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A B S T R A C T   

Antibiotics enter the environment through waste streams, where they can exert selective pressure for antimi-
crobial resistance in bacteria. However, many antibiotics are excreted as partly metabolized forms, or can be 
subject to partial breakdown in wastewater treatment, soil, or through natural processes in the environment. If a 
metabolite is bioactive, even at sub-lethal levels, and also stable in the environment, then it could provide se-
lection pressure for resistance. (5S)-penicilloic acid of piperacillin has previously been found complexed to the 
binding pocket of penicillin binding protein 3 (PBP3) of Pseudomonas aeruginosa. Here, we predicted the affinities 
of all potentially relevant antibiotic metabolites of ten different penicillins to that target protein, using molecular 
docking and molecular dynamics simulations. Docking predicts that, in addition to penicilloic acid, pseudope-
nicillin derivatives of these penicillins, as well as 6-aminopenicillanic acid (6APA), could also bind to this target. 
MD simulations further confirmed that (5R)-pseudopenicillin and 6APA bind the target protein, in addition to 
(5S)-penicilloic acid. Thus, it is possible that these metabolites are bioactive, and, if stable in the environment, 
could be contaminants selective for antibiotic resistance. This could have considerable significance for envi-
ronmental surveillance for antibiotics as a means to reduce antimicrobial resistance, because targeted mass 
spectrometry could be required for relevant metabolites as well as the native antibiotics.   

1. Introduction 

Antibiotics are widely used in medicine and agriculture. Moreover, 
the most recent report from WHO showed that the global antibiotic 
consumption is increasing, from 21.1 billion defined daily doses in 2000 
to 34.8 billion defined daily doses in 2015 [1]. Orally administered 
antibiotics, whether in human or veterinary medicine, may be absorbed 
in the gut; and so may be partly or wholly metabolized prior to excre-
tion, while unabsorbed antibiotics will exit via faeces. Intravenous an-
tibiotics may be subject to similar metabolic fates in serum, faeces and 
urine [2]. Most administered antibiotics are not digested: 50–90% of 
antibiotic intake is excreted as native antibiotic, while 30% of antibi-
otics are excreted as closely related metabolites. However, fewer than a 
third of antibiotic metabolites have yet been tested for bioactivity [3,4, 
5]. Antibiotics can also be found in the excreta in farm animals, but 
metabolite formation within farm animal excreta is largely unknown [6, 

7]. 
Therefore antibiotics from medical and veterinary use, and their 

metabolites, enter the environment and appear as contaminants in 
wastewater, soil, surface and ground water, sewage, and wastewater 
treatment plants [8,9]. Antibiotics drive selection for antibiotic resis-
tance; even sub-lethal concentrations of antibiotics can also drive se-
lection [10]; the consequence is that antibiotic metabolites, that might 
be insufficiently potent to have clinical value, might still be able to drive 
selection for resistance, and so be environmentally important, especially 
if present in stable forms. While there are studies about how some 
beta-lactam antibiotics affect specific organisms under controlled 
photolytic conditions [11], there is limited knowledge of the impact of 
metabolites on bacteria that would normally be affected by the cognate 
antibiotic. There is also limited knowledge about their environmental 
stability and the bioactivity of those metabolites. Notably, however, one 
crystallographic study has found (5S)-penicilloic acid complexed to the 
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binding pocket of penicillin binding protein 3 (PBP3) of Pseudomonas 
aeruginosa [12]. This raises the important question as to whether a much 
wider range of antibiotic metabolites may also have this ability. 
Although wastewater treatment can reduce concentrations of antibi-
otics, it cannot completely eliminate antibiotics or their metabolites [11, 
13,14]. Moreover, antibiotic and metabolite contamination may be 
greater in many lower and middle income countries [15–17], where 
wastewater treatment is limited [18]. 

Chemical detection of antibiotics is an important strand of effective 
surveillance against antimicrobial resistance. Antibiotics can be detec-
ted from the environment through high-performance liquid chroma-
tography (HPLC), mass spectrometry (MALDI-TOF MS and LC-MS) and 
colorimetric sensor arrays [13,14]. However, mass spectrometry re-
quires knowledge of the chemical structure of the molecule to be tar-
geted and detected [19]; antibiotic metabolites could potentially be 
tested for in the same ways, but would but would also need to be 
explicitly targeted in order to be standardized and identified. If metab-
olites are important, then this is a possible surveillance omission. 

In this study, we predict possible bioactivity of antibiotic metabolites 
to their target binding sites using a two step computational approach. 
Molecular docking [20] is employed as an efficient first step to identify 
candidate metabolites likely to bind to their cognate target; these can-
didates can then be further assessed using the more accurate but 
computationally demanding approach of molecular dynamics (MD) 
simulations [21]. Similar approaches have also been applied recently to 
investigate inhibitors of the SARS-CoV-2 virus [22–24]. 

