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SRPK1 maintains acute myeloid leukemia through
effects on isoform usage of epigenetic regulators
including BRD4
Konstantinos Tzelepis et al.#

We recently identified the splicing kinase gene SRPK1 as a genetic vulnerability of acute

myeloid leukemia (AML). Here, we show that genetic or pharmacological inhibition of SRPK1

leads to cell cycle arrest, leukemic cell differentiation and prolonged survival of mice trans-

planted with MLL-rearranged AML. RNA-seq analysis demonstrates that SRPK1 inhibition

leads to altered isoform levels of many genes including several with established roles in

leukemogenesis such as MYB, BRD4 and MED24. We focus on BRD4 as its main isoforms

have distinct molecular properties and find that SRPK1 inhibition produces a significant switch

from the short to the long isoform at the mRNA and protein levels. This was associated with

BRD4 eviction from genomic loci involved in leukemogenesis including BCL2 andMYC. We go

on to show that this switch mediates at least part of the anti-leukemic effects of SRPK1

inhibition. Our findings reveal that SRPK1 represents a plausible new therapeutic target

against AML.
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Acute myeloid leukemia (AML) is an aggressive cancer of
hematopoietic stem cells that remains lethal to most
sufferers1. To address this unmet clinical need, we

recently established a CRISPR-Cas9 platform for the performance
of genome-wide recessive screens in mammalian cells and used
this to identify genetic vulnerabilities of AML cells2. Through this
work, we identified the splicing kinase gene SRPK1 as a genetic
vulnerability of AMLs driven by MLL fusion genes2. SRPK1
functions coordinately with CLK1, another serine-arginine (SR)
protein kinase, to regulate the function of SR splicing proteins
including SRSF1 and SRSF23. SRPK1 kinase inhibition is known
to produce a switch of VEGF-A splicing away from the pre-
dominant pro-angiogenic VEGF165a isoform and towards the
anti-angiogenic VEGF165b isoform4,5. This is of therapeutic
potential in neovascular eye disease6, prostate cancer5 and other
diseases where VEGF-A plays a role7. Also, inhibition of SRPKs
was proposed to have anti-leukemic properties8.

Here we investigate the molecular basis for the requirement
for SRPK1 in MLL-rearranged AMLs and explore the ther-
apeutic potential of this finding. We report that inhibition of
SRPK1 using gRNA or the specific inhibitor SPHINX316 leads
to cell cycle arrest, leukemic cell differentiation, and prolonged
survival of immunocompromised mice transplanted with
MLL-rearranged AML cells. We then show that SRPK1 inhibi-
tion affects isoform usage of a number of genes with established
roles in leukemogenesis including MYB9, BRD410, and
MED2411. BRD4 has a well-recognized role in AML main-
tenance and its two main isoforms have distinct molecular
properties, at least in certain contexts12, yet it is not known if
they have different roles in AML. We go on to show that SRPK1
inhibition leads to a marked switch from the short to the long
BRD4 isoform at both the mRNA and the protein levels. This
was associated with eviction of BRD4 from genomic loci that
were previously shown to be required for myeloid leukemo-
genesis, including BCL2 and MYC. Using rescue experiments we
demonstrate that the BRD4 switch per se has anti-leukemic
properties. Collectively, our work reveals that SRPK1 inhibition
is a plausible therapeutic strategy in AML and gives insights into
the molecular basis of this finding.

Results
Loss of SRPK1 halts AML expansion in vitro and in vivo.
Recently, we identified SRPK1 as a cell-essential gene for AML
cell lines driven by common MLL fusion genes such as MLL-AF9
and MLL-AF6 oncogenes2. Here, to validate this finding, we use
lentiviral gRNAs against SRPK1 to markedly reduce SRPK1
protein levels in Cas9-expressing AML cell lines and primary
murine AMLs (Supplementary Fig. 1a–f). This was associated
with differentiation (Fig. 1a, Supplementary Fig. 2a, b) and
apoptosis (Fig. 1b) of AML cell lines driven by MLL gene fusions
(MLL-X) or partial tandem duplication. In addition, we observed
markedly reduced proliferation of these cell lines and of primary
mouse AMLs driven by MLL fusions, whilst MLL-WT leukemias
or non-leukemic cell lines were unaffected13 (Fig. 1c, Supple-
mentary Fig. 2c). Additionally, lentiviral overexpression of
gRNA-non-targetable SRPK1 cDNA, rescued the phenotype
observed by disruption of SRPK1 (Supplementary Fig. 2d, e).
Also, genetic disruption of SRPK1 by gRNA led to reduced leu-
kemic cell growth in vivo and increased survival of immuno-
compromised RAIL (Rag2−/−/Il2rg−/−) mice xenotransplanted
with MOLM-13-Cas9 cells (Fig. 1d–f) as well as to lower levels of
nuclear SRSF1 (Fig. 1g), as previously seen with SRPK1
inhibition4.

