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Abstract: We present GalvAnalyze, a software tool developed in 

Python, that processes data collected using a variety of battery 

cyclers and creates a set of outputs that greatly reduce the 

inefficiencies associated with manual or semi-manual analysis of 

galvanostatic cycling data. An experiment is carried out by 10 

participants with varying degrees of experience processing 

galvanostatic cycling data, enabling quantitative analysis of the 

processing time benefit that GalvAnalyze enables. The functionality of 

GalvAnalyze includes handling data where the applied current density 

varies, separating the data into individual charge-discharge cycle 

pairs, and producing hysteresis plots using a simple graphical user 

interface. The executable can be downloaded at 

https://www.thenamilab.com/ and is built to be accessible, with no 

prior coding expertise required. In the interest of transparency, and to 

allow future contributions to the functionality of GalvAnalyze by the 

wider community, the source code can be found on GitHub 

(https://github.com/LukasRier/GalvAnalyze). 

Introduction 

Batteries, and more broadly energy storage systems, have 

become an integral part of everyday life, from powering consumer 

electronics to the electrification of transport and supporting the 

operation of renewable energy technologies.[1–3] As the world 

electrifies, the demand for higher performance energy storage 

solutions maintains rapid growth, driving a concerted effort in 

academia and industry to discover appropriate solutions.[4–6] 

Galvanostatic charge-discharge cycling is critical to 

understanding the fundamental performance of these materials, 

used both in isolation and as a tool for exploring the ageing and 

degradation processes of battery chemistries with accompanying 

operando, in-situ and ex-situ characterisation techniques.[7–10] 

However, performing identical experiments on two different 

battery cyclers can require markedly different amounts of manual 

data processing, depending on hardware and software 

capabilities. Where manual or semi-manual data processing is 

employed to overcome the shortfalls of software, significant time 

and effort can be spent understanding the results of a given 

experiment. Although some research groups possess coding 

expertise that is sufficient to overcome the shortfalls of their 

specific instrumentation, those with limited coding experience are 

constrained by the solutions offered through instrument providers. 

This disparity in access to efficient data analysis tools creates 

unnecessary barriers to essential data processing. 

Various open-source data analysis tools have been developed by 

the battery community to streamline specific parts of data analysis 

that are often deemed challenging.[11–17] Dahn et al. and, more 

recently, de Souza et al. developed tools that enable efficient 

differential voltage and incremental capacity analysis from high-

quality data inputs.[11,12] Murbach et al. developed a tool for the 

analysis of battery impedance data.[13] Dubarry et al. and Herring 

et al. developed tools to evaluate and model battery cell 

performance,[14,15] and Lewis-Douglas et al. built a tool designed 

to enable development of a battery library/database to connect 

data collected by experimentalists to their modelling 

counterparts.[16] Topically, an article recently published by Ward 

et al. proposed the development of a ‘Battery Data Genome’, 
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stating that the primary roadblock to a battery-data-science 

renaissance is the requirement for large amounts of high-quality 

data.[17] Although each of these open-source tools effectively 

serves the purpose of improving the efficiency of data processing 

of the specific target area, these tools have pre-requisites of either 

high-quality input data, specific experimental procedures, or prior 

coding expertise to install and operate the tool, presenting a 

barrier to adoption for many experimentalists. 

Here we present GalvAnalyze, a Python-based tool that is 

designed to bridge the gap between research groups with coding 

expertise and those without, offering an open-source plug-and-

play style executable, with a graphical user interface, for 

streamlining analysis of galvanostatic cycling data. All required 

libraries are built-in to a single downloadable file, enabling 

accessibility to experimentalists with no prior coding expertise, 

which is a critical motivation for this project. This publication acts 

as a guide to users, discussing the processes that are carried out 

from raw data input to the export of data in graphical and .csv 

format, ready for further manipulation by the user. Furthermore, 

an experiment to evaluate the effectiveness of GalvAnalyze as a 

time-saving tool is carried out, wherein 10 participants analyse a 

dataset manually and with the aid of the GalvAnalyze executable. 

