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Stochastic strong zero modes and their dynamical manifestations
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Strong zero modes (SZMs) are conserved operators localized at the edges of certain quantum spin chains,
which give rise to long coherence times of edge spins. Here we define and analyze analogous operators in
one-dimensional classical stochastic systems. For concreteness, we focus on chains with single occupancy and
nearest-neighbor transitions, in particular particle hopping and pair creation and annihilation. For integrable
choices of parameters we find the exact form of the SZM operators. Being in general nondiagonal in the
classical basis, the dynamical consequences of stochastic SZMs are very different from those of their quantum
counterparts. We show that the presence of a stochastic SZM is manifested through a class of exact relations
between time-correlation functions, absent in the same system with periodic boundaries.
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Recent successes have transformed our understanding of
how long relaxation times—and potential nonergodicity—
emerge in quantum many-body systems (for reviews see,
e.g., [1–6]). One simple mechanism in some systems with
open boundaries is that of a strong zero mode (SZM) [7–18].
An SZM is an operator localized at the boundary that
commutes with the Hamiltonian, up to exponentially small
corrections. Its presence affects the structure of the whole
spectrum of the Hamiltonian, resulting for example in
boundary degrees of freedom having very long coherence
times [11–15]. For certain integrable spin chains, SZMs can
be constructed exactly and explicitly [9].

In a classical stochastic system, continuous-time Markov
dynamics are defined by a stochastic generator, just like a
Hamiltonian generates unitary dynamics in a quantum system.
While being in general non-Hermitian, stochastic generators
often share many properties with Hamiltonians, thus con-
necting classical stochastic and quantum problems at the
technical level. An example of such a connection is between
the simple exclusion process and the XXZ quantum chain, see,
e.g., [19–22]. Therefore, a natural question to ask is whether
SZMs exist in classical stochastic systems, and if they do,
what consequences they have for the dynamics.

Here we answer this question. For simplicity we focus on
systems of particles on a one-dimensional chain with at most
single occupancy per site. We consider transitions between
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neighboring sites, including hopping and pair creation or an-
nihilation. Detailed balance need not be obeyed. For certain
choices of the transition rates the generators are integrable,
and for these we find the explicit form of boundary localized
operators that commute with the generator (either exactly or
up to corrections that are exponentially small in the system
size). These stochastic SZMs are nondiagonal in the classical
basis, and as such do not correspond to classical observables.
They represent “hidden” conservation laws which, as we show
below, manifest themselves in the dynamics through a class of
exact relations among time-correlation functions observable at
finite times.

We study a system of particles stochastically hopping on
a one-dimensional chain of length L, while obeying an ex-
clusion constraint so that each site can be occupied by at
most one particle. A particle can hop to a neighboring site
(either left or right) if it is empty, two particles positioned
on consecutive sites can evaporate from the lattice, and two
particles can condense on a pair of empty sites. As illustrated
in Fig. 1, the left- and right-hopping transitions have rates
D(1 + δ) and D(1 − δ), respectively, while evaporation and
condensation occur with rates γ (1 + κ ), and γ (1 − κ ). At the
edges we typically assume open boundary conditions, where
the first and last site each have only one nearest neighbor [23].

At each time the configuration of the system can be ex-
pressed in terms of an L-tuple n = (n1, n2, . . . , nL ) ∈ ZL

2 ,
where n j = 1 if there is a particle on site j and n j = 0
when empty. To describe dynamics of macroscopic states
(i.e., probability distributions) we use bra-ket notation, |p〉 =
[p0, p1, . . . , p2L−1] ∈ R2L

, where each component pn � 0
represents a probability of the configuration given by the
binary representation of the subscript n, and the sum of
all components is one,

∑
n pn = 1. Diagonal operators rep-

resent observables, i.e., quantities that can be measured.
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FIG. 1. Schematic representation of allowed transitions. A parti-
cle can only hop to a neighboring site if that site is empty. The rate to
hop to the left is D(1 + δ) and that to the right is D(1 − δ). A pair of
neighboring particles can evaporate with rate γ (1 + κ ), while a pair
of empty sites can condense a pair of particles with rate γ (1 − κ ).

Their expectation values are by definition given by the sum
〈a〉p = ∑

n an,n pn = 〈−|a|p〉, where we introduced the flat
state 〈−| = [1 1]⊗L. The normalization condition for |p〉 can
then be equivalently expressed as 〈−|p〉 = 1. Encoding the
stochastic transitions with a generator W means that an initial
state |p〉 evolves in time as |p(t )〉 = etW |p〉. Conservation of
probability under time evolution requires 〈−|etW = 〈−|. This
notation gives convenient expressions for more complicated
objects, such as the expectation value at time t after starting
from some nonstationary initial state 〈−|aetW |p〉, or correla-
tion functions between multiple observables at different times,
〈−|b e(t2−t1 )W a et1W |p〉.

