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Abstract: This paper is concerned with the assessment of life prediction 

models for thermomechanical fatigue (TMF), with specific application to 

P91 steel. A program of TMF tests, including dwell periods, are performed 

to determine the role of thermomechanical loading on fatigue life. As 

expected, fatigue life under conventional TMF testing (no dwells) is 

governed by maximum applied stress and inelastic strain-range. However, 

with the introduction of dwell periods, at maximum tensile stress during 

TMF loading, in-phase loading becomes the life-limiting case. This is 

attributed here to increased microstructural degradation and oxidation, 

associated with the dwell at peak temperature. Analysis of commonly used 

TMF life prediction models shows that the effect of dwell periods 

currently cannot be predicted for in-phase loading. Thus, it is concluded 

that physically-motivated approaches are required to successfully predict 

fatigue life under more complex (service) thermomechanical loading 

histories. 

 

Response to Reviewers: Reviewer Response 

The Authors thank the Reviewer for the time and effort which they 

obviously invested in reading, in detail, our work. This document 

summarises our response to the reviewer comments and highlights where 

changes are made. Each Reviewer comment is addressed separately. The 

manuscript has also been modified to reflect the comments, with the 

modifications highlighted in yellow. We believe that the changes made, in 

light of the Reviewer comments, have enhanced the quality of the 

submitted manuscript. Each Reviewer comment is addressed in detail below. 

Reviewer #1: This is an interesting and well written paper with some 

important findings. 

A few details must however be clarified before it can published. 

Q1: Page 2, line 42: The abbreviation FCI is used but has previously not 

been defined. 

Response: The abbreviation FCI (fatigue crack initiation) is defined on 

Page 2 of the revised manuscript. 



-------------------------------------------------------------------------

--------------------------------------- 

Q2: Page 2, line 52: The abbreviation FI is used but has previously not 

been defined. 

Response: The abbreviation IF (isothermal fatigue) is defined on Page 2 

of the revised manuscript. 

-------------------------------------------------------------------------

--------------------------------------- 

Q3: Page 3, line 5: The definition of IF is given but has already been 

used, see comment 2. 

Response: The definition of IF has been moved forward in the revised 

paper as per comment 2.   

-------------------------------------------------------------------------

--------------------------------------- 

Q4: Page 4, section 2.2: The failure criteria for fatigue life should 

preferably be given in this method section, not in the results section. 

Response: The failure criteria for fatigue life is now moved to the 

experimental methodology section (Section 2.2) on page 4 the revised 

manuscript.   

-------------------------------------------------------------------------

--------------------------------------- 

Q5: Page 5, section 2.2: The dwell time for the TMF-OP tests is applied 

at Tmin. This is perhaps not the most common TMF-OP dwell cycle. Often 

the dwell is applied at Tmax in both IP and OP test and thus at 

compressive stress for OP tests. However, the cycle the authors have used 

might very well be relevant for a specific application. But I would like 

to see that this is clearly pointed out in section 2.2 and perhaps also 

motivated. 

Response: The authors agree that the proposed cycle is not the 

conventional TMF-OP cycle with a dwell at maximum temperature (maximum 

compressive stress). However, this cycle, with a dwell at Tmin, is 

selected as it is representative of part-load operation in power plant, 

where the temperature undergoes a dwell period at a lower temperature 

similar to the Tmin values considered here. Under such conditions, the 

operating pressure can increase, hence, generating a CTMF-OP cycle 

similar to that presented here. The following text has been added on page 

4 of the revised manuscript to highlight this point: 

"Similar to the IF test program, the CTMF test also has a dwell period at 

maximum tensile strain, corresponding to a dwell at maximum temperature, 

Tmax, for IP conditions and at minimum temperature, Tmin, for OP 

conditions. Although a dwell period at Tmax is a commonly used OP cycle, 

the proposed OP cycle (with a dwell period at Tmin) is designed to 

represent part-load operation of power plant. Dwell periods under such 

conditions occur at a reduced operating temperature similar in magnitude 

to the Tmin value of 673 K tested here."  

-------------------------------------------------------------------------

--------------------------------------- 

Q6: Page 5, line one: The authors state that the relaxation during dwell 

for the CTMF tests is consistent with the CF tests. But from Figure 5 I 

would say that there is a slight difference for the CTMF-IP test and the 

CF-873K test. 

Response: The authors agree with the Reviewer that there are differences 

between the CTMF-IP test and the CF-873 K test. This difference is 

attributed here to the strain-rate effect. To demonstrate this effect, 

additional data at an alternate nominal applied strain-rate is included 

for CTMF-IP and CTMF-OP loading conditions. For the CTMF-OP conditions, 

where the dwell temperature is 673 K, no significant effect is observed, 

consistent with IF test data at the different strain-rates considered 



here. However, for CTMF-IP conditions, where the dwell temperature is 873 

K, a clear effect with strain-rate is observed, consistent with the 

observed effect under IF test conditions at 873 K. The CF-873 K test was 

conducted at a strain-rate of 1×10-3 s-1, whereas the CTMF tests are 

conducted at lower strain-rates of 3.3×10-4 s-1and 2.5×10-4 s-1. The text 

on pages 5 and 6 of the revised manuscript has been modified to clarify 

this as follows:  

“The measured stress relaxation during the dwell period of the CTMF tests 

is presented in Figure 7 for both OP and IP loading conditions. A 

comparison with isothermal CF experimental data at the dwell temperatures 

of 673 K and 873 K, respectively, is also presented. To enable a direct 

comparison of relaxation behaviour across a range of strain-rates, this 

data is normalised by the stress at the start of the hold period (σ0). 

During this isothermal dwell period in the CTMF cycle at the same applied 

mechanical strain, the observed relaxation of stress in each case is 

similar to that of the isothermal CF tests at 673 K for the OP case, as 

presented in Figure 7a. However, there exists a significant difference in 

relaxation behaviour for dwells at 873 K (Figure 7b). For the strain-

rates considered here, no significant strain-rate effect is observed in 

P91 steel at temperatures below 773 K [7]. However, a significant strain-

rate effect is observed in P91 steel under IF at 873 K, as presented in 

Figure 8a. Thus, it is concluded here that the observed trend in Figure 

7b is primarily due to the strain-rate effect under higher dwell 

temperatures.” 

-------------------------------------------------------------------------

--------------------------------------- 

Q7: Page 5, line 6-8: In this section the strain rate effect is discussed 

for TMF-IP, Figure 6b, but the sentence ends with a statement that dwell 

occur at 873K. Why did you chose to study the strain rate effect for 

tests that also included a dwell. Also the caption for Figure 6b indicate 

that this is the CTMF tests and the labels indicate two different strain 

rates. However this is not consistent with the test conditions in Table 

1, which indicates that the CTMF test were done with just one strain 

rate? 

Response: The effect of nominal applied strain-rate in a dwell test is 

included to investigate if the applied strain-rate has an effect on the 

relaxation behaviour of P91 steel. This effect is now presented in an 

updated Figure 5 (see comment Q6). These results will also be exploited 

in future modelling work on the evolution of the thermal stress component 

under different loading cycles. 

The test conditions in Table 1 have also been updated to include all 

strain-rates at which CTMF tests were performed. 

-------------------------------------------------------------------------

--------------------------------------- 

Q8: Page 5, line 37-40: Move this to the method section, see comment (4) 

Response: The failure criteria for fatigue life is now moved to the 

experimental methodology section (Section 2.2) on page 4 of the revised 

manuscript. 

-------------------------------------------------------------------------

--------------------------------------- 

Q9: Page 5, line 43 and Figure 10: All IF tests are plotted together with 

one colour, independent of test temperature. Is there not any systematic 

difference between the different test temperatures? If so I think this is 

an important finding that you could highlight more clearly. 

Response: The IF tests of Figure 10 (Figure 11b in the revised 

manuscript) are now plotted with different symbols to denote the three 

different test temperatures. However, when plotting inelastic strain-

range versus Nf, the IF test data essentially collapses to a linear fit 



on a log-log plot (power law relationship). This temperature-independent 

power law relationship also simplifies the parameter identification 

process for the failure models under TMF.  

Furthermore, although there is not a clear temperature effect for 

inelastic strain-range versus Nf, a clear temperature-dependence exists 

when applied mechanical strain-range versus Nf is plotted. This 

temperature-dependence is presented in Figure 11a of the revised 

manuscript.    

The following text has also been included on pages 6 and 7 of the revised 

manuscript to clarify this finding: 

“It should also be noted that there is a significant temperature-

dependence for the number of cycles to failure as a function of the 

applied mechanical strain-range for IF conditions (Figure 11a). However, 

this temperature-dependence is not as evident when considering inelastic 

strain-range versus Nf, where the IF test data essentially collapses to a 

power law relationship as shown in Figure 11b.” 

-------------------------------------------------------------------------

--------------------------------------- 

Q10: Page 5, line 54: The definition for the abbreviation FCI is given 

but has already been used before, see comment (1) 

Response: The definition of FCI has been removed from this section in the 

revised manuscript.   

-------------------------------------------------------------------------

--------------------------------------- 

Q11: Page 6, line 2: The authors state that there is a significant 

different relationship with inelastic strain-range for the symmetric and 

asymmetric TMF-IP tests. But judging from figure 10 I don't think the 

authors have enough data to really say that this is a significant 

difference. 

Response: The deviation from a power law relationship at the lower 

applied strain-ranges is possibly due to the transition from low-cycle 

fatigue to high-cycle fatigue. The text on page 7 of the revised 

manuscript has been modified to provide this explanation for the 

deviation from power law behaviour and to highlight that further testing 

is required to confirm this is the transition region: 

“This may represent the transition from low-cycle fatigue to high-cycle 

fatigue for P91 steel. Thus, further testing at these lower applied 

strain-ranges under IF and TMF (both symmetric and asymmetric) test 

conditions is required to define whether this is the transition region 

for low-cycle fatigue to high-cycle fatigue; this will also provide 

essential data for plant designers and fatigue life prediction at these 

potentially crucial strain-ranges for conventional power plant 

applications.”  

-------------------------------------------------------------------------

--------------------------------------- 

Q12: Page 6, lines 4-19: Here it is very confusing again regarding the 

variation in strain rate for the CTMF tests. Figure 12 gives data for two 

different strain rates, but no information about the strain range is 

given is it the same? 

Response: The applied strain-range (±0.5%) is now included in the caption 

of Figure 12 (Figure 13 in the revised manuscript).  

-------------------------------------------------------------------------

--------------------------------------- 

Q13: What is the difference between the TMF tests in Figure 17b and 

Figure 18a. The cycles to failure seems to be different but the 

description indicate that it is the same kind of tests so why are all 

data not plotted at the same time. Also all data from the tests are not 

given in the paper, basic stuff like strain ranges vs cycle to failure is 



missing. Unfortunately, this creates some suspicious feelings to an 

otherwise very good paper. 

Response: The plot of applied mechanical strain-range vs cycles to 

failure is now included in Figure 11a of the revised manuscript.  

Figure 17b presents the application of the Zamrik model to the IF and 

symmetric TMF tests only. Figure 18a is application of the Zamrik model 

to the asymmetric TMF tests only. This data, and TMF loading with dwells, 

were split into individual plots to investigate the capability of the 

Zamrik model to predict fatigue life under (i) IF and symmetric 

(conventional) TMF, (ii) asymmetric TMF and (iii) CF and CTMF conditions. 

The text on page 8 of the revised manuscript now makes this distinction.  