Results and Discussion 

Discussion of Software Design 

Regardless of chosen instrumentation, the same key outputs are 

commonly extracted from data acquired in galvanostatic cycling 

experiments: 1) a plot of the capacity as a function of potential – 

to understand the stages of intercalation and potential regions in 

which they occur,[18] 2) a plot of maximum charge and discharge 

capacity as a function of cycle number – to understand the 

specific capacity of the cell and how this varies over cycle life, [19] 

3) the values of the coulombic efficiency – to understand the 

round-trip efficiency of the active species and highlight regions of 

inefficiency,[20] and 4) a plot of the first cycle hysteresis – which 

highlights the capacity loss and voltage hysteresis over a given 

cycle, i.e. lithium inventory loss due to solid-electrolyte-interphase 

(SEI) formation or loss/trapping of redox active materials.[21] As a 

result of this, the time taken to process data from a set of 

experiments conducted using “Instrument A” may be significantly 

different to that taken to process the same data from “Instrument 

B”, depending on the accessibility of the output files. Furthermore, 

to cross-reference data from multiple instruments, these data 

must be filed in a uniform format. GalvAnalyze can handle data 

from a variety of battery cyclers, autonomously produce uniform 

outputs in the form of comma-separated value (.csv) or parquet 

files (to ensure scalability), and generate graphics that address 

each of the four key outputs mentioned above. The user inputs of 

time, applied current, and potential are used to clean and convert 

the data to a uniform format, derive further information from the 

data provided, export the cleaned data into files in a standardised 

format, generate graphical representations of the dataset, and 

offer additional functionality for further data processing. 

Figure 1 shows the processing steps implemented in 

GalvAnalyze, from raw data file input to final outputs from the 

viewpoint of the user. Two manual inputs are required: the active 

mass value in mg, 𝑚𝑎 , and a text file from the battery cycling  

Figure 1. Flowchart for the main functionality of GalvAnalyze from running the 

executable to generating .csv files and figures. User inputs: Load file, Enter 

Active Mass, and decision: Input Valid are required for the script to carry out the 

remaining processing steps. Further descriptions can be found in the 

Supplementary information, including error handling and a full user guide. 
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Figure 2. Example of a diagnostic plot produced when the GalvAnalyze executable is run. The red and blue lines represent the applied positive and negative 

thresholds, respectively, that are used to determine data points that belong to charge (green regions) and discharge (red regions). 

 

software. If these inputs are accepted, the remainder of the data 

processing is done autonomously on a timescale of seconds to 

minutes depending on file size. The data are first split into positive 

(charge) current regions and negative (discharge) current regions 

through a combination of thresholding and edge detection. Put 

simply, this identifies the start time point, 𝑡0, and end time point, 

𝑡𝑓𝑖𝑛𝑎𝑙 , of each charge and discharge cycle. The concepts of 

thresholding and edge detection are described further in the 

supporting information (Figure S1). With each charge and 

discharge cycle separated into arrays of data points, between 

their respective 𝑡0  and 𝑡𝑓𝑖𝑛𝑎𝑙 , the elapsed cycle time, 𝑡𝑐𝑦𝑐 , is 

calculated as the difference between the timestamp of each data 

point and the preceding 𝑡0 . Figure 2 shows a visual 

representation of the thresholding approach, where the red and 

blue lines indicate the positive and negative threshold 

respectively, and the green and red shaded regions represent 

areas that have been identified as part of a charge and discharge 

process, respectively. This type of plot is provided each time 

GalvAnalyze is run to allow for transparent data processing and 

for users to verify that their dataset is of sufficiently high quality. 