We exemplify this method using the binding of penicillins to PBP3 of 
P. aeruginosa [12], recognizing that the approach should be valid for 
other classes of antibiotics, to other target molecules, and in other or-
ganisms. Penicillins are chosen for three reasons. First, penicillins are 
important because they are the most commonly used antibiotic for 
human medicine (52% of Defined Daily Doses of total antibiotic used), 
as well as widely used in agriculture. Second, the chemical structure of 
penicillin metabolites are well known, because the degradation path-
ways of beta-lactams are well characterized [25]. Third, the availability 
of crystal structures of both piperacillin and (5S)-penicilloic acid to 
PBP3 [12], with resolution 2.31 Å, provides both an effective starting 

point for computational investigation of other metabolites within the 
penicillin family, as well as clear evidence that molecular interactions 
between metabolites and antibiotic targets are possible. 

P. aeruginosa is chosen because it is a Gram-negative bacterium on 
which beta-lactam antibiotics can have an impact. It causes disease in 
plants, animals and humans; most importantly, it causes serious in-
fections in immunocompromised cancer patients, cystic fibrosis pa-
tients, and patients suffering from severe burns [26]. Moreover, 
P. aeruginosa can be found widely in nature, in soil and water [27] and 
69.9% of P. aeruginosa in the environment is found to be resistant to 
antibiotics [28]. There are three classes of P. aeruginosa PBPs, class A, B, 
and C [29]. We have chosen PBP3 because PBP3 is a class B enzyme that 
performs transpeptidation and is inhibited by penicillin [30], while 
PBP4 is a class C enzyme, which only act as carboxypeptidases or en-
dopeptidases. The function of this PBP is performed by a single domain 
which is made of two subdomains: a five stranded beta-sheet covered by 
three alpha-helices and an all-helical domain. The active site sits on the 
interface of the two subdomains [31]. The key residues that stabilize the 
antibiotic-PBP interaction are known: Ser294, Ser349, Ser485, Thr487 
and Tyr503 [12,32]. In particular, Ser294 is the main residue for the 
antibiotic-PBP interaction as the residue that forms the covalent bond 
with the beta-lactam ring [32]. 

Antibiotics in the penicillin family contain an unstable, highly 
strained and reactive beta-lactam amide bond [33]. While the 
beta-lactam bond is essential for the clinical efficacy of penicillins, it is 
not known whether penicillin metabolites are sufficiently bioactive to 
have selective impact. The degradation of penicillin takes place in a 
wide range of conditions, both alkaline or acidic (Fig. 1) [34,35], in the 
presence or absence of the enzyme beta-lactamase, or under the action 
of weak electrophiles including water and metal ions. Penicillin un-
dergoes further isomerization to penicillenic acid. The beta-lactam ring 
and its amide bond break open in the presence of acid giving an array of 
products, including penilloic acid, penicillamine and penilloaldehyde, 
through intermediates, namely penillic acid, penicilloic acid and pen-
icillenic acid [25,36]. Metabolites can form in R and S stereoisomer 
forms, because the oxidizing agent can attack from the upper plane or 
the lower plane of the penicillin. These stereoisomers may have different 

Fig. 1. Pathways of the degradation of beta-lactam (penicillin family). The penicillin will degrade into 6-APA, pseudopenicillin, penicilloic acid, then further degrade 
to penilloic acid, penamaldic acid, penicillanic acid, penillic acid. The penamaldic acid further degrades to penaldic acid then penilloaldhyde under strong acid. 
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effects on the affinity of the metabolites towards the PBP [37]. 

2. Methods 

2.1. Docking 

The reference protein structures used for docking were taken from X- 
ray structures deposited in the Protein Data Bank (www.rcsb.org). We 
used 4KQO, the crystal structure of PBP3 from P. aeruginosa in complex 
with piperacillin [12]. The ligand files (mol2) were prepared with 
ChemDraw 12 and the energy minimization was done by Avogadro 1.2.0 
[38]. The docking software, GOLD 5.7.1 [39], was used. All water 
molecules within the crystallized structure were removed and hydrogen 
atoms were added when missing from the PDB structure. For each 
protein target, the active site was defined as the collection of the amino 
acids enclosed within 8 Å radius sphere which calculated by eBoxSize 
[40] and suggests optimized box size x = y = z = 15 Å, centered on the 
bound antibiotic ligand and flexible docking for 10◦ of movement 
freedom of the key residue (Ser294, Ser349, Ser485, Thr487 and 
Tyr503). The docking used the automatic genetic algorithm setting with 
100% search efficiency. For the ligand flexibility, the internal hydrogen 
bonds were detected. The ring conformations, planar amide bond and 
protonated carboxylic acids were allowed to flip. The torsion angle 
distributions and postprocess rotatable bonds used the default param-
eter file. The fitness level was calculated by Piecewise Linear Potential 
method. 

The molecular docking process was verified by redocking the ligand 
back into the crystal structure PBP3 complex with ligand removed. We 
have used 13 metabolites in the simulations, corresponding to the 
breakdown products of beta-lactams elaborated in Fig. 1. Chemical 
formulae for each metabolite are provided in Table S1. Nine further 
antibiotics (amoxicillin, ampicillin, cloxacillin, dicloxacillin, fluclox-
acillin, penicillin G, penicillin V, ticarcillin, oxacillin) were selected to 
create a reference result towards the docking of the 13 metabolites: (5R)- 
and (5S)-penicilloic acid, (5R)- and (5S)-penillic acid, (5R)- and (5S)- 
penilloic acid, (5R)- and (5S)-pseudopenicillin, penamaldic acid, pen-
icillenic acid, penaldic acid, penilloaldehyde and 6-APA. The first step 
was to dock the antibiotic itself in order to produce a standard binding 
pose for that antibiotic. The second step was to dock each metabolite for 
that antibiotic which is compared with its standard binding pose. 13 
metabolites of the antibiotics were screened by docking the molecules 
into the same binding pocket of the PBP. Ligand interactions were 
depicted using MOE 2015 [41], while the 3D structures of the ligand 
with the binding site were visualized using PyMol 2.3.3 [42]. 