-------------------------------------------------------------------------

--------------------------------------- 

Reviewer #2: The work reported in the manuscript is a useful addition to 

the published literature and will assist researchers in understanding the 

TMF response of an important alloy. Several minor comments should be 

addressed however prior to publication. 

Q1: In the abstract, "state of the art TMF life prediction models" are 

referenced, however the manuscript seems to deal with fairly standard 

life correlation parameters (Coffin-Manson, for example). Could the 

authors please clarify what is state of the art about the application? 

Response: The state-of-the-art aspect was focused on current design 

standards for fatigue analysis of power plant components (e.g. ASME 

boiler codes). However, the text on page 1 of the revised manuscript has 

been updated to clarify this statement and now defines the models as 

"commonly used TMF life prediction models".   

-------------------------------------------------------------------------

--------------------------------------- 

Q2: In the final paragraph of the introduction, it is stated that the 

effect of phase angle has not been investigated in TMF lifing. It should 

be noted here, to avoid all ambiguity, that this observation is made in 

reference to P91. Phase angle effects in TMF have certainly been 

investigated for other alloys. 

Response: The text on page 3 of the revised manuscript has been updated 

to clarify that the effect of phase angle has not been investigated for 

TMF with dwells for 9-12Cr steels.   

-------------------------------------------------------------------------

--------------------------------------- 

Q3: In the experimental testing section, please explain why loading 

ratios of -0.4 and -0.2 were used? Is this based on predicted power plant 

load waveforms? 

Response: The loading ratios of -0.4 and -0.2 are based on component 

level modelling predictions for P91 header components [Farragher et al., 

2013]. Farragher and co-workers presented predicted thermo-mechanical 

stress-strain response at a number of locations in a header unit under 

measured plant start-up thermal histories. The loading ratios of -0.4 and 

-0.2 selected in the present work represent the approximate upper and 

lower bounds of the predicted hoop and axial stress-strain responses at 

specific locations in a header unit. The text in the revised manuscript 

has been updated on page 4 to clarify the selection of loading ratio: 

"Asymmetric TMF tests, where the maximum tensile strain is significantly 

higher than the maximum compressive strain, were also performed with Rε-

ratios based on predicted strain in the hoop and axial directions for 

finite element modelling of a header unit under representative (measured) 

cyclic operation [3]. Thus, the asymmetric TMF tests were performed under 

IP and OP conditions, with Rε-ratios of -0.4 and -0.25, representing the 

upper and lower bounds of the finite element predicted Rε-ratios."   



-------------------------------------------------------------------------

--------------------------------------- 

Q4: The final few sentences of paragraph 1 in section 3.1 are a little 

unclear and should be revised. I believe that the authors are trying to 

suggest that strain rate sensitivity is not observed as the specimens in 

question only spend a limited amount of time above 773K. The difference 

between loading rates applied in fig 4 are very small compared to the 

differences suggested between in service components and laboratory tests, 

so a limited sensitivity here is not too surprising. From the reviewers 

own experience, P91 exhibits strain rate dependency even at 673K. 

Response: The authors agree that strain-rate dependency occurs at 

temperatures much lower than 873 K. However, for the strain-rates 

considered here, a minimal strain-rate effect is observed over the 

relatively narrow range of intermediate to high temperatures and strain-

rates considered here. The text in Section 3.1. on page 5 of the revised 

manuscript has be updated to reflect this.   

-------------------------------------------------------------------------

--------------------------------------- 

Q5: Please indicate how the inelastic strain range is calculated for 

determining p (see the last paragraph of section 3.1). The inelastic 

strain range will of course evolve as the material hardens and, for P91, 

a stabilized state is never actually achieved (this is observed in fig 6 

(a) and fig 7 (b)). The expression for p suggests that an average value 

for the inelastic strain range is used but it is unclear how this is 

determined. A similar question can be posed in relation to the maximum 

stress terms used in equations 2, 3, and 4. 

Response: The inelastic strain-range, Δεin, is taken as the difference 

between the maximum and minimum strain at zero stress in the measured 

stress-strain hysteresis loop. This inelastic strain range is a function 

of cycles. The accumulated inelastic strain is twice the summation of 

inelastic strain range over a number of cycles. This expression has also 

been clarified in the revised manuscript. The following text has been 

added on page 6 of the revised manuscript to clarify the definition of p: 

"Figure 9b presents the accumulated inelastic strain, p=2∑_(i=1)^(N_f)▒〖

∆ε〗_(in,i) , where Nf is the number of cycles to failure and Δεin,i is 

inelastic strain range for cycle i, as defined in Figure 10 for CTMF-IP 

and CTMF-OP loading and comparisons with the corresponding CF data at 673 

K and 873 K."   

In Equations (2) to Equation (4), the maximum stress, σmax, and inelastic 

strain range, Δεin, for model parameter identification (only) are taken 

to be the experimental values at half-life, as documented in Section 3.4 

of the revised manuscript.  

-------------------------------------------------------------------------

--------------------------------------- 

Q6: In the conclusions, the authors recommend that inelastic strain 

energy based models should be used with caution as they break down when 

significant dwell periods are applied. The experimental work only 

considers 2 minute hold periods however. The header components referenced 

at the start of the paper may well operate for a few hours at constant 

load (a dwell condition). Can the authors please reconcile this? 

Response: Previous CF testing by this group on a different 9Cr alloy with 

a 1 hr dwell period [4], highlights that the stress relaxes 

asymptotically in 9-12Cr steels, rapidly decaying to the saturated value 

over a short period of time (on the order of a few minutes). Thus, the 

dwell tests conducted in this study can qualitatively capture the 

evolution of the thermal stress. However, an ongoing test program for 

another 9-12Cr alloy will specifically look at the effect of dwell time 



(with dwells ranging from 2 minutes to 2 hrs) on microstructural 

degradation and fatigue life.  

The following text, on page 10 of the revised manuscript, has been 

included to reconcile the 2 minute dwell with typical dwell periods in 

realistic plant components: 

"Although conventional power plant components tend to operate with dwell 

periods on the order of hours, a significant proportion of the thermal 

stress component relaxes during the initial (rapid) stage of a hold 

period. For 9-12Cr steels, this initial stage of stress relaxation is on 

the order of minutes with the stress rapidly decaying to a saturated 

value [4]. Hence, the 120 s dwell period considered here can 

qualitatively capture the relaxation behaviour of P91 steel. However, 

future work will also investigate the effect of dwell time on CF and CTMF 

performance in 9-12Cr steels to determine the role of microstructural 

degradation during dwell periods on fatigue life." 

Furthermore, the conclusions on page 11 of the revised manuscript have 

also been updated to state more specifically that the inelastic strain 

energy-based models break down for "higher temperature dwell periods". 

-------------------------------------------------------------------------

--------------------------------------- 
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Abstract: This paper is concerned with the assessment of life prediction models for 

thermomechanical fatigue (TMF), with specific application to P91 steel. A program of TMF 

tests, including dwell periods, are performed to determine the role of thermomechanical 

loading on fatigue life. As expected, fatigue life under conventional TMF testing (no dwells) 

is governed by maximum applied stress and inelastic strain-range. However, with the 

introduction of dwell periods, at maximum tensile stress during TMF loading, in-phase 

loading becomes the life-limiting case. This is attributed here to increased microstructural 

degradation and oxidation, associated with the dwell at peak temperature. Analysis of 

commonly used TMF life prediction models shows that the effect of dwell periods currently 

cannot be predicted for in-phase loading. Thus, it is concluded that physically-motivated 

approaches are required to successfully predict fatigue life under more complex (service) 

thermomechanical loading histories.  

1. Introduction 

The transition to highly flexible operation of power plant to accommodate an ever-increasing 

share of renewable energy technologies on power grids is leading to an increased frequency 

of complex start-up and shut-down cycles. This cyclic operation of power plant causes severe 

thermal gradients, especially on thick-walled components, such as header units. At the same 

time, higher pressures and temperatures are required for increased efficiency and reduced 

harmful (e.g. CO2) emissions. Thus, in conjunction with the increased creep and oxidation 

deformation induced by the higher temperature operating conditions, critical power plant 

components are now also being subjected to TMF deformation.  

9-12Cr steels are key candidate materials for highly flexible operation of heavy-walled 

components due to (i) high creep strength, (ii) low-cost relative to other materials and (iii) 

low coefficient of thermal expansion leading to reduced thermal gradients. The high strength 

of 9-12Cr steels is achieved by a precipitate and solute strengthened martensitic 

microstructure. The grain structure consists of prior austenite grains (PAGs), packets, blocks 

and martensitic laths and subgrains in a hierarchical format, which forms due martensitic 

Manuscript (clean and updated version)
Click here to view linked References
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transformation during rapid cooling following austenitisation. The 9-12Cr steels are then 

tempered to improve toughness and to precipitate M23C6 carbides at grain boundaries (GBs) 

and MX carbonitrides throughout the microstructure. 

To date, a range of high temperature low cycle fatigue (HTLCF) test programs have been 

completed on 9-12Cr steels across a range of temperatures [1-4]. In all experimental work, a 

Bauschinger effect is observed due to (i) pinning of dislocations at precipitates [5] and (ii) 

dislocation pile-ups at GBs within the hierarchical microstructure [6], as well as a significant 

strain-rate effect, particularly at temperatures in excess of 773 K [4,7]. The primary 

mechanism of degradation under fatigue in 9-12Cr steels is cyclic softening due to recovery 

of the low-angle boundary (LAB) dislocation substructure [8]. It is well known that this 

dislocation substructure is critical for enhanced creep strength, with significant reductions in 

creep rupture time observed for a coarser initial lath microstructure [9] or prior fatigue 

loading [10]. Hence, cyclic softening leading to accelerated recovery of the LAB 

microstructure, as observed in fatigue of 9-12Cr steels, can be expected to have a detrimental 

effect on highly flexible thermomechanical operation of power plant.  

A small number of TMF test programs have been conducted to date on 9-12Cr steels 

[2,11,12], including both in-phase (TMF-IP) and out-of-phase (TMF-OP) loading conditions. 

Nagesha et al. [2] and Saad et al. [12] have investigated the effect of different temperature 

ranges for both TMF-IP and TMF-OP loading conditions in P91 steel, at constant strain-rates 

of 1.2×10
-4

 s
-1

 and 1.0×10
-3

 s
-1

, respectively. It is observed that TMF-IP fatigue life is more 

sensitive to increasing maximum temperature (Tmax) when compared to TMF-OP test results. 

This is attributed to enhanced dynamic recovery and creep deformation as Tmax increases [2]. 

However, for TMF-OP loading, where a mean tensile stress exists due to the maximum stress 

coinciding with Tmin, fatigue lives are found to be consistently lower than the TMF-IP case 

[2,11,12]. Along with a mean tensile stress, a significant effect of oxide cracking contributes 

to premature fatigue failure under TMF-OP conditions. The role of coefficient of thermal 

expansion mismatch between the matrix material and oxide scale is identified as a primary 

contributor to oxide-assisted cracking under TMF-OP. The mean tensile stress within the 

oxide scale is relieved via oxide scale cracking, leading to earlier fatigue crack initiation 

(FCI) under TMF-OP [13]. 