We restrict the discussion to two different integrable limits
of the generator W (see, e.g., [24]), for which the Hamil-
tonian counterparts are known to exhibit conserved edge
modes [8,9,25]:

(i) In the regime γ = D, the generator is quadratic in
fermionic operators (see Sec. A in [26]), so we refer to it as
the free-fermionic model. The stochastic generator with open
boundaries has the form

W (FF) =
L−1∑
j=1

[
XjXj+1 + κZj + i

κ + δ

2
XjYj+1

+i
κ − δ

2
YjXj+1 − 1

]
+ κ + δ

2
(ZL − Z1), (1)

where Xj , Yj , and Zj denote Pauli matrices acting on the site
j. Without loss of generality, we rescaled the unit of time so
that D = 1. Note that when δ �= 0, hopping is asymmetric and
W does not obey detailed balance.

(ii) The second integrable regime arises when κ = δ = 0,
i.e., there is no asymmetry between the left and right hopping,
and the rates for condensation and evaporation are the same.
This model was studied with periodic boundaries in Ref. [27],
and more recently, solutions to the boundary-driven setup
have been found [28]. In this case the generator takes a form
of a rotated anisotropic Heisenberg XXZ Hamiltonian,

W (XZZ) =
L−1∑
j=1

[
1 − γ

2
(YjYj+1 + ZjZ j+1)

+1 + γ

2
(XjXj+1 − 1)

]
, (2)

so we refer to it as XZZ model. We again chose D = 1.
In analogy to the quantum setting, a conserved edge mode

� is an operator that commutes with the stochastic generator,
[�,W ] = 0; squares into identity, �2 = 1; and is localized

at an edge—its local densities that involve sites far from the
edge are exponentially suppressed.

In the case of W (FF) we take advantage of the free-
fermionic form to straightforwardly find the expression for
� (FF) (see Sec. A in [26] for the derivation),

� (FF) =
L∑

j=1

λ j−1μ j−1(Xj + iλYj ), (3)

where the disorder operator μ j = ∏ j
k=1 Zk is a string of Zk

originating at the left edge, and the parameter λ is expressed
in terms of κ and δ as

λ = 1 − √
1 + δ2 − κ2

δ + κ
(4)

with |λ| � 1. This edge mode is exactly conserved, i.e.,
[W (FF), � (FF)] = 0 with no corrections. For simplicity we
neglect exponentially small corrections to the normalization:
� (FF)2 = 1 + O(λL ).

The XZZ generator (2) is Hermitian and has exactly the
same form as the XYZ Hamiltonian with appropriately chosen
couplings, therefore we can directly adapt the exact form of
Ref. [9] to obtain

� (XZZ) =
∞∑

S=0

∑
1�a1<...<a2S<b�L

λ2(b−1)(1 − λ2)

(
1 − 1

λ2

)S

× λ−∑2S
j=1(−1) j a j Xb

S∏
j=1

(
Ya2 j−1Ya2 j + Za2 j−1 Za2 j

)
, (5)

where the value of λ, |λ| � 1, is now given by

λ = 1 − γ

1 + γ
. (6)

Unlike the free-fermion case, the edge mode now no longer
exactly commutes with the stochastic generator, but rather
does so up to corrections of the order O(λL ). In both cases (3)
and (5), |λ| � 1 implies the exponential suppression of local
densities on sites far from the edge of the lattice, making the
SZM localized at the boundary.

Since neither SZM is diagonal, they cannot be directly
interpreted as classical observables. Their effect on the
dynamics therefore is not immediately obvious. A key obser-
vation is that the expectation value of an off-diagonal operator
A can always be interpreted as an expectation value of a
corresponding diagonal operator Â defined by

〈−|A = 〈−|Â ⇒ 〈−|A|p(t )〉 = 〈−|Â|p(t )〉 . (7)

Pauli operators obey the two simple identities

[1 1]Xj = [1 1] and [1 1]Yj = i[1 1]Zj, (8)

which can be linearly extended to provide the diagonal op-
erator Â for an arbitrary A. Therefore, the existence of a
nondiagonal operator � commuting with W implies the ex-
istence of a classical observable �̂ whose expectation value
does not change with time,

〈−|�̂etW |p〉 = 〈−|�etW |p〉 = 〈−|etW�|p〉 = 〈−|�|p〉
= 〈−|�̂|p〉, (9)

where we utilized the defining property (7) and the conserva-
tion of probability.
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In our cases, a little more work is needed. Indeed, the
identities (8) imply that 〈−| is (up to terms exponentially small
in L) a left eigenvector of both � (FF) and � (XZZ),

〈−|� = 〈−|, (10)

and therefore the conservation of 〈−|�̂|p(t )〉 gives us no
meaningful restriction on the dynamics.