The fitness was calculated as the sum of the steric complementarity 
between protein and ligand, the internal score of the ligand consists of 
the heavy-atom clash potential, the torsional potential, covalent docking 
and flexible sidechains [39]. The RMSD of the docked metabolite was 
calculated by comparing the positions of the carbon atoms of the 
beta-lactam ring of the docked metabolite with their positions in the 
docked cognate antibiotic. 

2.2. Molecular dynamics simulations 

The quick MD simulator module in CHARMM-GUI [43] was used to 
add hydrogen atoms to the crystal structure, solvate the system with 
TIP3P water [44], and apply periodic boundary conditions under the 
CHARMM force field [45]. As one atomic angle parameter for the target 
protein (CG2O3-CG3C51-NG3C51) was not present in the force field, 
initial estimates of parameters for that angle were obtained using the 
CGenFF atom typing program [46]. The system was solvated in a trun-
cated octahedral periodic boundary cell with edge distances 10 Å from 
the protein surface. The ligand files were prepared by CHARMM 5.2.0 
[47]. with the corresponding coordinate and parameter file of the 
ligand. 

Energy minimization for each system was performed in NAMD 1.12 

[48] using the standard conjugate gradient algorithm for 10,000 steps. 
All heating, equilibration, and production dynamics were performed 
using NAMD with a time step of 2 fs, the CHARMM36 force field [47], 
and periodic boundary conditions. The parameters for the bile salts were 
taken from the CHARMM general force field (CGenFF) of drug-like small 
molecules. 

The system was heated from 0 to 298 K in increments of 5 K by 
temperature reassignment, where the velocities of all the atoms in the 
system are reassigned so that the entire system is set to the target tem-
perature. The velocities were reassigned every 500 time-steps for 50,000 
time-steps in the NVT ensemble. The systems were equilibrated for 
another 5 ns in the NPT ensemble, with Langevin dynamics the pressure 
set to 1 atm. Production dynamics were run in the NPT ensemble for 30 
ns for each of the metabolites and the antibiotics. The equilibration was 
monitored by root mean square deviation (RMSD) trajectory analysis. 

The analysis of the MD simulation is performed in VMD 1.94a51 
(Humphrey et al., 1996). The RMSD with respect to the initial structure 
was computed along the trajectory, based on the backbone atoms of the 
protein (residues 250 to 477) and the ligand atoms. Root-mean-square- 
fluctuation (RMSF) was calculated to quantify flexibility of the indi-
vidual residues over the simulation. The interaction frequency between 
the ligand and each target residue was the proportion of 1000 frames in 
which the distance between the ligand that residue was less than 3 Å. 
The interaction frequency was also calculated for the systems with 
piperacillin, (5R)- and (5S)-penicilloic acid, (5R)- and (5S)- pseudope-
nicillin, penamaldic acid, 6APA and decoy molecules. 

2.3. Phylogenetic tree 

The data for phylogenetic tree construction was obtained from the 
National Center for Biotechnology Information (NCBI) with accession 
numbers: P. aeruginosa (WP_034012608.1 [PBP1], KJJ12591.1 
[PBP1B], RCH59966.1 [PBP2], TEF07458.1 [PBP3], CEI20997.1 
[PBP3A], VZT40242.1 [PBP4], AAC46341.1 [PBP5]); Escherichia coli 
(E. coli) (EFF04358.1 [PBP1A], KXG98993.1 [PBP1B], ACI79985.1 
[PBP1C], OWC13281.1 [PBP2], AAA24300.1 [PBP3], AKK50024.1 
[PBP4], KAB3175222.1 [PBP4B], AUG92247.1 [PBP5], EHY04776.1 
[PBP6], ACI72436.1 [PBP6B], ACI81515.1 [PBP7]); PBP3 of Bacillus 
cereus EEL06080.1. The alignment and the drawing of the phylogeny 
tree was performed in MEGA 11 [49]. The alignment used ClustalW [50] 
with gap opening penalty 10.0, gap extension penalty 0.1, 30% of the 
delay divergent cutoff and negative matrix was not used. The phylogeny 
tree used the neighbor-joining method [51] with bootstrap method with 
500 replicates, which used the Poisson model. The phylogenetic tree 
used the gamma distribution with gamma parameter 1.0 and the PBP3 of 
Bacillus cereus was set as the outgroup. 

3. Results 

3.1. The docking pose of piperacillin closely matches the crystal structure 

The first step was to verify the integrity of the method by docking an 
antibiotic ligand back into its cognate binding site from a known crystal 
structure. We used crystallized piperacillin into 4KQO, PBP3 of 
P. aeruginosa. This produced a benchmark against which the binding of 
other antibiotics or metabolites to the PBP binding site could be 
compared. The docking results (Fig. 2a) showed that the RMSD of the 
redocking of piperacillin is 0.62 Å with fitness 149. This was confirmed 
by the proximity of the redocked piperacillin to its position in the crystal 
structure (Fig. 2b). This gave confidence that the result was a suitable 
benchmark for docking the antibiotics and metabolites. 