In TMF tests conducted in the 573 K to 673 K temperature range in P91 steel at a strain-rate 

of 1.2×10
-4

 s
-1

 [2], dynamic strain aging (DSA) is found to occur. DSA is detected in P91 

steel under isothermal conditions in this temperature range also [14]. In terms of higher TMF 

temperature ranges, DSA is also observed in a RAFM (9Cr-1W-Mn-V-Ta) alloy at a constant 

strain-rate of 1.2×10
-4

 s
-1

 in the 673 K to 873 K temperature regime once a threshold 

(accumulated) plastic strain is exceeded, with no DSA observed under isothermal fatigue (IF) 

conditions in the same temperature interval [15]. Coupled with oxide cracking and mean 

tensile stress effects, DSA is found to accelerate FCI and crack growth under TMF-OP 

conditions. However, no DSA (or serrations) is present in TMF testing of P91 steel under the 

same temperature interval in the 1.2×10
-4

 s
-1

 to 1.0×10
-3

 s
-1

 strain-rate regime [2,12]. It should 
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also be noted that the above TMF test programs are completed under constant strain-rate, 

strain-controlled test conditions with a Rε-ratio (Rε = εmin/εmax) of -1. No TMF test programs 

on 9-12Cr steels with a Rε-ratio other than Rε = -1 have been published to date.  

Previous work by this group has presented a significant strain-rate effect in 9-12Cr steels at 

temperatures in excess of 773 K [4,7] for IF loading conditions. However, as most laboratory 

IF and TMF tests are conducted under intermediate to higher strain-rates in the 1.0×10
-2

 s
-1

 to 

1.0×10
-4

 s
-1

 range, and above the typical service strain-rates of 1.0×10
-5

 s
-1

 to 1.0×10
-12

 s
-1

 in 

flexible power plant [3,16], it is necessary to understand the effect of strain-rate under TMF 

conditions. To date, this key effect has not been investigated for 9-12Cr steels and hence, 

TMF tests at different strain-rates are presented in this study. 

Research to date on TMF of 9-12Cr steels identified the critical interactions of creep, TMF 

and oxidation as key contributors to failure. Fournier and co-workers [17,18,19] have 

completed a thorough analysis of the interaction of creep, IF and oxidation in 9-12Cr steels, 

and Gopinath et al. [5] conducted an in-depth study of the effect of dwell time, including 

damage mechanisms, on fatigue life. In terms of creep-TMF (CTMF) testing in an oxidising 

environment, very little experimental programs have been undertaken to date. Cui and Wang 

[20] have completed a creep-TMF test program for a simplified service cycle with dwell 

periods at maximum, minimum and zero strain, including life prediction using a creep-fatigue 

(CF) modelling framework. Pan et al. [21] used strain energy-based life prediction models 

[22,23] to predict the effect of phase angle on TMF life for phase angles of 0°, 90° and 180° 

in a P92 steel without dwell periods. However, to the authors knowledge the effect of phase 

angle on fatigue life of 9-12Cr steels under thermomechanical loading with dwell periods has 

not been investigated to date. Thus, this study into the effect of dwell periods at phase angles 

of 0° and 180° on fatigue life of 9-12Cr steels under TMF, critical loading scenarios for 

current and next generation highly flexible power plant, represents the first such 

investigation. The role of Rε-ratio and strain-rate on TMF response are also examined, with 

the applicability of empirical TMF life prediction models assessed for conventional and 

asymmetric TMF, as well as CTMF loading conditions. 

2. Methodology 

2.1. Material and Heat Treatment 

The present study is focused on TMF experimental testing of an ex-service P91 tempered-

martensite alloy extracted from a superheater outlet header. In service, this material was 

subjected to subcritical loading conditions only (Tmax < 758 K) and was removed from service 

after 35,168 hrs for purely operational reasons, i.e. there was no evidence of any significant 

material degradation or damage. Thus, negligible creep deformation and microstructural 

evolution is assumed prior to the current test program. The chemical composition (in wt.%) is 

0.007Al-0.1C-8.48Cr-0.42Mn-0.94Mo-0.058N-0.07Nb-0.19Ni-0.013P-0.26Si-0.204V, with 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

4 

 

the balance Fe. The P91 steel was fabricated via a rolling process and underwent a typical 

two-stage heat treatment process of austenitisation at 1323 K for 0.5 hr, followed by 

tempering at 1038 K for 1 hr.  

2.2. Experimental Testing 

The high temperature cyclic behaviour of the P91 steel is measured using the Instron 8862 

TMF test rig at the University of Nottingham. The test rig and specimen geometry are 

described in detail elsewhere [24]. The test program includes IF, CF, TMF and CTMF 

experiments. All tests were performed under strain-control conditions, with the waveforms 

illustrated schematically in Figure 1. The complete fatigue test program is summarised in 

Table 1. IF tests are conducted at temperatures of 293 K to 873 K for three different strain-

ranges at higher (0.025 to 0.1 %/s) and intermediate (5×10
-4

 %/s) strain-rates. CF tests, with a 

120 s dwell period at maximum (tensile) strain, are conducted at temperatures of 673 K, 773 

K and 873 K. The TMF and CTMF experiments consist of both in-phase (IP) and out-of-

phase (OP) tests with phase angles of 0° and 180°, respectively. The TMF and CTMF 

experiments are conducted in the 673 K to 873 K temperature range under several strain-

ranges in the higher strain-rate regime. Similar to the IF test program, the CTMF test also has 

a dwell period at maximum tensile strain, corresponding to a dwell at maximum temperature, 

Tmax, for IP conditions and at minimum temperature, Tmin, for OP conditions. Although a 

dwell period at Tmax is a commonly used OP cycle, the proposed OP cycle (with a dwell 

period at Tmin) is designed to represent part-load operation of power plant. Dwell periods 

under such conditions occur at a reduced operating temperature similar in magnitude to the 

Tmin value of 673 K tested here. Asymmetric TMF tests, where the maximum tensile strain is 

significantly higher than the maximum compressive strain, were also performed with Rε-

ratios based on predicted strain in the hoop and axial directions for finite element modelling 

of a header unit under representative (measured) cyclic operation [3]. Thus, the asymmetric 

TMF tests were performed under IP and OP conditions, with Rε-ratios of -0.4 and -0.25, 

representing the upper and lower bounds of the finite element predicted Rε-ratios. The 

maximum applied mechanical strain, from 0.3% to 0.5%, is considered important for 

thermomechanical loading at discontinuities such as welded connections and T-piece 

connections [25]. 

A 20% load drop relative to the load at 150 cycles is set as the criterion for test completion. A 

typical fatigue crack, as observed during the macroscopic fatigue crack growth (FCG) stage 

of the test, is presented in the optical micrograph of Figure 2. The number of cycles to failure, 

Nf, is defined via the ISO 12106:2017-03 standard as a 10% drop in load from the secondary 

softening stage, as illustrated schematically in Figure 3. 

2.3. Fatigue life prediction 

At present, a number of prominent models exist for predicting LCF life for both IF and TMF 

loading conditions. In this section, three such models; namely the (i) Coffin-Manson [26,27], 

(ii) Ostergren [22] and (iii) Zamrik [23] models are assessed for applicability to P91 steel 
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under the present TMF loading conditions. According to the Coffin-Manson relationship, the 

number of cycles to failure, Nf, is defined as: 

   
 

 
 
    
   

  

   

 
(1) 

where εf' is the fatigue ductility coefficient and c is the fatigue ductility exponent. The 

Ostergren model is defined as: 

              
  (2) 

where C and β are the temperature-dependent Ostergren failure parameters. For the Ostergren 

model here, the inelastic strain energy (Δεinσmax) is normalised with respect to the tensile 

toughness, ΔW0, to account for temperature-dependence of the Ostergren model failure 

constants [30], such that the number of cycles to failure is defined as: 

      
        

   
 
  

 (3) 

where C1 and β1 are temperature-independent Ostergren failure constants. Similar to the 

Ostergren model, the Zamrik model is an energy-based life prediction method, specifically 

proposed to improve TMF-OP life prediction. It is defined as:  

      
        

      
 
  

 
(4) 

where εten is maximum applied tensile stress, εf is material ductility, σUTS is ultimate tensile 

strength and C2 and β2 are the Zamrik parameters. 

3. Results 

3.1. Cyclic stress-strain response under IF and TMF 

Figure 4 presents the measured stress-strain response for the initial cycle of the P91 steel 

subjected to TMF-IP and TMF-OP loading in the 673 K to 873 K temperature range at an 

applied strain-rate of 0.025 %/s. The IF response at temperatures of 673 K and 873 K are also 

included for comparison. As is evident from Figure 4, the TMF response in both cases is 

effectively bounded by the IF behaviour for both TMF-IP and TMF-OP loading conditions. 

Figure 5 shows the cyclic stress-strain response for asymmetric loading under a Rε-ratio of -

0.4 for the initial and 100
th

 cycle under TMF-IP loading, with the TMF-OP response 

presented in Figure 6 at a Rε-ratio of -0.25. A minimal strain-rate effect is observed under 

TMF conditions for the higher strain-rate regime considered here. This is due to minimal time 

spent at 873 K during TMF testing where a significant strain-rate effect is present in P91 

steel, with IF test data at less than 773 K demonstrating a negligible strain-rate effect for the 

higher strain-rates considered here [7]. 

The measured stress relaxation during the dwell period of the CTMF tests is presented in 

Figure 7 for both OP and IP loading conditions. A comparison with isothermal CF 
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experimental data at the dwell temperatures of 673 K and 873 K, respectively, is also 

presented. To enable a direct comparison of relaxation behaviour across a range of strain-

rates, this data is normalised by the stress at the start of the hold period (σ0). During this 

isothermal dwell period in the CTMF cycle at the same applied mechanical strain, the 

observed relaxation of stress in each case is similar to that of the isothermal CF tests at 673 K 

for the OP case, as presented in Figure 7a. However, there exists a significant difference in 

relaxation behaviour for dwells at 873 K (Figure 7b). For the strain-rates considered here, no 

significant strain-rate effect is observed in P91 steel at temperatures below 773 K [7]. 

However, a significant strain-rate effect is observed in P91 steel under IF at 873 K, as 

presented in Figure 8a. Thus, it is concluded here that the observed trend in Figure 7b is 

primarily due to the strain-rate effect under higher dwell temperatures. Figure 8b 

demonstrates this strain-rate effect as a function of cycles for CTMF-IP thermomechanical 

loading conditions in the 673 K to 873 K range, where the dwell occurs at 873 K. Once again, 

the observed cyclic trend for CTMF is consistent with the strain-rate effect observed under IF 

conditions at 873 K. 

The measured evolution of stress range for the CF (at 673 K and 873 K) and CTMF (IP and 

OP) tests is presented in Figure 9a. As with all tests conducted within this program, 

significant cyclic softening is observed in all cases, with only slight differences in the level 

and rate of softening between CTMF-IP and CTMF-OP loading conditions. Figure 9b 

presents the accumulated inelastic strain,           
  
   , where Nf is the number of cycles 

to failure and Δεin,i is inelastic strain range for cycle i, as defined in Figure 10 for CTMF-IP 

and CTMF-OP loading and comparisons with the corresponding CF data at 673 K and 873 K. 

The results for CTMF-IP and CTMF-OP suggests a strong dependence of cyclic softening on 

p, as opposed to temperature, for tests conducted below 873 K. As the primary mechanism of 

cyclic softening in 9-12Cr steels is LAB dislocation annihilation [8], the hypothesis that 

cyclic softening is predominantly a function of p is consistent with published observations of 

negligible LAB evolution under thermal aging conditions [28]. This dependence on p is 

further realised via the application of Chaboche isotropic stress model to cyclic softening in 

P91 by Saad et al. [12]. 