To investigate the therapeutic potential of SRPK1 inhibition in
AML, we used the selective SRPK1 kinase inhibitor SPHINX316.

We first observed that SPHINX31 inhibited the growth of
MLL-mutant AML cell lines with an IC50 >1 order of magnitude
lower than for other AML lines (Fig. 1h). This was associated with
myeloid differentiation (Supplementary Fig. 2f, g), cell cycle
arrest, apoptosis of human and primary mouse AMLs driven by
MLL-AF9 (Supplementary Fig. 2h–k) and reduced SRSF1/2
phosphorylation and VEGF-A165a expression (Supplementary
Fig. 3a–f), mirroring the results of genetic inhibition. Notably,
ectopic expression of a phosphomimic, but not of a non-
phosphorylatable SRSF1 restored THP-1 cell proliferation in
association with increased nuclear SRSF1 levels, (Fig. 1i, Supple-
mentary Fig. 3g–j) confirming the importance of SRSF1
phosphorylation in maintaining cell survival/proliferation. We
also confirmed the selectivity of the SPHINX31 inhibitor for
SRPK1 by performing whole kinome evaluation (Supplementary
Fig. 4a, b).

To investigate the therapeutic potential of SRPK1 inhibition in
AML in vivo, we determined the circulating concentration of
SPHINX31 after i.p. injection. Injection of 0.8 mg/kg SPHINX31
(i.p.) into DBA2J mice resulted in a concentration of 0.225 ±
0.036 µM in plasma after 24 h. We therefore xenotransplanted
RAIL mice with MOLM-13, THP-1 cells or first passage patient-
derived AMLs and treated these from day 8 with 0.8 or 2.0 mg/kg
of SPHINX31 or vehicle intraperitoneally, for 6 doses over
2 weeks. This led to a significant reduction in leukemic cell
growth and a dose-dependent prolongation of survival of mice
given MOLM-13, THP-1 and patient-derived MLL-X AMLs
(Fig. 1j, k, Supplementary Fig. 5a–i) while the same were not
observed with MLL-WT AMLs (Supplementary Fig. 6a–f). These
data demonstrate that SRPK1 is a therapeutic vulnerability in
MLL-rearranged AMLs.

SRPK1 loss has no lasting effects on normal hematopoiesis.
The drug had no lasting effects on normal hematopoiesis, as
wild-type CB57BL/6N mice treated with 6 doses of SPHINX31
at 2 mg/kg over 2 weeks showed no lasting changes in the
numbers of bone marrow-derived hematopoietic stem cells
(HSCs), early progenitors (Lin−, Sca1+, Kit+), myeloid cells
(Gr1+/Mac1+) or B-cells (B220+) and no effect on peripheral
blood counts (Fig. 2a, Supplementary Fig. 7a, b). Additionally,
there was no impact of SPHINX31 on the clonogenic potential
of normal mouse hematopoietic stem-progenitor cells (HSPCs)
despite reduced SRSF1/2 phosphorylation (Fig. 2b, Supple-
mentary Fig. 7c). Also, we found that 1.5, 3, and 6 μM
SPHINX31 did not affect the colony-forming ability of normal
human cord blood CD34+ cells (Fig. 2c). However, there was
strong dose-dependent inhibition of colony formation of pri-
mary human (Fig. 2d) and murine (Supplementary Fig. 7d)
AML samples driven by MLL fusions, while there was no effect
on MLL-WT AMLs (Fig. 2e, Supplementary Fig. 7e). Further-
more, genetic inhibition of SRPK1 using CRISPR had negligible
effects on the clonogenic potential of normal mouse HSPCs
despite significant reduction in SRPK1 protein levels
(Supplementary Fig. 7f, g), but strongly suppressed primary
murine MLL-AF9-driven, but not Npm1c-driven, AML cells
(Supplementary Fig. 7h, i). These findings indicate that SRPK1
kinase activity is required for the survival of MLL-X AMLs, but
has no lasting impact on normal hematopoiesis or the MLL-WT
AMLs tested here.