3.2. Docking of antibiotics 

The same docking setup was used to dock the nine antibiotics 
(amoxicillin, ampicillin, cloxacillin, dicloxacillin, flucloxacillin, 
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penicillin G, penicillin V, ticarcillin, oxacillin) into the PBP with the 
common beta-lactam ring as reference. Ampicillin and Penicillin G 
showed lower RMSD than piperacillin, with 0.25 Å and 0.58 Å, 
respectively (Fig. 2c), but both had lower fitness scores of 109.9 and 
106.7. The other penicillins had higher RMSDs (between 1.8 and 2.1 Å). 
Although these penicillins had a higher RMSDs, they were still close to 
the crystalized structure of piperacillin (Fig. 2d). 

3.3. Docking of decoy molecules to penicillin binding protein and 
metabolites to decoy protein 

As controls, 50 decoy ligands were produced from the Directory of 
Useful Decoys (DUD) [20]. The RMSD of the decoy ligands docked to 
PBP were between 6 Å to 8 Å (Figs. 2a and 3), considerably higher than 
any of the antibiotics. The fitness scores of the docking of decoy ligands 
with the PBPs was between 43 and 68. Taken together, this suggested 
that the decoy ligands did not bind the PBP and provided useful quan-
titative controls for metabolite docking below. 

We established thresholds for metabolite binding to PBP3 by docking 
metabolites of piperacillin to the decoy protein, as well as both metab-
olites and decoy ligands to two decoy proteins to which beta-lactam 
antibiotics would not be expected to bind: thrombin inhibitor (1BA8) 
and prohormone-processing carboxypeptidase (1AC5). The RMSD and 
fitness levels for decoy binding to decoy proteins (1BA8 and 1AC5) were 
between 5.32 Å and 9.76 Å and 32.1 and 65, respectively (Supplemen-
tary Fig. 1). The distribution of RMSDs and fitnesses associated with 
decoy bindings suggested that good metabolite binding could be rep-
resented by RMSD less than 5.4 Å and fitness greater than 70. Specif-
ically, antibiotic metabolites of piperacillin docked to the PBP had 
fitness scores between 77 and 110, while metabolites of docked to decoy 
proteins (1BA8 and 1AC5) had fitness scores below 74; similar fitness 
scores were observed for the decoy molecules docked to the decoy 
proteins (Supplementary Fig. 1). 

3.4. Docking of metabolites with PBPs shows penicilloic acid, 
pseudopenicillin and 6APA are expected to bind to PBP 

When docking the actual penicillin metabolites, (5R)- and (5S)- 
penicilloic acid, (5R)- and (5S)-pseudopenicillin and 6APA had a high 
fitness (79–93) and low RMSD (1.3 Å to 3.2 Å) (Fig. 3). They were 
suggested to be more likely to bind to PBP3 compared with the other 
metabolites. These results are consistent with the X-ray crystal structure 
for PBP3 complexed with (5S)-penicilloic acid [12], providing confi-
dence for the remaining predictions. (5R)- and (5S)-penilloic acid, 
penamaldic acid and penicillanic acid had a high fitness level 
(87.6–109) and high RMSD (6.1 Å to 7.8 Å) while the decoy molecules 
bound to PBP have similar RMSD (6 Å to 8 Å) and have a lower fitness 
(43–68) (Fig. 3). While they might interact with PBPs, the pattern of 
interaction of the ligand might differ from the antibiotics so they were 
less likely to bind. (5R)- and (5S)-penillic acid, penaldic acid, pen-
illoaldyhyde had low fitness level (76–82) and high RMSD (8.1 Å to 8.9 
Å) and these molecules had a higher RMSD than the decoy molecules 
(Fig. 3), so they could not bind to PBP or might easily detach from the 
protein after binding to it. Because penamaldic acid had the highest 
fitness and also a high RMSD, it had been chosen as a negative control 
for the MD simulations below. The metabolites docking to the PBP had 
fitness level between 77 and 110. When metabolites were docked to the 
decoy proteins, the fitness levels (37–74) were similar to the fitness level 
when the decoy molecules docked to the decoy proteins (Supplementary 
Fig. 1). 

3.5. Predicted interactions of metabolites with key PBP3 residues 

In order to verify the structural plausibility of the low RMSD pre-
dicting docking poses, we compared the 3D orientation of penicilloic 
acid and pseudopenicillin of piperacillin, as well as 6-APA, with that of 
the crystal structure for docked piperacillin. The antibiotic piperacillin 