3.2. Failure under TMF conditions 

Figure 11 presents the effect of symmetric thermomechanical loading (TMF-IP and TMF-

OP) on fatigue life as a function of both applied mechanical strain-range and inelastic strain 

range, Δεin, for P91 steel, including a comparison with IF data. Clearly, thermal cycling leads 

to a significant reduction in fatigue life, compared with isothermal loading. For symmetric 

TMF, the most severe case is the TMF-OP case. As the mechanical strain and temperature are 

out-of-phase, the material is subjected to a significantly higher maximum tensile stress (see 

Figure 12a) at minimum temperature. This is essentially due to the material reaching a higher 

maximum stress at the lower temperature (under strain control conditions) and giving a 

harder response (since maximum tensile stress is a key parameter for FCI). This result 
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demonstrates the critical role of maximum applied tensile stress, σmax, on fatigue life for 

symmetric TMF. It should also be noted that there is a significant temperature-dependence 

for the number of cycles to failure as a function of the applied mechanical strain-range for IF 

conditions (Figure 11a). However, this temperature-dependence is not as evident when 

considering inelastic strain-range versus Nf, where the IF test data essentially collapses to a 

power law relationship as shown in Figure 11b.  

Figure 11 also presents a comparison of the observed fatigue life of asymmetric TMF-IP and 

TMF-OP test results (open symbols). As is evident from this result, the asymmetric TMF 

tests follow the same trend (qualitatively) as symmetric TMF tests (TMF-OP has reduced 

fatigue life compared with TMF-IP), albeit under a significantly different relationship with 

inelastic strain-range for TMF-IP for the strain-ranges considered here. This may represent 

the transition from low-cycle fatigue to high-cycle fatigue for P91 steel. Thus, further testing 

at these lower applied strain-ranges under IF and TMF (both symmetric and asymmetric) test 

conditions is required to define whether this is the transition region for low-cycle fatigue to 

high-cycle fatigue; this will also provide essential data for plant designers and fatigue life 

prediction at these potentially crucial strain-ranges for conventional power plant applications. 

TMF-OP is similar to isothermal CF (dwell) loading, in which the inelastic strain 

accumulation is dominant in the compressive part of the loop [13]. The net effect is a mean 

tensile stress (e.g. see Figure 12b) and hence, reduced fatigue life compared with TMF-IP and 

IF test data, as illustrated in Figure 11. However, as shown in Figure 13, a significant increase 

in fatigue life is observed for OP loading with a tensile dwell period (CTMF-OP) when, 

compared with CTMF-IP test data. This phenomenon is not captured by the mean stress or 

maximum applied stress effect. This contrasts with the finding for TMF tests without a hold 

period and highlights (i) the significance of high temperature creep-TMF-oxidation 

deformation in P91 steels, (ii) the requirement to conduct TMF tests with dwell periods for 

highly flexible power plant applications and (iii) the requirement to assess current TMF life 

prediction methodologies for cases of asymmetric TMF and TMF with dwell periods.  

3.3. The concept of net tensile hysteresis energy and CTMF behaviour 

The net tensile hysteresis energy (ΔWT) is widely used to evaluate fatigue life [2,29] and is 

defined schematically in Figure 10 for a CF loading case. Inelastic strain range, Δεin, 

represents the primary mechanism of energy dissipation at high applied (tensile) stresses, 

with the dissipated energy predominantly absorbed by the material (the remainder is 

dissipated as heat to the surroundings). Thus, increasing ΔWT is nominally consistent with a 

decreasing fatigue life. Figure 14 presents the measured ΔWT for TMF-IP and TMF-OP under 

an applied mechanical strain range of ±0.5% and strain-rate of 0.025 %/s. The ΔWT is 

evaluated based on the half-life tensile hysteresis loop area. A significant increase in ΔWT is 

observed for the TMF-OP test conditions compared with TMF-IP due to the increased 

applied stress associated with the reduced temperature during tensile loading. This increase in 
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ΔWT is consistent with a decrease in fatigue life. Furthermore, qualitatively, the ΔWT 

approach is capable of predicting the observed trend of reduced fatigue life for TMF-OP 

loading conditions as compared with TMF-IP (e.g. see Figure 14). However, the correlation 

of Nf with ΔWT is not valid for CTMF loading conditions. As illustrated in Figure 14, both 

ΔWT and fatigue life increase for CTMF loading conditions relative to the corresponding 

TMF conditions. This is inconsistent with the observed TMF trend that increasing ΔWT 

reduces the fatigue life.  

3.4. Calibration of fatigue life prediction models for TMF of P91 steel 

To apply the Coffin-Manson model to TMF loading in the 673 K to 873 K temperature range, 

the necessary failure constants (εf' and c) are defined using IF data for 673 K, 773 K and 873 

K. As is evident in Figure 15a, the data for the three temperatures collapses to approximately 

a linear relationship for Δεin/2 versus Nf on a log-log plot, with Δεin taken as the inelastic 

strain range at half-life. However, as illustrated in Figure 15b, when the same constants are 

used for TMF loading, the Coffin-Manson relationship predicts extremely non-conservative 

TMF life compared with experimental data. For the temperature ranges and test conditions 

considered here, Coffin-Manson is shown to be non-conservative by factors of approximately 

6 and 12 for TMF-IP and TMF-OP cases, respectively. This is primarily attributed to the 

omission of a maximum stress component, an important parameter for TMF life prediction 

(e.g. see Figure 12a), from the model.  

The value of ΔW0 for P91 steel is identified from monotonic tensile testing of the material 

[31] and presented in Table 2. The identified failure constants, C1 and β1, are 10.57 and -1.44, 

respectively (see Figure 16a). Figure 16b presents application of the Ostergren model to P91 

steel under IF and TMF loading conditions. For TMF loading, Δεinσmax, taken at the half-life 

here, is normalised with respect to ΔW0 at the maximum cycle temperature (873 K here). As 

is evident from Figure 16b, extrapolation of the Ostergren model to TMF using failure 

constants identified from IF data gives non-conservative results, particularly for TMF-OP. If 

the Ostergren model is normalised with respect to ΔW0 at the mean temperature (773 K here), 

the predicted TMF lives are far less conservative. Thus, it is recommended that the Ostergren 

model be applied with normalisation to ΔW0 at maximum temperature and that the Ostergren 

model not be used for TMF-OP loading conditions in 9-12Cr steels. 

In Equation (4), εtenσmax is determined from the half-life hysteresis loop and εf and σUTS are 

determined from tensile test data as presented in Table 2. Figure 17a presents identification of 

the temperature-dependent failure constants, C2 and β2, from IF data and Figure 17b compares 

the predicted number of reversals to failure with experimentally observed values for the IF 

and symmetric TMF cases. The Zamrik model is utilised here with εf and σUTS defined at the 

maximum temperature, as application at the mean temperature leads to non-conservative 

results. Although the Zamrik model predicts Nf of symmetric tests quite well (see Figure 

17b), this model struggles to predict the fatigue life of (i) asymmetric TMF cycles for the 
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strain-ranges considered here, as presented in Figure 18a, where results are conservative for 

the TMF-IP case, and (ii) more importantly, CTMF-IP loading in Figure 18b, where non-

conservative results by a factor of approximately 4 are predicted. 

4. Discussion 

The strain-life failure for symmetric TMF-IP and TMF-OP loading conditions in Figure 11 is 

consistent with the key roles of maximum tensile stress, σmax, and mean stress, σm, in 

determining fatigue life. Under such loading conditions, ΔWT can be generally used to 

correlate fatigue life with life prediction models based on ΔWT, such as Ostergren (TMF-IP 

only) and Zamrik. A key benefit of such models is that they can be implemented in multi-

axial form in conjunction with critical plane and rainflow cycle counting methods for 

application to realistic geometries [3,32]. Based on the results of Figure 15 to Figure 17, the 

Zamrik model performs best for prediction of TMF life, particularly for TMF-OP, whereas 

the Ostergren model gives significantly non-conservative results. For the Ostergren and 

Zamrik models, using the maximum temperature as the reference temperature leads to 

increased conservatism of life prediction. It should also be noted here that the analysis 

performed does not account for the effect of strain-rate on the mechanical properties and 

failure constants within the life prediction models; future work should address this effect for 

strain-rates observed in conventional plant (e.g. 1×10
-5

 s
-1

 to 1×10
-12

 s
-1

) as Δεin, σmax and 

σUTS, for example, depend on strain-rate.  

The symmetric TMF test results follow the typical phenomenon of reduced fatigue life for 

TMF-OP loading compared to TMF-IP (e.g. see Figure 11), with failure driven by a mean 

tensile stress, as highlighted in Figure 12b. However, the CTMF test program on P91 steel 

conducted here highlights a contrasting trend, with CTMF-IP loading giving lower fatigue 

life than the CTMF-OP cases. For CTMF-IP cases considered here, the 120 s dwell period at 

maximum tensile strain occurs at the maximum temperature of 873 K, where increased 

microstructural degradation and creep deformation occur. However, for the CTMF-OP case, 

the dwell period occurs at low temperature, where rate effects and creep deformation are 

significantly reduced. Furthermore, increased oxidation during a dwell period at higher 

temperature under CTMF-IP will lead to increased oxide-scale contribution to FCI and hence, 

reduced fatigue life. Earthman et al. [33] have demonstrated this significant effect of 

oxidation on IF life, and in particular for FCI, in a 12Cr steel. This reduced fatigue life can be 

attributed to the mechanisms of oxide layer rupture under cyclic mechanical loading 

[11,13,34], in which rupture of the outermost oxide scale reveals fresh matrix material on 

which an oxide-scale rapidly forms, with the process repeating until oxide-scale assisted FCI 

and premature failure occur. As the oxide-scale thickness, hox, is a function of the 

temperature-dependent diffusion constant, D(T), i.e. following a parabolic growth law, 

          , the higher dwell temperature of the CTMF-IP test condition will induce 

increased and accelerated oxide scale growth and, hence, reduced cycles to FCI, as compared 

with the CTMF-OP case. Thus, for CTMF-IP tests conducted with a dwell period at higher 
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temperature, the role of oxide scale formation and evolution of the oxide scale on FCI needs 

to be investigated in more detail for CTMF loading conditions. 

As illustrated in Figure 12, the observed TMF-OP and CTMF-OP fatigue lives are quite 

similar, demonstrating the minimal effect of the 120 s dwell period on fatigue life at 673 K. 