The capacity output from a battery cycler is given in its absolute 

form, as the product of the current passed and the time elapsed, 

commonly given in units of mAh or Ah. To understand the 

relevance of this absolute value to a specific experiment, this must 

be further converted into capacity per unit weight of active 

material, which enables comparison of datasets. GalvAnalyze 

carries out this conversion by calculating the capacity in mAh g−1 

at each time point within a given cycle by using the user-provided 

active mass, ma, the time points for the given cycle, 𝑡𝑐𝑦𝑐 , and 

applied current, 𝐼 using equation 1: 

(1) Capacity = 
𝐼𝑡𝑐𝑦𝑐

3600𝑚𝑎
 (1) 

This generates the total capacity passed at every time point in all 

cycles that have been identified, providing all data required to 

generate plots that show the capacity as a function of potential 

throughout cycling and how the maximum charge and discharge 

capacity change as a function of cycle number. From the 

maximum charge and discharge capacity for each cycle, the 

coulombic efficiency can be calculated with equation 2: 

(1) Coulombic efficiency = 
max.  cap. of second process

max.  cap.  of first process
 × 100 (2) 

These data are subsequently exported to a file. Furthermore, 

GalvAnalyze plots these data for the user using matplotlib,[22] 

giving immediate visualisation of their results. 

The most basic functionality of the executable is the analysis of 

constant current charge-discharge cycling data, in which the 

same magnitude of current is applied throughout the entire 

experiment. Although this is suitable in many cases, experiments 

frequently involve one or more changes in the applied current 

density. Many long-term cycling experiments require the 

application of a low current density during SEI formation, after 

which a higher current density is applied for the remainder of the 

experiment. 

To address more complex experiments and required outputs, 

GalvAnalyze offers the following options: 1) “Applied current 

varies” – where the autonomous cycle detection allows for 

changes in applied current density. 2) “Separate charge-

discharge pairs to file” – where each cycle is collated into an 

individual file for ease of further analysis. 3) “Get hysteresis plot” 

– which allows the user to select one of the exported single-cycle 

files and produce a hysteresis plot of the selected cycle. A full 

breakdown of the functions present in the underlying code can be 

found in the Supporting Information under ‘implementation and 

architecture’, alongside a flowchart describing the full functionality 

of the GalvAnalyze executable (Figure S2), a comprehensive 

user guide, and a guide to error handling. 

Example Application 

GalvAnalyze was created to reduce the amount of manual 

processing required to go from a raw dataset to data that is ready 

to plot in the users’ preferred figure plotting software. Figure 3 

shows a common error found in raw datasets, wherein the final 

data points of a given charge process have been connected to the 
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Figure 3. Plot showing example data from a 50-cycle dataset cycled between 

3.0 – 4.4 V. Raw potential and capacity data were exported using software 

included with a common commercial battery cycler and plotted without further 

manipulation. 

 

first datapoint of the proceeding discharge process. The same has 

occurred for each discharge. This results in several lines across 

the bottoms and top of the graphic which, if removed manually, 

would take considerable data manipulation effort, and might 

introduce variability in results produced by different researchers. 

The potential and capacity data for Figure 3 were exported 

directly from the cycler software and plotted without further 

manipulation. 

Figure 4 explores the same dataset, now processed using the 

GalvAnalyze executable, using the raw time, potential, and 

current data exported directly from the cycler software. The 

erroneous data points have been removed and autonomous data 

processing has been carried out, producing graphical 

representations of the maximum capacities per cycle (Figure 4A), 

coulombic efficiency (Figure 4B), and first cycle hysteresis 

(Figure 4C). This reduces the inefficiencies associated with 

troublesome data points and provides the user with a variety of 

organised .csv or parquet files for further manipulation in their 

software of choice. 

Assessing the Time-saving Benefits of GalvAnalyze 

A software solution can be expected to decrease the time taken 

to analyse a given dataset by removing the need for manual data 

manipulation. We quantified this effect to better understand the 

impact of GalvAnalyze on data analysis time. 