Fig. 2. A) Docking results showing the fitness levels and RMSDs of antibiotics and decoys. The fitness describes the steric complementarity between the protein and 
ligand with the effect of the atom clash potential; a higher fitness score indicates better affinity. The antibiotics have lower RSMD and higher fitness than the decoys, 
consistent with good quality docking. (B–D) Binding poses from docking of different antibiotics. B) The redocked piperacillin (cyan) is very close to the original X-ray 
structure for piperacillin (green). C) Penicillin G (yellow) and ampicillin (purple) have low RSMD show close position relative to piperacillin. D) Amoxicillin (pink), 
cloxacillin (white), dicloxacillin (dark green), flucloxacillin (orange), oxacillin (brown), penicillin V (blue) and ticarcillin (dark red) have higher RSMDs; they are still 
reasonably close to the piperacillin crystal structure. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of 
this article.) 
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interacts with the residue Ser294 with a covalent bond, and with resi-
dues Ser349, Ser485, Thr487 and Tyr503 with hydrogen bonds (Sup-
plementary Fig. 2). In comparison, (5R)-penicilloic acid interacted with 
Ser485 and Thr487, (5S)-penicilloic acid interacted with Ser294, Ser349 
and Thr487. (5R)-pseudopenicillin interacted with Ser349, Ser485 and 
Thr48, (5S)-penicilloic acid interact with Ser294. (5S)-pseudopenicillin 
interacted with Phe533, penamaldic acid interacted with Thr487 and 6- 
APA interacted with Ser294 and Ser349 (Table 1); these predicted in-
teractions are all with hydrogen bonds (Supplementary Fig. 2). Thus 

each of the high fitness and low RMSD metabolites was predicted to 
interact with PBP3 with at least one residue in common with 
piperacillin. 

3.6. MD simulations 

In order to further assess the potential for metabolites to bind into the 
PBP pocket, we ran MD simulations for the highest scoring metabolites 
(5R)- and (5S)- penicilloic acid, (5R)- and (5S)- pseudopenicillin and 
6APA), with piperacillin as a positive control, and three negative con-
trols: penamaldic acid, a decoy ligand with low fitness score, and a 
decoy ligand with high fitness score. The MD simulations were analysed 
as follows: root-mean-square fluctuation (RMSF) to assess whether 
structure of the system was in equilibrium; interaction frequencies be-
tween the metabolite and binding pocket atoms; and the position and 
structural orientation of the metabolites when they were sitting within 
the binding pocket. 

3.6.1. RMSF analysis of the MD simulations 
During the MD simulations, the structure and the RMSD of the 

backbone atoms relative to the initial structure remained stable when 
the complex is in equilibrium. RMSD trajectory analysis was performed 
on the binding pocket (between residue 250 and residue 504), as the 
residues not associated with the binding pocket had very high RMSDs, 
which adversely bias the RMSD (Supplementary Fig. 3). The RMSDs in 
the binding pocket varied between 0.5 Å to 2 Å, indicating that the 
systems are stable. 

The root-mean-square fluctuation (RMSF; Fig. 4a) showed the 

Fig. 3. Docking results showing the fitness levels and RMSDs of antibiotic metabolites, together with decoys in order to indicate thresholds for likely docking. The 
two coloured regions separate the low RMSD (yellow) and high RMSD (red). The horizontal dotted line separates piperacillin metabolites from the metabolites of 
other antibiotics. As this PBP binds to piperacillin, the R group of piperacillin metabolite will be more familiar to bind to PBP and thus higher RMSD. The vertical 
dotted line indicates the decoy ligand with the lowest RMSD and acts as the threshold value to separate the difference between potential binding metabolites and the 
decoy. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.) 

Table 1 
The filled boxes indicate interactions between residues of the PBP and anti-
biotics or metabolites based on the structural interaction between the ligand 
and the protein in Supplementary Fig. 1.. 
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deviation of the position of a particle or residue with respect to an initial 
position over all frames. The binding pocket (residues 250–504) was 
shown to be stable because it had a low RMSF ranging between 0.5 Å to 
1.5 Å (Fig. 4b). The N- and C- termini of the protein have high RMSF, 
suggesting that the structure of the N- and C- termini moved consider-
ably across all frames; thus these termini might affect the value in RMSD 
analysis when determining whether the system was stable. MD simula-
tions of piperacillin showed that the key binding residues (Ser294, 
Ser349, Ser485, THR487 and TYR503) were all close to their positions 
and orientations in the crystal structure (RMSD of 1 Å) (Supplementary 
Fig. 3), giving confidence in the MD simulations (Fig. 4c). 

3.6.2. Interaction frequency of the metabolites with the residues 
Piperacillin interacted with the protein and was stabilized by the 

residues Ser294, Ser349, Ser485, Thr487 and Tyr503, with very high 
frequency. In order to assess binding of metabolites in more detail, the 
interactions between these residues and the ligands were assessed, by 
counting the frequency of distance below 3 Å across all frames (Table 2). 
The interactions of (5R)-pseudopenicillin and 6APA with key residues 
was close to that of piperacillin, with ligand-protein interactions at four 
of the five residues. (5S)- penicilloic acid and (5S)- pseudopenicillin 
were predicted to interact with two residues, while (5R)-penicilloic acid 
and penamaldic acid interacted at just one residue. The decoy ligands 
showed relatively weak interactions with the protein, with one residue 
and two residues respectively. 