This is consistent with minimal creep and oxidation damage at temperatures less than 773 K 

in P91 steels. Thus, it can be concluded that higher temperature dwell periods, e.g. where 

strain-rate effects and temperature-dependent microstructural degradation become important, 

can have a detrimental effect on fatigue life. Although conventional power plant components 

tend to operate with dwell periods on the order of hours, a significant proportion of the 

thermal stress component relaxes during the initial (rapid) stage of a hold period. For 9-12Cr 

steels, this initial stage of stress relaxation is on the order of minutes with the stress rapidly 

decaying to a saturated value [4]. Hence, the 120 s dwell period considered here can 

qualitatively capture the relaxation behaviour of P91 steel. However, future work will also 

investigate the effect of dwell time on CF and CTMF performance in 9-12Cr steels to 

determine the role of microstructural degradation during dwell periods on fatigue life. As the 

proposed TMF life prediction models follow the trend of reduced fatigue life for increased 

Δεin and mean applied stress, these models are not readily applicable to CTMF. Hence, as 

such dwell periods will become ever more commonplace for current and next generation 

plant service loading conditions, a fatigue life prediction model which accounts for 

interactions of creep, TMF and oxidation mechanisms of degradation and FCI is required as 

the models presented here do not account for microstructural degradation, creep and, 

potentially most importantly, oxidation effects. For example, Wei et al. [35] developed a 

probabilistic linear superposition crack growth model for creep-fatigue-oxidation during 

system start-up and shut-down and for 9-12Cr steels, Fournier and co-workers [19] applied a 

Tanaka-Mura FCI model coupled with crack growth to creep-fatigue-oxidation. Furthermore, 

the key life limiting factor for 9-12Cr steels under high temperature operation is 

microstructural degradation, including precipitate coarsening, formation of secondary phase 

particles (such as Laves phase and Z-phase particles at the expense of solute atoms and 

carbonitride particles), oxide-scale formation and dynamic recovery. This microstructural 

degradation, which is dependent on thermal and mechanical loading history, can lead to a 

significant reduction in strength and the formation of micro-voids [36] and micro-cracks [32], 

potentially leading to material failure. Thus, microstructure evolution under complex 

thermomechanical cycles, and its effect on material behaviour, should represent a critical 

constituent in life prediction and remnant life analysis of power plant components, 

particularly as higher temperature flexible operation is being pursued. This is even more 

important in terms of the heterogeneous microstructure of welded connections and their 

susceptibility to premature failure. Thus, constitutive models should account for the complete 

array and interdependencies of strengthening mechanisms in 9-12Cr steels [37] and complex 

microstructural evolution under creep-TMF-oxidation (e.g. significant effect of prior fatigue 

loading on creep performance of P92 [10]). 
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5. Conclusions 

A program of TMF tests on a P91 steel are presented and current empirical fatigue life 

prediction models are assessed for applicability to 9-12Cr steels. The key conclusions are: 

 In the 673 K to 873 K temperature range considered here, out-of-phase 

thermomechanical loading is observed to cause a significant reduction in life 

compared with isothermal fatigue and in-phase thermomechanical fatigue. In such 

cases, the fatigue life is strongly influenced by the maximum tensile stress.  

 When dwell periods are introduced at maximum tensile stress, in-phase loading 

becomes the critical loading case due to microstructure evolution and accelerated 

oxide scaling during dwells at peak temperature. This highlights the necessity to 

complete creep-thermomechanical fatigue testing and the requirement to consider the 

physical mechanisms of fatigue crack initiation under combined creep, 

thermomechanical fatigue and oxidation loading conditions. 

 Conventional thermomechanical fatigue life prediction models based on inelastic 

strain energy (e.g. Ostergren and Zamrik) should be used with caution for 9-12Cr 

steels; such models break down for cases where thermomechanical fatigue loading 

with high temperature dwell periods. 

 Physically-motivated approaches are required to successfully predict fatigue life 

under complex (service) thermomechanical loading histories. Such approaches must 

account for microstructural evolution, as well as plasticity- and oxidation-induced 

mechanisms of fatigue crack initiation. 
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Tables 

Table 1: High temperature cyclic test program on P91 steel. 

Test Type Temperature (K) Strain range (%) Strain-rate (%/s) Waveform 

IF 
293, 673, 773 and 

873 

±0.5 0.1 

Rε = -1 

(Triangular) 

±0.5 0.033 

±0.4 0.033 

±0.3 0.033 

±0.5 0.025 

IF 
673, 773, 823, 

873 and 898 
±0.3 5×10

-4
 

Rε = -1 

(Triangular) 

CF 673, 773 and 873 ±0.3 0.1 
120 s hold period 

(Triangular) 

TMF (IP & OP) 673 to 873 

±0.5 0.033 

Rε = -1 

(Triangular) 

±0.5 0.025 

±0.5 0.01 

±0.4 0.033 

±0.3 0.033 

TMF (IP & OP) 673 to 873 

+0.5,-0.2 0.033 
Rε = -0.4;  

Rε = -0.25   

Asymmetric 

(Triangular) 

+0.5,-0.2 0.025 

+0.4,-0.1 0.033 

+0.4,-0.1 0.025 

+0.4,-0.1 0.01 

CTMF (IP & OP) 673 to 873 ±0.5 
0.033 120 s hold period 

(Triangular) 0.025 

 

Table 2: Measured monotonic properties of P91 steel for Ostergren and Zamrik models. 

T (K) ΔW0 (MJ/m
3
) σUTS (MPa) εf (%) 

293 109 690.2 17.9 

673 78 612.0 25 

773 71 530.0 16.2 

873 43 391.4 18.7 
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Figures 

 

Figure 1: IF, TMF and CTMF waveforms in the test program: (a) IF, (b) TMF-IP, (c) TMF-OP, (d) CF, (e) CTMF-IP and (f) 

CTMF-OP. 
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Figure 2: TMF specimen post-test and optical micrograph of the dominant fatigue crack under a failure criterion of a 20% 

drop in load after 150 cycles (inset). 

 

Figure 3: Cyclic softening of P91 steel under TMF-IP loading with deformation mechanism map highlighting recovery (lath 

widening and particle coarsening), fatigue crack initiation (FCI), coalescence to form micro-cracks and macroscopic fatigue 

crack growth (FCG). 
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Figure 4: Comparison of (a) TMF-IP and (b) TMF-OP cyclic stress-strain response with IF data at 673 K and 873 K for the 

initial cycle at an applied strain-rate of 0.025 %/s and mechanical strain-range of ±0.5%. 

 

Figure 5: TMF-IP behaviour of P91 steel under asymmetric TMF testing for the (a) initial and (b) 100th cycle in the 673 K to 

873 K temperature range under a Rε-ratio of -0.4. 

-600

-400

-200

0

200

400

600

-0.6 -0.3 0.0 0.3 0.6

St
re

ss
 (M

P
a)

Mechanical Strain (%)

TMF-OP
IF - 673 K
IF - 873 K

-600

-400

-200

0

200

400

600

-0.6 -0.3 0.0 0.3 0.6

St
re

ss
 (M

P
a)

Mechanical Strain (%)

TMF-IP
IF - 873 K
IF - 673 K

(a) (b)

-500

-300

-100

100

300

500

-0.6 -0.3 0.0 0.3 0.6

St
re

ss
 (

M
P

a)

Mechanical Strain (%)

0.033 %/s

0.01 %/s
-500

-300

-100

100

300

500

-0.6 -0.3 0 0.3 0.6

St
re

ss
 (

M
P

a)

Mechanical Strain (%)

0.033 %/s

0.01 %/s

(a) (b)

N = 1 N = 100



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

19 

 

 

Figure 6: TMF-OP behaviour of P91 steel under asymmetric TMF testing for the (a) initial and (b) 100th cycle in the 673 K 

to 873 K temperature range under a Rε-ratio of -0.25. 

 

Figure 7 Comparison of the measured (a) CTMF-OP and (b) CTMF-IP stress response during the dwell period (solid lines) 

for two different strain-rates of 3.3×10-4 s-1 and 2.5×10-4 s-1. A comparison with isothermal CF experimental data at the dwell 

temperature is also included (dotted lines) at an alternate strain-rate of 1.0×10-3 s-1. The stress values are normalised with 

respect to the initial stress at the start of the hold period. The applied mechanical strain during the dwell period is 0.5% in all 

cases. 
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Figure 8: Effect of strain-rate on (a) tensile stress-strain response under IF loading at 873 K and (b) evolution of maximum 

tensile stress with increasing cycles under CTMF-IP loading. 

 

Figure 9:  Measured cyclic evolution of (a) stress range and (b) accumulated effective inelastic strain for CF (dashed lines) 

and CTMF (IP and OP, solid lines) test conditions in the 673 K to 873 K temperature range. 
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Figure 10: Schematic representation of the net tensile hysteresis energy in a CF test. 

 

Figure 11: Number of reversals to failure as a function of (a) total applied strain-range and (b) inelastic strain-range for IF 

(673 K, 773 K and 873 K) and TMF-IP and TMF-OP in the 673 K to 873 K temperature range. Symmetric TMF results are 

in full symbols and asymmetric TMF test results are in open symbols. 
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Figure 12: Cyclic evolution of (a) maximum tensile stress and (b) mean stress for TMF and CTMF loading under IP and OP 

thermo-mechanical conditions. The strain-rate is 0.025 %/s and applied mechanical strain is ±0.5%. 

 

Figure 13: Increased reversals to failure associated with CTMF-OP loading condition compared with CTMF-IP behaviour 

for an applied mechanical strain is ±0.5% at two different strain-rates. 

-100

-50

0

50

100

1 10 100 1000 10000

M
ea

n
 S

tr
es

s 
(M

P
a)

Cycles (-)

200

300

400

500

1 10 100 1000 10000

M
ax

 T
en

si
le

 S
tr

es
s 

(M
P

a)

Cycles (-)

TMF-IP

CTMF-IP

TMF-OP

CTMF-OP

TMF-IPCTMF-IP

TMF-OP

CTMF-OP

(a) (b)

0

300

600

900

1200

0.025 0.033

R
e

ve
rs

al
s 

to
 F

ai
lu

re
, 2
N

f
(-

)

Strain-Rate (%/s)

CTMF-IP

CTMF-OP



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

23 

 

 

Figure 14: Measured net tensile hysteresis energy and number of reversals to failure compared with test condition in P91 

steel at an applied strain-rate of 0.025 %/s and applied strain-range of ±0.5%. 

 

Figure 15: Coffin-Manson (a) parameter identification from IF test data and (b) application to IF and symmetric TMF 

loading conditions in the 673 K to 873 K temperature range. 
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Figure 16: Ostergren model (a) parameter identification from IF test data and (b) application to IF and symmetric TMF 

loading conditions in the 673 K to 873 K temperature range. 

 

Figure 17: Zamrik model (a) parameter identification from IF test data and (b) application to IF and symmetric TMF loading 

conditions in the 673 K to 873 K temperature range. 
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Figure 18: Comparison of measured and Zamrik model predicted fatigue lives for (a) TMF asymmetric tests and (b) IF (673 

K, 773 K and 873 K) and TMF with dwell periods. 
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Abstract: This paper is concerned with the assessment of life prediction models for 

thermomechanical fatigue (TMF), with specific application to P91 steel. A program of TMF 

tests, including dwell periods, are performed to determine the role of thermomechanical 

loading on fatigue life. As expected, fatigue life under conventional TMF testing (no dwells) 

is governed by maximum applied stress and inelastic strain-range. However, with the 

introduction of dwell periods, at maximum tensile stress during TMF loading, in-phase 

loading becomes the life-limiting case. This is attributed here to increased microstructural 

degradation and oxidation, associated with the dwell at peak temperature. Analysis of 

commonly used TMF life prediction models shows that the effect of dwell periods currently 

cannot be predicted for in-phase loading. Thus, it is concluded that physically-motivated 

approaches are required to successfully predict fatigue life under more complex (service) 

thermomechanical loading histories.  

1. Introduction 

The transition to highly flexible operation of power plant to accommodate an ever-increasing 

share of renewable energy technologies on power grids is leading to an increased frequency 

of complex start-up and shut-down cycles. This cyclic operation of power plant causes severe 

thermal gradients, especially on thick-walled components, such as header units. At the same 

time, higher pressures and temperatures are required for increased efficiency and reduced 

harmful (e.g. CO2) emissions. Thus, in conjunction with the increased creep and oxidation 

deformation induced by the higher temperature operating conditions, critical power plant 

components are now also being subjected to TMF deformation.  