Nonetheless, it is possible to define a dynamical proto-
col, under which the existence of the boundary mode gives
nontrivial effects. We require the initial state |α〉 to be an
eigenvector of � with eigenvalue 1: �|α〉 = |α〉 [29]. The
conservation of � implies the existence of observables whose
expectation value remains constant after starting from these
states. A general expectation value of an observable a at time
t obeys

〈−|a etW |α〉=〈−|a etW�2|α〉 =〈−|a �etW |α〉
= −〈−|�a etW |α〉+〈−|{a, �}etW |α〉, (11)

which follows from the normalization �2 = 1, the definition
of |α〉, and the conservation of the edge mode. Because 〈−| is
the left eigenvector of � [cf. Eq. (10)], we obtain a connection
between the expectation value of a at any time t and that of its
anticommutator {a, �}:

〈−|a etW |α〉 = 1
2 〈−|{a, �}etW |α〉. (12)

This general identity can now be used to obtain some nontriv-
ial constraints on dynamics.

Let us start with the free-fermionic model, and consider
a = Zj . After a series of elementary manipulations similar to
the ones of Eq. (10), one obtains

1
2 〈−|{Zj, �

(FF)} = 〈−|Zj − λ j−1(〈−|μ j − λ〈−|μ j−1),

which, together with (12) implies

〈−|Z1etW (FF) |α〉 = λ〈−|etW (FF) |α〉 = λ,

〈−|μketW (FF) |α〉 = λ〈−|μk−1etW (FF) |α〉 = λk. (13)

The second equality in both rows follows from the conserva-
tion of probabilities, 〈−|etW = 〈−| and the normalization of
the initial state, 〈−|α〉 = 1. The expectation values of μk =∏k

j=1 Zj are therefore constant in time, even though the initial
state is not stationary and the system must undergo nontrivial
dynamics before relaxing. For t = 0 the relation (13) is the
property of the initial state and does not depend on whether
or not � (FF) is conserved: the surprising consequence of the
existence of the edge mode is that it holds also when t > 0.

The XZZ regime can be treated analogously, with only the
precise relations changing due to the different form of the edge
mode. The left-action of the anticommutator on the flat state
obeys

1
2 〈−|{Zj, �

(XZZ)} = 〈−|Zj − (λ j−2 − λ j )〈−|χ, (14)

where χ is a sum over the Zj with coefficients decaying
exponentially away from the edge:

χ =
L∑

j=1

λ jZ j . (15)

Inserting (14) into (12) immediately gives us the dynamical
restriction for the XZZ case: the expectation value of χ is

forced to be zero at all times, i.e.,

〈−|χetW |α〉 = 0. (16)

Equations (13) and (16) provide nontrivial dynamical con-
straints holding in the presence of the edge mode. A few
remarks are in order. First, corrections exponentially small in
the system size have been ignored. Therefore one might ex-
pect that these constraints only hold up to times of the order of
magnitude 1/λL. However, one can show (see Sec. C in [26])
that these expectation values coincide with the values in the
stationary state, which implies the broader applicability of
the constraints. Second, this dynamical protocol only makes
sense if we can find appropriate eigenvectors |α〉 that can be
interpreted as valid probability distributions. Since they need
to satisfy the nonnegativity condition, their existence is not a
priori obvious. While we have not been able to characterize
the full set of valid initial states, we have found several repre-
sentative examples (see the discussion in Sec. B in [26]) that
we use in the numerical demonstrations below.

To demonstrate explicitly that relations (13) and (16) repre-
sent nontrivial constraints on the time evolution, we simulate
this dynamical protocol using Monte Carlo sampling of tra-
jectories. For clarity, we restrict the discussion to the case of
symmetric hopping—i.e., we assume δ = 0 in both regimes.
The stationary state is then the same for both periodic and
open boundary conditions, while the edge mode is only
conserved in the latter case. Changing boundary conditions
therefore gives a direct probe of the validity of the dynamical
constraints arising from the edge mode. The initial state in the
free fermionic case is

|α(FF)〉 = 1 + � (FF)

2

[
1
0

]⊗L

, (17)

while the interacting initial state is chosen as

|α(XZZ)〉 = 1 + � (XZZ)

2

[
1
4
3
4

]
⊗

[
1
2
1
2

]⊗L−1

. (18)

We note that these are just two concrete choices, and the full
family of possible initial states is very large due to the high
degeneracy of the spectra of � (FF) and � (XZZ). See Sec. B
in [26] for more details.