3.6.3. Position and structural orientation of the metabolites when they 
bound to PBP 

(5S)- penicilloic acid, (5R)- and (5S)-pseudopenicillin, 6APA located 
on the center of the binding pocket (Fig. 5a) and so had the potential to 
interact with the key residues. (5R)-penicilloic acid (3.1 Å below 
piperacillin) and penamaldic acid (on right of piperacillin with 6.9 Å) 
were located on the right side of the binding pocket, while the low rank 
decoy was in the left (with 4.4 Å); none of these molecules were 

predicted to enter the binding pocket (Fig. 5b). The high rank decoy 
entered the binding pocket but the orientation of the ligand was 
different from piperacillin (3.5 Å difference between the center of decoy 
and pipercillin) (Fig. 5b), so the molecule was not predicted to interact 
strongly with the protein as they had only one residue and two residue 
interactions (Table 2). (5R)-penicilloic acid and penamaldic acid lacked 
the interaction of the key residue Ser294 (Table 2), while the decoys 
interacted with Ser294 but with different location in the binding pocket 
relative to piperacillin (Fig. 5b). 

We next compared the orientation and alpha carbon positions of the 
protein residues between metabolite and piperacillin binding (Fig. 6 and 
Table 3). (5R)-pseudopenicillin, (5S)-penicilloic acid and 6APA had a 
similar pattern of interaction of key residues and torsion angles as 

Fig. 4. A) RMSF analysis of all residue among all frames of the MD simulations. The binding pocket of the protein (residues 250 to 504) has a relatively fixed 3D 
structure (RMSF below 2 Å); with the areas with highest RMSF lying outside of the binding pocket. B) The structure of binding pocket suggested by RMSF analysis 
indicated by the green surface showing the piperacillin molecule fitting into the pocket. C) The orientation of the key residues of the binding pocket and the 
piperacillin molecule, associated with the MD simulation (green) and the crystal structure (dark purple) showing good alignment between the two. (For interpre-
tation of the references to colour in this figure legend, the reader is referred to the Web version of this article.) 

Table 2 
Interaction frequencies between molecules and PBP residues as predicted by MD 
simulations and docking. Percentage is the frequency in which residue is within 
3 Å from the ligand in MD simulations; interactions below 3 Å are predicted to be 
strong enough to stable the ligand. Colours represent synthesis of MD and 
docking results: red are interactions predicted by both simulation methods; 
yellow are interactions predicted from MD; blue are interactions predicted from 
docking; no colour signifies no predicted interactions. Overall, (5R)-pseudope-
nicillin, (5S)-penicilloic acid and 6APA are predicted to bind to the PBP3 binding 
pocket.   

SER294 SER349 SER485 THR487 PHE533 

piperacillin 100.0% 100.0% 99.5% 100.0% 75.4% 
(5R)- penicilloic acid 35.6% 11.7%  89.4% 49.0% 
(5R)- pseudopenicillin 99.8% 2.0% 99.7% 99.3% 89.8% 
(5S)- penicilloic acid 82.9% 40.3% 0.5% 98.2% 47.9% 
(5S)- pseudopenicillin 67.7% 43.5% 0.4% 90.9% 88.3% 
penamaldic acid 31.0% 30.0% 21.7% 89.7% 32.8% 
6APA 100.0% 100.0% 99.6% 100.0% 73.4% 
high rank decoy 98.1% 41.4%  31.9% 34.2% 
low rank decoy 99.6% 99.7% 17.6% 37.1% 13.2%  
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piperacillin, further confirming the prediction that they bound on the 
PBP. There was a large difference in RMSD of the alpha carbon of (5R)- 
(4.1 Å) and (5S)- (2.5 Å) pseudopenicillin on Ser349 (Table 3). The 
residue Ser349 moved outwards, and the binding pocket became larger. 
These might cause the interaction (2%) between the pseudopenicillin 
and the protein became weaker but also the movement of the alpha 
carbon of Ser349 was to adopt difference shape of pseudopenicillin and 
to allow the binding of pseudopenicillin towards PBP. The torsion angles 
of residue among systems of (5R)-pseudopenicillin, (5S)-penicilloic acid 
and 6APA showed they were similar to piperacillin (Fig. 6). 

4. Discussion 

In this study, docking predictions suggested that the metabolites 
(5R)- and (5S)-pseudopenicillin, (5R)- and (5S)-penicilloic acid and 
6APA could bind PBPs. Through MD simulations, we see consistent 
predictions of possible binding of (5R)-pseudopenicillin, (5S)-penicilloic 
acid and 6APA into the binding pocket of PBP3. (5S)-penicilloic acid has 
already been found complexed to PBP3 in a stable crystal structure (12), 
lending confidence to our predictions for (5R)-pseudopenicillin and 
6APA. In the MD simulations of (5R)-pseudopenicillin, four of the five 
main binding residues are in similar positions as compared with the MD 
simulation of penicillin (Table 3), with very high probabilities of inter-
action (Table 2). The most important residue, Ser294, interacting 
99.8%, with its carbon atom moving by only 0.8 Å between the simu-
lations of the two ligands. The exception is Ser349, whose alpha carbon 
moves by 4.9 Å. Although the position of Ser349 moved to adopt the 
shape of (5R)-pseudopenicillin, Ser349 did not interact with (5R)- 
pseudopenicillin (2%), so this may slightly weaken the interaction of the 
PBP with (5R)-pseudopenicillin. This suggests that molecules have the 
ability to bind to the PBP not only though the covalent bonding between 
serine and the oxygen of the nitrogen quadrilateral ring but also though 
the non-covalent interaction between the molecules and the penicillin 
binding protein [12]. The data also show that the non-covalent binding 
(5S)-penicilloic acid and the antibiotic bind to the same binding site 
with similar orientation. Taken together, this gives confidence that 
(5R)-pseudopenicillin, (5S)-penicilloic acid and 6APA have the potential 
to bind to the target penicillin binding protein. If so, they may also and 