Inhibition of SRPK1 leads to splicing modulation. To investi-
gate the primary effects of SRPK1 kinase inhibition on gene
expression and RNA splicing we performed deep RNA-seq of
THP1 cells using either SRPK1 gRNA or treatment with 3 µM
SPHINX31 for 24 h. At 24 h, there was no loss of cell viability or
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changes in the cell cycle, but there was noticeable reduction of
SRSF1/2 phosphorylation (Supplementary Fig. 8a–c). Gene set
enrichment analysis of differentially expressed genes revealed
enrichment for oncogenic-signatures associated with HOX gene

programs (Supplementary Fig. 8d, Supplementary Data 1, 2).
Splicing analysis of both pharmacological (Fig. 3a) and genetic
(Supplementary Fig. 8e) inhibition of SRPK1 revealed diverse
changes with exon skipping as the most common event, whilst
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many of the affected genes displayed significant differential usage
of multiple exons (Fig. 3b, Supplementary Data 3). We compared
the two splicing datasets and observed a highly significant overlap
not only in the genes with altered splicing but also in specific
splicing events (Fig. 3c, Supplementary Fig. 8f, Supplementary
Data 4). Genes whose splicing was altered were enriched in sets
associated with myeloid leukemia, chromatin modification and
MLL-rearranged AML (Supplementary Data 5). Using isoform-
specific qPCR, we confirmed significant splicing changes for
several genes that were altered in both datasets including many
we previously identified as cell-essential for AML2,14 (Fig. 3d, e).
Additionally, using RNA immunoprecipitation (RIP), we found
reduced SRSF1 binding to some of these transcripts after gRNA
disruption and after treatment with SPHINX31 (Supplementary
Fig. 8g, h). Consistent with inhibition of MLL-X programs, we
observed HOXA9, MYC and BCL2 downregulation after 72 h of
SPHINX31 treatment (Supplementary Fig. 8i). We then focused
on one of the significantly mis-spliced genes, BRD4, an estab-
lished therapeutic target in AML10,15 whose two main splice
isoforms have distinct epigenetic properties12,16. We found that
SRPK1 disruption/inhibition led to a significant switch from the
short (BRD4S) to the long (BRD4L) mRNA isoform, without
affecting total BRD4 mRNA (Fig. 3d–f, Supplementary Fig. 8i, j).
The BRD4S-to-BRD4L switch was also seen at the protein level
with both SPHINX31 and SRPK1 gRNA in all AML cells tested
irrespective of MLL mutation status (Fig. 3g, Supplementary
Fig. 8k–o).

To assess the impact of the BRD4 splice switch on AML cell
survival, we designed two distinct lentiviral vectors expressing
gRNAs against the splice acceptor site of the final exon (exon 12,
ex12-SA) of BRD4S (Fig. 3h). Either gRNA generated the same
isoform switch to that seen with SRPK1 inhibition (Fig. 3i).
Interestingly, this BRD4 isoform switching significantly reduced
survival/proliferation of human MLL-AF9 AML to a similar
extent as gRNAs targeting the BRD4 second bromodomain (BD2)
or extra-terminal domain (ET), previously shown to be essential
for the survival of AMLs driven by MLL rearrangements17

(Fig. 3j, Supplementary Fig. 9a). In addition, we observed
differentiation of THP-1 and MOLM-13 cells (Supplementary
Fig. 9b), downregulation of HOXA9, MYC, and BCL2 (Supple-
mentary Fig. 9c, d), but not total BRD4, mirroring the effects of
SRPK1 disruption/inhibition. Interestingly, the same experiments
using MLL-WT AMLs did not show similar negative effects with
the BRD4 ex12-SA guides (Supplementary Fig. 9e–g), high-
lighting the MLL-X specificity of this event. Importantly, ectopic
expression of wild-type BRD4S, but not double BD1/BD2-mutant
(Y97A/Y390A) BRD4S or wild-type BRD4L, significantly reduced
the sensitivity of MLL-X cells to SPHINX31 (Fig. 3k, Supple-
mentary Fig. 9h, i). This was not observed using MLL-WT cells
(HEL) or after treating MLL-X cells with cytarabine (Ara-C)18 or

daunorubicin (Supplementary Fig. 9j–m). We also showed that
the BRD4S-to-BRD4L switch is dependent on SRSF1 phosphor-
ylation as overexpression of the phosphomimic SRSF1 markedly
blocked that switch (Fig. 3l). These findings strongly suggest that
the switch in BRD4 isoforms has significant anti-leukemic
properties in the context of SRPK1 inhibition. Also, to rule out
the possibility that BRD4 isoform switching was a consequence
(rather than the cause) of myeloid differentiation, we treated
THP-1 cells with two drugs known to drive AML differentiation
MI-50319 and cytarabine (Ara-C)18, and observed no effect on
BRD4 isoform ratio; whilst we also failed to see an effect upon
iBET-151 treatment (Supplementary Fig. 9n). Finally, we
confirmed that SRPK1 inhibition also alters BRD4 splicing in
breast cancer cells (Supplementary Fig. 9o), a finding that may be
of therapeutic significance in metastasis prevention12,20.