9-12Cr steels are key candidate materials for highly flexible operation of heavy-walled 

components due to (i) high creep strength, (ii) low-cost relative to other materials and (iii) 

low coefficient of thermal expansion leading to reduced thermal gradients. The high strength 

of 9-12Cr steels is achieved by a precipitate and solute strengthened martensitic 

microstructure. The grain structure consists of prior austenite grains (PAGs), packets, blocks 

and martensitic laths and subgrains in a hierarchical format, which forms due martensitic 

*Marked Manuscript (will not be used for publication; only for review)
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transformation during rapid cooling following austenitisation. The 9-12Cr steels are then 

tempered to improve toughness and to precipitate M23C6 carbides at grain boundaries (GBs) 

and MX carbonitrides throughout the microstructure. 

To date, a range of high temperature low cycle fatigue (HTLCF) test programs have been 

completed on 9-12Cr steels across a range of temperatures [1-4]. In all experimental work, a 

Bauschinger effect is observed due to (i) pinning of dislocations at precipitates [5] and (ii) 

dislocation pile-ups at GBs within the hierarchical microstructure [6], as well as a significant 

strain-rate effect, particularly at temperatures in excess of 773 K [4,7]. The primary 

mechanism of degradation under fatigue in 9-12Cr steels is cyclic softening due to recovery 

of the low-angle boundary (LAB) dislocation substructure [8]. It is well known that this 

dislocation substructure is critical for enhanced creep strength, with significant reductions in 

creep rupture time observed for a coarser initial lath microstructure [9] or prior fatigue 

loading [10]. Hence, cyclic softening leading to accelerated recovery of the LAB 

microstructure, as observed in fatigue of 9-12Cr steels, can be expected to have a detrimental 

effect on highly flexible thermomechanical operation of power plant.  

A small number of TMF test programs have been conducted to date on 9-12Cr steels 

[2,11,12], including both in-phase (TMF-IP) and out-of-phase (TMF-OP) loading conditions. 

Nagesha et al. [2] and Saad et al. [12] have investigated the effect of different temperature 

ranges for both TMF-IP and TMF-OP loading conditions in P91 steel, at constant strain-rates 

of 1.2×10
-4

 s
-1

 and 1.0×10
-3

 s
-1

, respectively. It is observed that TMF-IP fatigue life is more 

sensitive to increasing maximum temperature (Tmax) when compared to TMF-OP test results. 

This is attributed to enhanced dynamic recovery and creep deformation as Tmax increases [2]. 

However, for TMF-OP loading, where a mean tensile stress exists due to the maximum stress 

coinciding with Tmin, fatigue lives are found to be consistently lower than the TMF-IP case 

[2,11,12]. Along with a mean tensile stress, a significant effect of oxide cracking contributes 

to premature fatigue failure under TMF-OP conditions. The role of coefficient of thermal 

expansion mismatch between the matrix material and oxide scale is identified as a primary 

contributor to oxide-assisted cracking under TMF-OP. The mean tensile stress within the 

oxide scale is relieved via oxide scale cracking, leading to earlier fatigue crack initiation 

(FCI) under TMF-OP [13]. 

In TMF tests conducted in the 573 K to 673 K temperature range in P91 steel at a strain-rate 

of 1.2×10
-4

 s
-1

 [2], dynamic strain aging (DSA) is found to occur. DSA is detected in P91 

steel under isothermal conditions in this temperature range also [14]. In terms of higher TMF 

temperature ranges, DSA is also observed in a RAFM (9Cr-1W-Mn-V-Ta) alloy at a constant 

strain-rate of 1.2×10
-4

 s
-1

 in the 673 K to 873 K temperature regime once a threshold 

(accumulated) plastic strain is exceeded, with no DSA observed under isothermal fatigue (IF) 

conditions in the same temperature interval [15]. Coupled with oxide cracking and mean 

tensile stress effects, DSA is found to accelerate FCI and crack growth under TMF-OP 

conditions. However, no DSA (or serrations) is present in TMF testing of P91 steel under the 

same temperature interval in the 1.2×10
-4

 s
-1

 to 1.0×10
-3

 s
-1

 strain-rate regime [2,12]. It should 
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also be noted that the above TMF test programs are completed under constant strain-rate, 

strain-controlled test conditions with a Rε-ratio (Rε = εmin/εmax) of -1. No TMF test programs 

on 9-12Cr steels with a Rε-ratio other than Rε = -1 have been published to date.  

Previous work by this group has presented a significant strain-rate effect in 9-12Cr steels at 

temperatures in excess of 773 K [4,7] for IF loading conditions. However, as most laboratory 

IF and TMF tests are conducted under intermediate to higher strain-rates in the 1.0×10
-2

 s
-1

 to 

1.0×10
-4

 s
-1

 range, and above the typical service strain-rates of 1.0×10
-5

 s
-1

 to 1.0×10
-12

 s
-1

 in 

flexible power plant [3,16], it is necessary to understand the effect of strain-rate under TMF 

conditions. To date, this key effect has not been investigated for 9-12Cr steels and hence, 

TMF tests at different strain-rates are presented in this study. 

Research to date on TMF of 9-12Cr steels identified the critical interactions of creep, TMF 

and oxidation as key contributors to failure. Fournier and co-workers [17,18,19] have 

completed a thorough analysis of the interaction of creep, IF and oxidation in 9-12Cr steels, 

and Gopinath et al. [5] conducted an in-depth study of the effect of dwell time, including 

damage mechanisms, on fatigue life. In terms of creep-TMF (CTMF) testing in an oxidising 

environment, very little experimental programs have been undertaken to date. Cui and Wang 

[20] have completed a creep-TMF test program for a simplified service cycle with dwell 

periods at maximum, minimum and zero strain, including life prediction using a creep-fatigue 

(CF) modelling framework. Pan et al. [21] used strain energy-based life prediction models 

[22,23] to predict the effect of phase angle on TMF life for phase angles of 0°, 90° and 180° 

in a P92 steel without dwell periods. However, to the authors knowledge the effect of phase 

angle on fatigue life of 9-12Cr steels under thermomechanical loading with dwell periods has 

not been investigated to date. Thus, this study into the effect of dwell periods at phase angles 

of 0° and 180° on fatigue life of 9-12Cr steels under TMF, critical loading scenarios for 

current and next generation highly flexible power plant, represents the first such 

investigation. The role of Rε-ratio and strain-rate on TMF response are also examined, with 

the applicability of empirical TMF life prediction models assessed for conventional and 

asymmetric TMF, as well as CTMF loading conditions. 

2. Methodology 

2.1. Material and Heat Treatment 

The present study is focused on TMF experimental testing of an ex-service P91 tempered-

martensite alloy extracted from a superheater outlet header. In service, this material was 

subjected to subcritical loading conditions only (Tmax < 758 K) and was removed from service 

after 35,168 hrs for purely operational reasons, i.e. there was no evidence of any significant 

material degradation or damage. Thus, negligible creep deformation and microstructural 

evolution is assumed prior to the current test program. The chemical composition (in wt.%) is 

0.007Al-0.1C-8.48Cr-0.42Mn-0.94Mo-0.058N-0.07Nb-0.19Ni-0.013P-0.26Si-0.204V, with 
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the balance Fe. The P91 steel was fabricated via a rolling process and underwent a typical 

two-stage heat treatment process of austenitisation at 1323 K for 0.5 hr, followed by 

tempering at 1038 K for 1 hr.  

2.2. Experimental Testing 

The high temperature cyclic behaviour of the P91 steel is measured using the Instron 8862 

TMF test rig at the University of Nottingham. The test rig and specimen geometry are 

described in detail elsewhere [24]. The test program includes IF, CF, TMF and CTMF 

experiments. All tests were performed under strain-control conditions, with the waveforms 

illustrated schematically in Figure 1. The complete fatigue test program is summarised in 

Table 1. IF tests are conducted at temperatures of 293 K to 873 K for three different strain-

ranges at higher (0.025 to 0.1 %/s) and intermediate (5×10
-4

 %/s) strain-rates. CF tests, with a 

120 s dwell period at maximum (tensile) strain, are conducted at temperatures of 673 K, 773 

K and 873 K. The TMF and CTMF experiments consist of both in-phase (IP) and out-of-

phase (OP) tests with phase angles of 0° and 180°, respectively. The TMF and CTMF 

experiments are conducted in the 673 K to 873 K temperature range under several strain-

ranges in the higher strain-rate regime. Similar to the IF test program, the CTMF test also has 

a dwell period at maximum tensile strain, corresponding to a dwell at maximum temperature, 

Tmax, for IP conditions and at minimum temperature, Tmin, for OP conditions. Although a 

dwell period at Tmax is a commonly used OP cycle, the proposed OP cycle (with a dwell 

period at Tmin) is designed to represent part-load operation of power plant. Dwell periods 

under such conditions occur at a reduced operating temperature similar in magnitude to the 

Tmin value of 673 K tested here. Asymmetric TMF tests, where the maximum tensile strain is 

significantly higher than the maximum compressive strain, were also performed with Rε-

ratios based on predicted strain in the hoop and axial directions for finite element modelling 

of a header unit under representative (measured) cyclic operation [3]. Thus, the asymmetric 

TMF tests were performed under IP and OP conditions, with Rε-ratios of -0.4 and -0.25, 

representing the upper and lower bounds of the finite element predicted Rε-ratios. The 

maximum applied mechanical strain, from 0.3% to 0.5%, is considered important for 

thermomechanical loading at discontinuities such as welded connections and T-piece 

connections [25]. 

A 20% load drop relative to the load at 150 cycles is set as the criterion for test completion. A 

typical fatigue crack, as observed during the macroscopic fatigue crack growth (FCG) stage 

of the test, is presented in the optical micrograph of Figure 2. The number of cycles to failure, 

Nf, is defined via the ISO 12106:2017-03 standard as a 10% drop in load from the secondary 

softening stage, as illustrated schematically in Figure 3. 

2.3. Fatigue life prediction 

At present, a number of prominent models exist for predicting LCF life for both IF and TMF 

loading conditions. In this section, three such models; namely the (i) Coffin-Manson [26,27], 

(ii) Ostergren [22] and (iii) Zamrik [23] models are assessed for applicability to P91 steel 
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under the present TMF loading conditions. According to the Coffin-Manson relationship, the 

number of cycles to failure, Nf, is defined as: 

   
 

 
 
    
   

  

   

 
(1) 

where εf' is the fatigue ductility coefficient and c is the fatigue ductility exponent. The 

Ostergren model is defined as: 

              
  (2) 

where C and β are the temperature-dependent Ostergren failure parameters. For the Ostergren 

model here, the inelastic strain energy (Δεinσmax) is normalised with respect to the tensile 

toughness, ΔW0, to account for temperature-dependence of the Ostergren model failure 

constants [30], such that the number of cycles to failure is defined as: 

      
        

   
 
  

 (3) 

where C1 and β1 are temperature-independent Ostergren failure constants. Similar to the 

Ostergren model, the Zamrik model is an energy-based life prediction method, specifically 

proposed to improve TMF-OP life prediction. It is defined as:  

      
        

      
 
  

 
(4) 

where εten is maximum applied tensile stress, εf is material ductility, σUTS is ultimate tensile 

strength and C2 and β2 are the Zamrik parameters. 

3. Results 

3.1. Cyclic stress-strain response under IF and TMF 

Figure 4 presents the measured stress-strain response for the initial cycle of the P91 steel 

subjected to TMF-IP and TMF-OP loading in the 673 K to 873 K temperature range at an 

applied strain-rate of 0.025 %/s. The IF response at temperatures of 673 K and 873 K are also 

included for comparison. As is evident from Figure 4, the TMF response in both cases is 

effectively bounded by the IF behaviour for both TMF-IP and TMF-OP loading conditions. 