Fig. 5. The orientation of the ligand within the protein. A) Piperacillin (green), 
(5S)-penicilloic acid (light blue), (5R)-pseudopenicillin (dark blue), (5S)-pseu-
dopenicillin (orange) and 6APA (pink) sit in the binding pocket of PBP. B) (5R)- 
penicilloic acid (yellow) and penamaldic acid (blue). (5R)-penicilloic acid (3.1 
Å below piperacillin) and penamaldic acid (on right of piperacillin with 6.9 Å) 
locate on the right side of the binding pocket and do not fully enter it. The low 
rank decoy (purple) is in the left (4.4 Å difference between the center of the 
decoy and piperacillin) and it is not in the binding pocket. The high rank decoy 
enters the binding pocket but it binds differently from the piperacillin (3.5 Å 
difference between the center of decoy and pipercillin). (For interpretation of 
the references to colour in this figure legend, the reader is referred to the Web 
version of this article.) 

Fig. 6. Structural orientations of the residues Ser294, Ser349, Ser485, Thr487 and Tyr503 in MD stimulations of piperacillin (green), (5R)- (dark blue) and (5S)- 
(orange) pseudopenicillin, (5S)-penicilloic acid (sky blue) and 6APA (pink) showing the movement of the alpha carbon and the torsion angle of the metabolites when 
comparing with the piperacillin (Table 2). The movement of the alpha carbon of the Ser349 of pseudopenicillin makes a larger binding pocket when compared with 
the binding pocket of piperacillin. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.) 
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have biological effect, specifically providing some (non-clinical) level of 
antibiotic action, but possibly sufficient to provide selective pressure for 
resistance. 

Penicillins are relatively unstable in the environment, e.g. piper-
acillin can remain stable with 5% tazobactam sodium for 2 days at 25 ◦C 
[52], amoxicillin remains stable with clavulanic acid for 26 h at 25 ◦C 
[53] and penicillin G could be stable for 24 h at 25 ◦C [54]. Although 
there is little evidence about the stability of penicillin metabolites in 
laboratory or environmental conditions, the penillic acid, penicilloic 

acid and penicillenic acid can be highly unstable metabolites with an 
unstable beta-lactam ring [36], so the evidence for the uncertain sta-
bility of the metabolite is required. We also note that while 6-APA has an 
intact beta lactam ring, the beta lactam bond is broken in both 
(5R)-pseudopenicillin and (5S)-penicilloic acid. Thus these metabolites 
would not be subject to breakdown by beta lactamases. Any environ-
mentally stable antibiotic metabolites could be important contaminants, 
as low antibiotic concentrations may increase genetic variability of 
microbes and select for resistance [10,55]. This could have considerable 

Table 3 
Table of torsion angle of the residue and distance move of the alpha carbon of the metabolites in Å compared with piperacillin. The box filled with yellow shows there is 
a large change in the alpha carbon atom of the residue and this enlarged the binding pocket making it not likely to interact with the ligand.   

SER294 SER349 SER485 THR487 TYR503 

Psi Phi Psi Phi Psi Phi Psi Phi Psi Phi 

Piperacillin − 52.2◦ − 27.6◦ 30.3◦ 66.5◦ 159.4◦ − 93.5◦ 108.7◦ − 125.7◦ 160.7◦ − 132.6◦

(5R)-pseudopenicillin − 10.9◦ − 72.2◦ 156.3◦ 65◦ 156◦ − 81.3◦ 133.7◦ − 141.9◦ 165.3◦ − 141◦

(5S)-penicilloic acid − 12.1◦ − 63.6◦ 17.1◦ 60.5◦ 166.8◦ − 99.7◦ 143.1◦ − 144.5◦ 154.9◦ − 159.9◦

(5S)-pseudopenicillin − 3.5◦ − 76.3◦ 48.3◦ 42.5◦ 152.8◦ − 96.1◦ 153.1◦ − 122.9◦ 152.9◦ − 135.3◦

6APA − 1.4◦ − 70.2◦ 26.2◦ 82.9◦ 160.9◦ − 69.6◦ 119.6◦ − 155.9◦ 156.6◦ − 129.8◦

Distance of alpha carbon movement (Å) 

SER294 SER349 SER485 THR487 PHE533 

(5R)-pseudopenicillin 0.8 4.1 0.9 1.5 0.8 
(5S)-penicilloic acid 0.4 0.8 0.5 0.9 0.4 
(5S)-pseudopenicillin 0.8 2.5 1.2 0.9 0.5 
6APA 0.3 0.4 0.4 1.0 0.9  

Fig. 7. Phylogenetic tree showing the correlation between PBP of P. Aeruginosa and E. coli. The outgroup is the PBP3 of Bacillus cereus. In P. Aeruginosa, PBPs 1a and 
1 b are class A; PBPs 2, 3 and 3a are class B; PBPs 4 and 5 are class C. In E. coli, PBPs 1a, 1 b and 1c are class A; PBPs 2 and 3 are class B; PBPs 4, 5, 6, 6 b and 7 are 
class C. Note that there are orthologs for each PBP, as well as some paralogs in each organism. 
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significance for environmental surveillance for antibiotics, as stable 
metabolites that exert selective pressure for antibiotic resistance would 
also need to be measured. Moreover, most evidence for spread of beta 
lactam resistance in P. aeruginosa is from clinical strains [56–58], further 
highlighting the need for understanding the acquisition of and selection 
for antibiotic resistance in different environments. 