The behavior in the free-fermionic regime is shown in
Fig. 2, where we compare the dynamics of the expectation
value (13) between open and periodic boundaries. In both
cases the initial value is equal to the stationary value, but the
state itself is not stationary. Therefore for periodic boundaries
the expectation value shows nontrivial dynamics, while in
the open case the edge mode prevents it from changing. The
dynamics of quantities not restricted by Eq. (13) does not
strongly depend on the boundary conditions, as demonstrated
in the inset, where we compare the expectation value of Zj at
two sites: one close to the edge and one in the bulk.

Analogous behavior can be observed in the interacting
XZZ regime in Fig. 3. The existence of conserved � (XZZ)

forces the expectation value of χ to stay at zero, see Eq. (16),
while in the case of periodic boundaries there is no such
restriction and χ exhibits nontrivial dynamics. However, as
shown in the inset, the dynamics of generic observables shows
no qualitative difference between the different boundary con-
ditions.
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FIG. 2. Dynamics of disorder operators μ̃k = μk − λk =
Z1Z2 · · · Zk − λk in the free-fermionic model. The initial state |α〉
is given in Eq. (17), while λ is the expectation value of Zk in the
stationary state. For open boundary conditions, the expectation
values are restricted as in Eq. (13) due to the existence of the
boundary mode, so that there is no evolution in such quantities.
In contrast, the expectation values are unconstrained in the
periodic case, and they undergo nontrivial time evolution. The time
dependence of generic observables is not constrained, and they
show qualitatively similar behavior in both cases, as is shown in the
inset for the rescaled magnetization Mk = Zk − λ. In this example
we consider symmetric hopping (δ = 0), the asymmetry between
pair-annihilation and creation rates is κ = 0.25, the system size is
L = 20, and the number of Monte Carlo trajectories is 109.

In this paper we have generalized the concept of strong
zero modes from quantum spin chains to one-dimensional
classical stochastic systems. For choices of parameters that
make the stochastic generators integrable we were able to

FIG. 3. Expectation values of χ [defined in Eq. (15)] in the
interacting regime of the model. When the boundary conditions are
open, the expectation value is constrained by the existence of the
edge SZM [Eq. (16)], while the system with periodic boundaries
exhibits nontrivial dynamics. For comparison, the dynamics of local
magnetization Zk in the inset show no qualitative difference between
the two boundary conditions. The initial state |α〉 is given in Eq. (18),
the annihilation/creation rate is γ = 0.35, the system size is L = 20,
and the number of Monte Carlo trajectories is 108.

FIG. 4. Dynamical correlation function between χ and λkZ j −
λ jZ j in the stationary state |s〉 = 2−L|−〉 for the interacting regime
of the model (with the same numerical parameters as in Fig. 3). The
vanishing at all times for the open boundaries case illustrates the
identity (19) that follows from the stochastic zero mode.

obtain the SZMs exactly. In contrast to the quantum case, the
conservation of a stochastic SZM cannot be observed directly
in the dynamics, manifesting instead as specific constraints in
time correlation functions. As far as we are aware these hidden
conservation laws in systems with open boundaries were not
identified before.

Relations (13) and (16) are just two examples of a large
number of dynamical relation following from the existence of
edge modes. For example, for the case of W (XZZ), a similar
mechanism restricts the dynamics of a wide class of dynam-
ical correlation functions in the stationary state. In particular,
as we show in Sec. D in [26], the equilibrium time-correlation
functions

〈−|{A, �}etW B|−〉 = 〈−|AetW {B, �}|−〉 (19)

are identical—up to times of the order of magnitude 1/λL—
for any two observables A and B. In Fig. 4 we plot the specific
case of A = Z1 and B = Z2, where (19) reduces to 〈−|(Z2 −
λZ1)etW (XZZ)

χ |−〉 = 0.
Many questions remain. One is on the fate of SZMs away

from integrability. Our results explicitly depend on the precise
form of the SZMs, but typically the physics of these models
shows no qualitative change when the stochastic rates are
tuned to the integrable point. A related question is whether for
nonintegrable stochastic spin chains, e.g., those in Ref. [30],
SZMs are only conserved parametrically, as occurs in non-
integrable quantum systems [11,12], and if so, how these
“almost” SZMs manifest themselves in the dynamics. A more
general issue is to describe the dynamical consequences of
other conserved nondiagonal operators in classical stochastic
models. For instance, setting the condensation and evapo-
ration rates to zero, our model reduces to the asymmetric
simple exclusion process [31–33], which can be mapped to the
XXZ Heisenberg Hamiltonian by a similarity transformation.
This mapping implies the existence of an infinite number of
nondiagonal local conserved operators that are obtained from
the corresponding transfer matrix [34–36]. It would be very
interesting to understand how they constrain the stochastic
classical dynamics.
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