Figure 5 shows the cyclic stress-strain response for asymmetric loading under a Rε-ratio of -

0.4 for the initial and 100
th

 cycle under TMF-IP loading, with the TMF-OP response 

presented in Figure 6 at a Rε-ratio of -0.25. A minimal strain-rate effect is observed under 

TMF conditions for the higher strain-rate regime considered here. This is due to minimal time 

spent at 873 K during TMF testing where a significant strain-rate effect is present in P91 

steel, with IF test data at less than 773 K demonstrating a negligible strain-rate effect for the 

higher strain-rates considered here [7]. 

The measured stress relaxation during the dwell period of the CTMF tests is presented in 

Figure 7 for both OP and IP loading conditions. A comparison with isothermal CF 
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experimental data at the dwell temperatures of 673 K and 873 K, respectively, is also 

presented. To enable a direct comparison of relaxation behaviour across a range of strain-

rates, this data is normalised by the stress at the start of the hold period (σ0). During this 

isothermal dwell period in the CTMF cycle at the same applied mechanical strain, the 

observed relaxation of stress in each case is similar to that of the isothermal CF tests at 673 K 

for the OP case, as presented in Figure 7a. However, there exists a significant difference in 

relaxation behaviour for dwells at 873 K (Figure 7b). For the strain-rates considered here, no 

significant strain-rate effect is observed in P91 steel at temperatures below 773 K [7]. 

However, a significant strain-rate effect is observed in P91 steel under IF at 873 K, as 

presented in Figure 8a. Thus, it is concluded here that the observed trend in Figure 7b is 

primarily due to the strain-rate effect under higher dwell temperatures. Figure 8b 

demonstrates this strain-rate effect as a function of cycles for CTMF-IP thermomechanical 

loading conditions in the 673 K to 873 K range, where the dwell occurs at 873 K. Once again, 

the observed cyclic trend for CTMF is consistent with the strain-rate effect observed under IF 

conditions at 873 K. 

The measured evolution of stress range for the CF (at 673 K and 873 K) and CTMF (IP and 

OP) tests is presented in Figure 9a. As with all tests conducted within this program, 

significant cyclic softening is observed in all cases, with only slight differences in the level 

and rate of softening between CTMF-IP and CTMF-OP loading conditions. Figure 9b 

presents the accumulated inelastic strain,           
  
   , where Nf is the number of cycles 

to failure and Δεin,i is inelastic strain range for cycle i, as defined in Figure 10 for CTMF-IP 

and CTMF-OP loading and comparisons with the corresponding CF data at 673 K and 873 K. 

The results for CTMF-IP and CTMF-OP suggests a strong dependence of cyclic softening on 

p, as opposed to temperature, for tests conducted below 873 K. As the primary mechanism of 

cyclic softening in 9-12Cr steels is LAB dislocation annihilation [8], the hypothesis that 

cyclic softening is predominantly a function of p is consistent with published observations of 

negligible LAB evolution under thermal aging conditions [28]. This dependence on p is 

further realised via the application of Chaboche isotropic stress model to cyclic softening in 

P91 by Saad et al. [12]. 

3.2. Failure under TMF conditions 

Figure 11 presents the effect of symmetric thermomechanical loading (TMF-IP and TMF-

OP) on fatigue life as a function of both applied mechanical strain-range and inelastic strain 

range, Δεin, for P91 steel, including a comparison with IF data. Clearly, thermal cycling leads 

to a significant reduction in fatigue life, compared with isothermal loading. For symmetric 

TMF, the most severe case is the TMF-OP case. As the mechanical strain and temperature are 

out-of-phase, the material is subjected to a significantly higher maximum tensile stress (see 

Figure 12a) at minimum temperature. This is essentially due to the material reaching a higher 

maximum stress at the lower temperature (under strain control conditions) and giving a 

harder response (since maximum tensile stress is a key parameter for FCI). This result 
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demonstrates the critical role of maximum applied tensile stress, σmax, on fatigue life for 

symmetric TMF. It should also be noted that there is a significant temperature-dependence 

for the number of cycles to failure as a function of the applied mechanical strain-range for IF 

conditions (Figure 11a). However, this temperature-dependence is not as evident when 

considering inelastic strain-range versus Nf, where the IF test data essentially collapses to a 

power law relationship as shown in Figure 11b.  

Figure 11 also presents a comparison of the observed fatigue life of asymmetric TMF-IP and 

TMF-OP test results (open symbols). As is evident from this result, the asymmetric TMF 

tests follow the same trend (qualitatively) as symmetric TMF tests (TMF-OP has reduced 

fatigue life compared with TMF-IP), albeit under a significantly different relationship with 

inelastic strain-range for TMF-IP for the strain-ranges considered here. This may represent 

the transition from low-cycle fatigue to high-cycle fatigue for P91 steel. Thus, further testing 

at these lower applied strain-ranges under IF and TMF (both symmetric and asymmetric) test 

conditions is required to define whether this is the transition region for low-cycle fatigue to 

high-cycle fatigue; this will also provide essential data for plant designers and fatigue life 

prediction at these potentially crucial strain-ranges for conventional power plant applications. 

TMF-OP is similar to isothermal CF (dwell) loading, in which the inelastic strain 

accumulation is dominant in the compressive part of the loop [13]. The net effect is a mean 

tensile stress (e.g. see Figure 12b) and hence, reduced fatigue life compared with TMF-IP and 

IF test data, as illustrated in Figure 11. However, as shown in Figure 13, a significant increase 

in fatigue life is observed for OP loading with a tensile dwell period (CTMF-OP) when, 

compared with CTMF-IP test data. This phenomenon is not captured by the mean stress or 

maximum applied stress effect. This contrasts with the finding for TMF tests without a hold 

period and highlights (i) the significance of high temperature creep-TMF-oxidation 

deformation in P91 steels, (ii) the requirement to conduct TMF tests with dwell periods for 

highly flexible power plant applications and (iii) the requirement to assess current TMF life 

prediction methodologies for cases of asymmetric TMF and TMF with dwell periods.  

3.3. The concept of net tensile hysteresis energy and CTMF behaviour 

The net tensile hysteresis energy (ΔWT) is widely used to evaluate fatigue life [2,29] and is 

defined schematically in Figure 10 for a CF loading case. Inelastic strain range, Δεin, 

represents the primary mechanism of energy dissipation at high applied (tensile) stresses, 

with the dissipated energy predominantly absorbed by the material (the remainder is 

dissipated as heat to the surroundings). Thus, increasing ΔWT is nominally consistent with a 

decreasing fatigue life. Figure 14 presents the measured ΔWT for TMF-IP and TMF-OP under 

an applied mechanical strain range of ±0.5% and strain-rate of 0.025 %/s. The ΔWT is 

evaluated based on the half-life tensile hysteresis loop area. A significant increase in ΔWT is 

observed for the TMF-OP test conditions compared with TMF-IP due to the increased 

applied stress associated with the reduced temperature during tensile loading. This increase in 
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ΔWT is consistent with a decrease in fatigue life. Furthermore, qualitatively, the ΔWT 

approach is capable of predicting the observed trend of reduced fatigue life for TMF-OP 

loading conditions as compared with TMF-IP (e.g. see Figure 14). However, the correlation 

of Nf with ΔWT is not valid for CTMF loading conditions. As illustrated in Figure 14, both 

ΔWT and fatigue life increase for CTMF loading conditions relative to the corresponding 

TMF conditions. This is inconsistent with the observed TMF trend that increasing ΔWT 

reduces the fatigue life.  

3.4. Calibration of fatigue life prediction models for TMF of P91 steel 

To apply the Coffin-Manson model to TMF loading in the 673 K to 873 K temperature range, 

the necessary failure constants (εf' and c) are defined using IF data for 673 K, 773 K and 873 

K. As is evident in Figure 15a, the data for the three temperatures collapses to approximately 

a linear relationship for Δεin/2 versus Nf on a log-log plot, with Δεin taken as the inelastic 

strain range at half-life. However, as illustrated in Figure 15b, when the same constants are 

used for TMF loading, the Coffin-Manson relationship predicts extremely non-conservative 

TMF life compared with experimental data. For the temperature ranges and test conditions 

considered here, Coffin-Manson is shown to be non-conservative by factors of approximately 

6 and 12 for TMF-IP and TMF-OP cases, respectively. This is primarily attributed to the 

omission of a maximum stress component, an important parameter for TMF life prediction 

(e.g. see Figure 12a), from the model.  

The value of ΔW0 for P91 steel is identified from monotonic tensile testing of the material 

[31] and presented in Table 2. The identified failure constants, C1 and β1, are 10.57 and -1.44, 

respectively (see Figure 16a). Figure 16b presents application of the Ostergren model to P91 

steel under IF and TMF loading conditions. For TMF loading, Δεinσmax, taken at the half-life 

here, is normalised with respect to ΔW0 at the maximum cycle temperature (873 K here). As 

is evident from Figure 16b, extrapolation of the Ostergren model to TMF using failure 

constants identified from IF data gives non-conservative results, particularly for TMF-OP. If 

the Ostergren model is normalised with respect to ΔW0 at the mean temperature (773 K here), 

the predicted TMF lives are far less conservative. Thus, it is recommended that the Ostergren 

model be applied with normalisation to ΔW0 at maximum temperature and that the Ostergren 

model not be used for TMF-OP loading conditions in 9-12Cr steels. 

In Equation (4), εtenσmax is determined from the half-life hysteresis loop and εf and σUTS are 

determined from tensile test data as presented in Table 2. Figure 17a presents identification of 

the temperature-dependent failure constants, C2 and β2, from IF data and Figure 17b compares 

the predicted number of reversals to failure with experimentally observed values for the IF 

and symmetric TMF cases. The Zamrik model is utilised here with εf and σUTS defined at the 

maximum temperature, as application at the mean temperature leads to non-conservative 

results. Although the Zamrik model predicts Nf of symmetric tests quite well (see Figure 

17b), this model struggles to predict the fatigue life of (i) asymmetric TMF cycles for the 
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strain-ranges considered here, as presented in Figure 18a, where results are conservative for 

the TMF-IP case, and (ii) more importantly, CTMF-IP loading in Figure 18b, where non-

conservative results by a factor of approximately 4 are predicted. 

4. Discussion 

The strain-life failure for symmetric TMF-IP and TMF-OP loading conditions in Figure 11 is 

consistent with the key roles of maximum tensile stress, σmax, and mean stress, σm, in 

determining fatigue life. Under such loading conditions, ΔWT can be generally used to 

correlate fatigue life with life prediction models based on ΔWT, such as Ostergren (TMF-IP 

only) and Zamrik. A key benefit of such models is that they can be implemented in multi-

axial form in conjunction with critical plane and rainflow cycle counting methods for 

application to realistic geometries [3,32]. Based on the results of Figure 15 to Figure 17, the 

Zamrik model performs best for prediction of TMF life, particularly for TMF-OP, whereas 

the Ostergren model gives significantly non-conservative results. For the Ostergren and 

Zamrik models, using the maximum temperature as the reference temperature leads to 

increased conservatism of life prediction. It should also be noted here that the analysis 

performed does not account for the effect of strain-rate on the mechanical properties and 

failure constants within the life prediction models; future work should address this effect for 

strain-rates observed in conventional plant (e.g. 1×10
-5

 s
-1

 to 1×10
-12

 s
-1

) as Δεin, σmax and 

σUTS, for example, depend on strain-rate.  