PBPs are classified into high molecular mass and low molecular 
mass. High molecular mass PBPs are classified by the number of re-
actions that they can catalyze, class A and B [29]. The bifunctional 
enzyme (class A) catalyzes both the glycosyltransfer and trans-
peptidation, while the monofunctional enzyme (class B) only perform 
transpeptidation [59]. They are serine acyltransferases which catalyze 
the formation of cross-link peptidoglycan which is an essential macro-
molecule surrounding the bacteria. The low molecular mass PBPs (class 
C) generally function as carboxypeptidases or endopeptidases and 
typically be genetically deleted without having a significant effect on 
cell viability or growth [60]. The PBPs used in the study is PBP3 of 
P. Aeruginosa which is class B PBP [29]. The PBPs are numbered in the 
order of decreasing molecular weight in a given organism, so PBPs with 
the same number in different organisms are not necessarily orthologs. In 
P. Aeruginosa, PBPs 1 A and 1 B are class A; PBPs 2, 3 and 3 A are class B; 
PBPs 4 and 5 are class C [29]. By way of comparison, in E. coli, PBPs 1 A, 
1 B and 1C are class A; PBPs 2 and 3 are class B; PBPs 4, 5, 6, 6 B and 7 
are class C [61]. The PBPs of P. Aeruginosa show close phylogenetic 
correlation to the PBPs of E. coli (Fig. 7), with orthologous proteins for 
each of the PBPs, and some paralogs (e.g. PBP1C in E. coli paralogous to 
PBP1A and PBP3A in P. aeruginosa paralogous to PBP3). Taken together, 
further detailed simulations of metabolite binding to other PBP classes 
(class A or class C), or in other organisms, would be appropriate. 
Moreover, it would also be possible to use these docking and MD sim-
ulations to screen mutations of PBPs for antibiotic binding, and so pre-
dict mutational resistance to penicillins or their metabolites. 

While we focused on penicillins, these methods could also be applied 
to the same antibiotic class but a different family, such as cephalospo-
rins, or to other antibiotic classes, such as tetracyclines or aminoglyco-
sides. Cephalosporins also target PBP and have same binding mechanism 
with penicillin as they belong to the beta-lactam family, but have 
different degradation pathways from penicillin and so have different 
metabolite products [25,62]. Tetracyclines and aminoglycosides both 
target the 30 S ribosome subunit, but they bind to different positions of 
the ribosome. Tetracycline binds on the A-site of the 30 S ribosome 
preventing the binding of the aminoacyl-tRNA to the A-site [63] and 
further preventing the formation of the protein. Aminoglycosides bind to 
the start codon of the 30 S ribosome and form a complex to prevent the 
start of the formation of protein [64]. There is detailed information of 
the degradation pathway of tetracycline [65], but the degradation of the 
aminoglycoside is less well characterized [66], thus placing tetracycline 
as more amenable for similar analysis. 

An important limitation of our results is that we only had access to 
one structure of antibiotic complexed to its target protein in a single 
organism (4KQO). While the predictions have been successful, their 
generality would be improved with access to further structures of 
different PBPs, different penicillins, or different organisms. Moreover, 
molecular docking cannot predict the presence of unknown covalent- 
binding [39], which may affect the predictions of how the ligand 
binds to the target protein. MD simulations also have limitations [47], 
with results that can depend upon the parameter sets used [67], and the 
molecular mechanics force field chosen [46]. Future work could seek to 
calculate binding affinities quantitatively. The method of choice would 
be free energy perturbation (FEP) [68]. A more approximate approach 
could be adopted, e.g., MM/GBSA or MM/PBSA [69], but FEP calcula-
tions would be expected to be more reliable. The uptake of the metab-
olites of the organisms also need to be estimated; antibiotics with 
cytoplasmic or ribosomal targets need to enter the cell, including 
crossing the cell wall and membrane, in order to perform their functions 
[70]. This step is untested in our analysis of metabolite docking. The 

metabolic state of microbes may influence the antibiotics susceptibility 
of the microbes and this may affect the amount and effect of uptake of 
antibiotics [71]. Finally, some details of the degradation pathways of 
penicillin are not yet fully understood; these may produce other me-
tabolites which have not been tested in this study [72]. 

5. Conclusion 

In this study, we predicted that (5R)-pseudopenicillin and 6APA can 
bind to their cognate protein and may be bioactive; this is in addition to 
(5S)-penicilloic acid which has already been shown to be binding to 
PBP3 [12]. If these molecules are truly bioactive, and also stable and 
present in the environment, then they could act as selective agents for 
antimicrobial resistance. Empirical testing of these predictions is 
essential because there is currently no evidence about the stability of any 
of these metabolites under environmental or laboratory conditions. If 
this is found to be the case for any of these metabolites, then these 
metabolites should be included in environmental testing for antibiotics. 
Further study on metabolites of other antibiotic classes is also 
implicated. 
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