

; ðA:1Þ

dv
dt

¼ 1�H u�θv
� �� �

v1�vð Þ=τ�
v �H u�θv

� �
v=τþ

v ; ðA:2Þ

dw
dt

¼ 1�H u�θw
� �� �

w1�wð Þ=τ�
w �H u�θw

� �
w=τþ

w ; ðA:3Þ

ds
dt

¼ 1þtanh ks u�usð Þð Þð Þ=2�s
� �

=τs; ðA:4Þ

where H is the Heaviside function. The ‘currents’ Jfi; Jso, and Jsi are
given as follows:

Jfi ¼ �vHðu�θvÞðu�θvÞðuu�uÞ=τfi; ðA:5Þ

Jso ¼ ðu�uoÞð1�Hðu�θwÞÞ=τoþHðu�θwÞ=τso; ðA:6Þ

Jsi ¼ �Hðu�θwÞws=τsi; ðA:7Þ
and Jstim is the applied stimulus current. Furthermore, time
constants depend on u:

τ�
v ¼ ð1�Hðu�θ�

v ÞÞτ�
v1þHðu�θ�

v Þτ�
v2; ðA:8Þ

τ�
w ¼ τ�

w1þðτ�
w2�τ�

w1Þð1þtanhðk�
w ðw�w�

w ÞÞÞ=2; ðA:9Þ

τso ¼ τso1þðτso2�τso1Þð1þtanhðksoðu�usoÞÞÞ=2; ðA:10Þ

τs ¼ ð1�Hðu�θwÞÞτs1þHðu�θwÞτs2; ðA:11Þ

τo ¼ ð1�Hðu�θoÞÞτo1þHðu�θoÞτo2: ðA:12Þ
The steady state values are given as

v1 ¼
0; uoθ�

v ;

1; uZθ�
v ;

(
ðA:13Þ

w1 ¼ ð1�Hðu�θoÞÞð1�u=τw1ÞþHðu�θoÞwn

1: ðA:14Þ
The currents in the BOCF model represent an approximation to

groups of currents observed in cardiac mycocytes. The fast inward
current Jfi represents the sodium current INa that generates the
upstroke of the AP. The plateau phase of the AP in the BOCF model
is generated by a balance between two opposing currents. The
slow inward current Jsi represents inward currents such as the L-
type calcium current ICaL, and the slow outward current Jso
represents outward currents active in the plateau phase, such as
the slow-rectifier and rapid-rectifier potassium currents IKs and IKr.
The variables v, w, and s represent the availability of channels
generating these groups of currents to be activated. These vari-
ables recover following the end of the AP, as determined by the
Heaviside functions in Eqs. (A.2)–(A.4). The Heaviside functions
within the currents in Eqs. (A.5)–(A.7) approximate generic
voltage-gated channel opening and closure. The values of the
currents and variables making up the BOCF model during one AP
are shown in Fig. 8. The parameter sets used in this study can be
found in Table A1.

Appendix B. Convergence analysis for the stochastic tissue
model

We examined convergence in the conduction velocity and in
the maximum difference in the non-dimensional membrane
potential u to determine the numerical parameters used in the

Table A1
Guinea pig cell-specific parameter sets for the BOCF model.

Parameter Apex 1 Apex 2 Base 1 Base 2

θv 0.2985 0.3209 0.2749 0.3005
θw 0.1299 0.1302 0.1254 0.1202
θ�
v 0.2016 0.1943 0.1908 0.1714
θo 0.006 0.0056 0.0058 0.0062
us 0.9502 0.9802 0.9212 0.9391
w�

w 0.77 0.77 0.77 0.77
uso 0.6456 0.6475 0.6645 0.7072
uu 1.546 1.617 1.592 1.575
uo 0.0001 �0.0008 0.0004 0.0003
τw1 0.0273 0.041 0.036 0.029
τo1 462.4 416.8 476.7 456.3
τo2 5.951 6.1 5.579 6.042
τs1 2.689 3.057 2.482 2.813
τs2 1.977 2.192 1.764 1.949
τso1 39.32 30.91 39.13 28.81
τso2 1.193 0.2569 1.107 1.287
τ�
w1 80 80 80 80
τ�
w2 100 100 100 100
τ�
v1 75.39 76.26 72.99 66.59
τ�
v2 10.03 10.2 9.637 10.03
τsi 2.934 2.727 2.902 2.784
τþ
v 1.462 1.353 1.525 1.333
τþ
w 275.9 276.3 352.8 273.8
τfi 0.0957 0.1094 0.095 0.0944
wn

1 0.95 1 0.95 0.95
kso 1.946 2.006 2.023 1.942
k�
w 198.2 204 188 207

ks 2.203 2.293 2.653 2.812
θwo 1.1 1.1 1.1 1.1
V (mV) 94.1 103.8 94.6 90.5
vR (mV) �73.9 �77.8 �78.1 �76.1
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tissue simulations using Eqs. (1)–(4), as described in ‘Numerical
implementation and simulation software’ in the Methods section.

Simulations are performed for each of the values of D in the
main text. The spatial discretizations used are 0.1 cm, 0.05 cm,
0.01 cm, 0.005 cm, and 0.0025 cm. The PDE time steps used are
0.1 ms, 0.05 ms, 0.025 ms, 0.01 ms, 0.005, and 0.0025 ms. Deter-
ministic convergence results are shown in Fig. 9. A spatial
discretization of 0.01 cm and a PDE time step of 0.01 ms are
sufficient for this simulation study.

We use a conserved Brownian path to investigate convergence
properties of stochastic models (Gaines and Lyons, 1997). A
conserved Brownian path is a path sampled such that at multiple
temporal resolutions it remains a Brownian path. To construct
such a path, we sample a Brownian path at our lowest temporal
resolution of interest (0.01 ms). This Brownian path b(t) is sampled
using a Weiner process whose Gaussian increment Wh has mean
0 and variance h on the increment ½t tþh�. Hence Wt �Nð0;

ffiffiffi
h

p
Þ.

We now construct a new Brownian path from the original
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Brownian path, which preserves the increments of the old path,
but has a temporal resolution of h=2. Consider each time incre-
ment ½t tþh� in the original path in turn. We bisect this interval to
get two subintervals ½t tþh=2� and ½tþh=2 tþh�. We now wish to
construct a random variable for each sub-increment, such that
both new variables are Weiner increments on the subintervals
½t tþh=2� and ½tþh=2 tþh�. Their sum must be equal to dWt, to
conserve the original Brownian path.

Let Z �Nð0;
ffiffiffi
h

p
=2Þ be independent of Wh. Then consider the

increments 1
2Wh�Z and 1

2WhþZ. These are then Weiner incre-
ments on the intervals ½t tþΔt=2� and ½tþΔt=2 tþΔt�, respec-
tively. Using this method, we can iteratively construct a new
Brownian path that preserves the previous Brownian path. This
results in a nested series of Brownian paths, all with the same
characteristics, at different temporal resolutions, as shown in
Fig. 10A.

In order to test convergence we pre-generate a conserved
Brownian path for the stochastic variables w and s for each node
in a 0.5 cm � 0.5 cm tissue with a spatial discretization of
0.01 cm. Simulations are performed for a duration of 250 ms with
the stochastic version of the apex cell 1 model. Simulations are
analysed by calculating the difference in APD90 at each node
between the current simulation and the reference solution
obtained at a time step of 0.000625 ms (Fig. 10B). An absolute
difference in APD90 of r0:1 ms between the reference solution
and the 0.00125 ms solution is observed in the D¼ 0.059 cm2 s�1

case. Simulations are run using a spatial discretization of 0.01 cm,
a PDE time step of 0.01 ms and an ODE/SDE time step of
0.00125 ms.
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