The symmetric TMF test results follow the typical phenomenon of reduced fatigue life for 

TMF-OP loading compared to TMF-IP (e.g. see Figure 11), with failure driven by a mean 

tensile stress, as highlighted in Figure 12b. However, the CTMF test program on P91 steel 

conducted here highlights a contrasting trend, with CTMF-IP loading giving lower fatigue 

life than the CTMF-OP cases. For CTMF-IP cases considered here, the 120 s dwell period at 

maximum tensile strain occurs at the maximum temperature of 873 K, where increased 

microstructural degradation and creep deformation occur. However, for the CTMF-OP case, 

the dwell period occurs at low temperature, where rate effects and creep deformation are 

significantly reduced. Furthermore, increased oxidation during a dwell period at higher 

temperature under CTMF-IP will lead to increased oxide-scale contribution to FCI and hence, 

reduced fatigue life. Earthman et al. [33] have demonstrated this significant effect of 

oxidation on IF life, and in particular for FCI, in a 12Cr steel. This reduced fatigue life can be 

attributed to the mechanisms of oxide layer rupture under cyclic mechanical loading 

[11,13,34], in which rupture of the outermost oxide scale reveals fresh matrix material on 

which an oxide-scale rapidly forms, with the process repeating until oxide-scale assisted FCI 

and premature failure occur. As the oxide-scale thickness, hox, is a function of the 

temperature-dependent diffusion constant, D(T), i.e. following a parabolic growth law, 

          , the higher dwell temperature of the CTMF-IP test condition will induce 

increased and accelerated oxide scale growth and, hence, reduced cycles to FCI, as compared 

with the CTMF-OP case. Thus, for CTMF-IP tests conducted with a dwell period at higher 
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temperature, the role of oxide scale formation and evolution of the oxide scale on FCI needs 

to be investigated in more detail for CTMF loading conditions. 

As illustrated in Figure 12, the observed TMF-OP and CTMF-OP fatigue lives are quite 

similar, demonstrating the minimal effect of the 120 s dwell period on fatigue life at 673 K. 

This is consistent with minimal creep and oxidation damage at temperatures less than 773 K 

in P91 steels. Thus, it can be concluded that higher temperature dwell periods, e.g. where 

strain-rate effects and temperature-dependent microstructural degradation become important, 

can have a detrimental effect on fatigue life. Although conventional power plant components 

tend to operate with dwell periods on the order of hours, a significant proportion of the 

thermal stress component relaxes during the initial (rapid) stage of a hold period. For 9-12Cr 

steels, this initial stage of stress relaxation is on the order of minutes with the stress rapidly 

decaying to a saturated value [4]. Hence, the 120 s dwell period considered here can 

qualitatively capture the relaxation behaviour of P91 steel. However, future work will also 

investigate the effect of dwell time on CF and CTMF performance in 9-12Cr steels to 

determine the role of microstructural degradation during dwell periods on fatigue life. As the 

proposed TMF life prediction models follow the trend of reduced fatigue life for increased 

Δεin and mean applied stress, these models are not readily applicable to CTMF. Hence, as 

such dwell periods will become ever more commonplace for current and next generation 

plant service loading conditions, a fatigue life prediction model which accounts for 

interactions of creep, TMF and oxidation mechanisms of degradation and FCI is required as 

the models presented here do not account for microstructural degradation, creep and, 

potentially most importantly, oxidation effects. For example, Wei et al. [35] developed a 

probabilistic linear superposition crack growth model for creep-fatigue-oxidation during 

system start-up and shut-down and for 9-12Cr steels, Fournier and co-workers [19] applied a 

Tanaka-Mura FCI model coupled with crack growth to creep-fatigue-oxidation. Furthermore, 

the key life limiting factor for 9-12Cr steels under high temperature operation is 

microstructural degradation, including precipitate coarsening, formation of secondary phase 

particles (such as Laves phase and Z-phase particles at the expense of solute atoms and 

carbonitride particles), oxide-scale formation and dynamic recovery. This microstructural 

degradation, which is dependent on thermal and mechanical loading history, can lead to a 

significant reduction in strength and the formation of micro-voids [36] and micro-cracks [32], 

potentially leading to material failure. Thus, microstructure evolution under complex 

thermomechanical cycles, and its effect on material behaviour, should represent a critical 

constituent in life prediction and remnant life analysis of power plant components, 

particularly as higher temperature flexible operation is being pursued. This is even more 

important in terms of the heterogeneous microstructure of welded connections and their 

susceptibility to premature failure. Thus, constitutive models should account for the complete 

array and interdependencies of strengthening mechanisms in 9-12Cr steels [37] and complex 

microstructural evolution under creep-TMF-oxidation (e.g. significant effect of prior fatigue 

loading on creep performance of P92 [10]). 
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5. Conclusions 

A program of TMF tests on a P91 steel are presented and current empirical fatigue life 

prediction models are assessed for applicability to 9-12Cr steels. The key conclusions are: 

 In the 673 K to 873 K temperature range considered here, out-of-phase 

thermomechanical loading is observed to cause a significant reduction in life 

compared with isothermal fatigue and in-phase thermomechanical fatigue. In such 

cases, the fatigue life is strongly influenced by the maximum tensile stress.  

 When dwell periods are introduced at maximum tensile stress, in-phase loading 

becomes the critical loading case due to microstructure evolution and accelerated 

oxide scaling during dwells at peak temperature. This highlights the necessity to 

complete creep-thermomechanical fatigue testing and the requirement to consider the 

physical mechanisms of fatigue crack initiation under combined creep, 

thermomechanical fatigue and oxidation loading conditions. 

 Conventional thermomechanical fatigue life prediction models based on inelastic 

strain energy (e.g. Ostergren and Zamrik) should be used with caution for 9-12Cr 

steels; such models break down for cases where thermomechanical fatigue loading 

with high temperature dwell periods. 

 Physically-motivated approaches are required to successfully predict fatigue life 

under complex (service) thermomechanical loading histories. Such approaches must 

account for microstructural evolution, as well as plasticity- and oxidation-induced 

mechanisms of fatigue crack initiation. 
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Tables 

Table 1: High temperature cyclic test program on P91 steel. 

Test Type Temperature (K) Strain range (%) Strain-rate (%/s) Waveform 

IF 
293, 673, 773 and 

873 

±0.5 0.1 

Rε = -1 

(Triangular) 

±0.5 0.033 

±0.4 0.033 

±0.3 0.033 

±0.5 0.025 

IF 
673, 773, 823, 

873 and 898 
±0.3 5×10

-4
 

Rε = -1 

(Triangular) 

CF 673, 773 and 873 ±0.3 0.1 
120 s hold period 

(Triangular) 

TMF (IP & OP) 673 to 873 

±0.5 0.033 

Rε = -1 

(Triangular) 

±0.5 0.025 

±0.5 0.01 

±0.4 0.033 

±0.3 0.033 

TMF (IP & OP) 673 to 873 

+0.5,-0.2 0.033 
Rε = -0.4;  

Rε = -0.25   

Asymmetric 

(Triangular) 

+0.5,-0.2 0.025 

+0.4,-0.1 0.033 

+0.4,-0.1 0.025 

+0.4,-0.1 0.01 

CTMF (IP & OP) 673 to 873 ±0.5 
0.033 120 s hold period 

(Triangular) 0.025 

 

Table 2: Measured monotonic properties of P91 steel for Ostergren and Zamrik models. 

T (K) ΔW0 (MJ/m
3
) σUTS (MPa) εf (%) 

293 109 690.2 17.9 

673 78 612.0 25 

773 71 530.0 16.2 

873 43 391.4 18.7 
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Figures 

 

Figure 1: IF, TMF and CTMF waveforms in the test program: (a) IF, (b) TMF-IP, (c) TMF-OP, (d) CF, (e) CTMF-IP and (f) 

CTMF-OP. 
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Figure 2: TMF specimen post-test and optical micrograph of the dominant fatigue crack under a failure criterion of a 20% 

drop in load after 150 cycles (inset). 

 

Figure 3: Cyclic softening of P91 steel under TMF-IP loading with deformation mechanism map highlighting recovery (lath 

widening and particle coarsening), fatigue crack initiation (FCI), coalescence to form micro-cracks and macroscopic fatigue 

crack growth (FCG). 
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Figure 4: Comparison of (a) TMF-IP and (b) TMF-OP cyclic stress-strain response with IF data at 673 K and 873 K for the 

initial cycle at an applied strain-rate of 0.025 %/s and mechanical strain-range of ±0.5%. 

 

Figure 5: TMF-IP behaviour of P91 steel under asymmetric TMF testing for the (a) initial and (b) 100th cycle in the 673 K to 

873 K temperature range under a Rε-ratio of -0.4. 
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Figure 6: TMF-OP behaviour of P91 steel under asymmetric TMF testing for the (a) initial and (b) 100th cycle in the 673 K 

to 873 K temperature range under a Rε-ratio of -0.25. 

 

Figure 7 Comparison of the measured (a) CTMF-OP and (b) CTMF-IP stress response during the dwell period (solid lines) 

for two different strain-rates of 3.3×10-4 s-1 and 2.5×10-4 s-1. A comparison with isothermal CF experimental data at the dwell 

temperature is also included (dotted lines) at an alternate strain-rate of 1.0×10-3 s-1. The stress values are normalised with 

respect to the initial stress at the start of the hold period. The applied mechanical strain during the dwell period is 0.5% in all 

cases. 
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Figure 8: Effect of strain-rate on (a) tensile stress-strain response under IF loading at 873 K and (b) evolution of maximum 

tensile stress with increasing cycles under CTMF-IP loading. 

 

Figure 9:  Measured cyclic evolution of (a) stress range and (b) accumulated effective inelastic strain for CF (dashed lines) 

and CTMF (IP and OP, solid lines) test conditions in the 673 K to 873 K temperature range. 
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Figure 10: Schematic representation of the net tensile hysteresis energy in a CF test. 

 

Figure 11: Number of reversals to failure as a function of (a) total applied strain-range and (b) inelastic strain-range for IF 

(673 K, 773 K and 873 K) and TMF-IP and TMF-OP in the 673 K to 873 K temperature range. Symmetric TMF results are 

in full symbols and asymmetric TMF test results are in open symbols. 
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Figure 12: Cyclic evolution of (a) maximum tensile stress and (b) mean stress for TMF and CTMF loading under IP and OP 

thermo-mechanical conditions. The strain-rate is 0.025 %/s and applied mechanical strain is ±0.5%. 

 

Figure 13: Increased reversals to failure associated with CTMF-OP loading condition compared with CTMF-IP behaviour 

for an applied mechanical strain is ±0.5% at two different strain-rates. 
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Figure 14: Measured net tensile hysteresis energy and number of reversals to failure compared with test condition in P91 

steel at an applied strain-rate of 0.025 %/s and applied strain-range of ±0.5%. 

 

Figure 15: Coffin-Manson (a) parameter identification from IF test data and (b) application to IF and symmetric TMF 

loading conditions in the 673 K to 873 K temperature range. 
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Figure 16: Ostergren model (a) parameter identification from IF test data and (b) application to IF and symmetric TMF 

loading conditions in the 673 K to 873 K temperature range. 

 

Figure 17: Zamrik model (a) parameter identification from IF test data and (b) application to IF and symmetric TMF loading 

conditions in the 673 K to 873 K temperature range. 
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Figure 18: Comparison of measured and Zamrik model predicted fatigue lives for (a) TMF asymmetric tests and (b) IF (673 

K, 773 K and 873 K) and TMF with dwell periods. 
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