An experiment was conducted on 10 participants with a range of 

battery cycling data analysis expertise, between 0 - 68 months, to 

determine the time taken to manually process a dataset with two 

different current protocols and a total of 12 cycles, compared to 

the time taken to process the same dataset using the GalvAnalyze 

executable. Written informed consent was obtained from all 

participants before conducting the experiment. The manual 

processing part of the experiment was split into three distinct time 

periods. T1 – where the data were given to participants in an 

‘unoptimised’ format with raw time, current, and potential values. 

These had to be separated into individual charge and discharge 

pairs and capacity calculated. T2 – where, once the data was 

separated, two common battery cycling graphics had to be 

plotted: 1) a double y-axis cycle number vs. maximum capacity 

and coulombic efficiency plot and, 2) a capacity vs. potential plot. 

T3 – where a third, less common, first cycle hysteresis plot was 

created. The time taken to complete the task while using 

GalvAnalyze included opening the executable, exporting data in 

the chosen file format from the battery cycling software, and 

processing these data into graphics. 

Discussion of Results  

The experimental results are shown in Figure 5. The average 

time taken to analyse the dataset using GalvAnalyze was 3 mins 

41 s, with the maximum time being 5 mins 24 s. It is worth noting 

that while the authors (who were included in the participant 

cohort) had significantly more experience using GalvAnalyze, 

processing times were comparable with those of less experienced 

users. A significant increase in processing time was found in the 

manual portion of the experiment, where an average time of 1 h 

39 mins and maximum of 3 h 18 mins were recorded. 

While the differences between manual and software-based 

analysis are striking, the processing of battery cycling data is not 

usually carried out from raw datasets containing only time, 

potential, and current inputs, and not every experiment will require 

.

Figure 4. Shows the graphical outputs produced by GalvAnalyze from an example dataset, where time, potential and current values were exported using software 

included with a common commercial battery cycler. The data shown are from a 50-cycle dataset, cycled between 3.0 - 4.4 V and processed using GalvAnalyze to 

create graphics showing (a) a double-Y plot of max capacity and coulombic efficiency per cycle, (b) voltage profiles for each cycle, and (c) a hysteresis plot of the 

first cycle. 
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Figure 5. Plots showing the a) results from and b) battery and GalvAnalyze experience of the participants that took part in a data analysis experiment wherein a 12-

cycle dataset was processed manually in three sections or with the GalvAnalyze executable (stars = authors, crosses = other participants). a) the manual part of 

the experiment was separated into three sections: T1 (organisation of data, red), T2 (basic figure plotting, orange), and T3 (hysteresis plotting, yellow). 

 

the production of a hysteresis plot. A fairer comparison could 

therefore be made by contrasting the time spent using 

GalvAnalyze with T2, where an optimised dataset is taken from 

raw data to basic battery cycling graphics. For manual processing, 

a minimum and average T2 time of 17 mins 17 s and 43 mins 54 

s were recorded, respectively. Comparing the maximum time 

taken to use GalvAnalyze with the minimum time taken to process 

the data manually (T2), we see a more than 3-fold increase in data 

processing efficiency using the GalvAnalyze executable. This 

highlights the benefits of using this tool for all users, from 

beginners to those with many years of data processing 

experience. 

 

Conclusion 

Here we have introduced GalvAnalyze, an accessible tool for 

processing and visualisation of galvanostatic charge-discharge 

cycling data, to the battery research community. Users can import 

data as a text file, enter experimental parameters, and obtain 

graphical representations of data and .csv files ready for further 

manipulation. The GalvAnalyze executable was shown to reduce 

data processing time to less than 6 mins, where manual 

processing of the same dataset exported from commercial cycler 

software (T2) took an average of 43 mins and 54 s across the 10 

participants sampled. Comparison of the slowest GalvAnalyze run 

and the fastest manual T2 run revealed that GalvAnalyze 

decreased the required data processing time more than 3-fold, 

highlighting its practicality for all experience levels. 

Supporting Information 

Further information describing the functionality of the code, a full 

user guide, and error-handling scenarios can be found in the 

Supporting Information. Please submit any queries or requests for 

improvements online at https://www.thenamilab.com/about-4. 
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