SRPK1 inhibition affects BRD4 recruitment to chromatin. We
then questioned whether the BRD4S-to-BRD4L splicing switch
has an impact on BRD4 chromatin recruitment. First, we per-
formed BRD4 ChIP-seq using THP-1 cells transduced with
BRD4-ex12-SA(A) gRNA or empty vector and identified 6126
differentially bound loci. Of these 6058 showed reduced BRD4
binding and the great majority of these loci were also previously
reported to lose BRD4 binding upon iBET treatment21 (Fig. 4a,
Supplementary Fig. 10a, b, Supplementary Data 6). Furthermore,
587 out of these 6058 loci were previously found to directly
recruit BRD4-bound MLL fusion proteins22,23 (Supplementary
Fig 10c). These loci include the 3’ enhancer of the BCL2 (Fig. 4b)
and MYC genes (Supplementary Fig 10d, Supplementary Data 7).
Using BRD4 ChIP-qPCR in THP-1 and HEL cells, we confirmed
BRD4 eviction from selected loci, including BCL2, MYC, and
EZH2 suggesting that BRD4S is required for BRD4 recruitment to
certain chromatin sites (Fig. 4c, d, Supplementary Fig. 10e, f). In
addition, we observed that genes displaying BRD4 eviction were
significantly downregulated including MYC, DOT1L, EZH2, and
SP1 (Fig. 4e). To assess the importance of the BCL2 3’ enhancer in
driving different AMLs we designed a dual gRNA vector targeting
its flanks (Fig. 4f). CRISPR-gRNA targeting of this enhancer
markedly inhibited the growth of AML cells irrespective of MLL
mutation status and was associated with reduced BCL2 protein
(Fig. 4g, h, Supplementary Fig. 10g–j). Notably, BRD4 isoform
switching by BRD4-ex12-SA-gRNA reduced BCL2 protein levels
in MLL-X AML, but not in MLL-WT (Fig. 4i, Supplementary
Fig. 10k), further highlighting that the BRD4S-to-BRD4L switch is
a selective vulnerability of the former. These results indicate that
BRD4S suppression by SRPK1 inhibition affects BRD4 recruit-
ment to chromatin and is associated with downregulation of key
MLL-X fusion mediators, including BCL2 and MYC.

Finally, as SRPK1 inhibition impacts on BRD4 function as
do BET inhibitors (iBETs)10,24, we set out to test if their

Fig. 1 Genetic and pharmacological inhibition of SRPK1 inhibits growth and drives differentiation of human AML cells. a CD11b expression in MOLM-13 cells
4, 5, and 6 days after gRNA. b Increased apoptosis levels in AML cells driven by MLL-X fusion genes (MOLM13, THP1, NOMO-1, and OCI-AML2) or MLL-
PTD (EOL-1) after dual gRNA targeting of SRPK1 (mean ± s.d., n= 3). c Competitive co-culture of lentiviral SRPK1 gRNA-transfected (BFP positive) vs
untransfected AML cell lines normalized to %BFP on day 4 (mean ± s.d., n= 3). d Bioluminescence imaging of mice transplanted with MOLM-13-Cas9 cells
transduced with luciferase-expressing lentiviral gRNAs. e Whole-body luminescence of mice depicted in (f) (n= 5). f Kaplan–Meier survival of MOLM-13-
transplanted mice (n= 5). g Nuclear and cytoplasmic protein levels of SRSF1 after gRNA targeting of SRPK1 or empty in THP1 cells. h Dose-response curves
of AML cell lines to the SRPK1 inhibitor SPHINX31 on day 6 post-treatment (mean ± s.d., n= 3), reveal that cell lines driven by MLL rearrangements are
significantly more sensitive. i Proliferation of THP-1 cells transduced with gRNA targeting SRPK1 or EMPTY, and plasmids expressing a wild type (WT), a
phosphomimic, a non-phosphorylatable version of SRSF1 or no cDNA (EMPTY) (mean ± s.d., n= 3). j Bioluminescence imaging of luciferase-expressing,
MLL-X-driven, AML PDX models, treated with 2mg/kg SPHINX31 (n= 6). Extended data in Supplementary Figure 4. k Kaplan–Meier survival of
MLL-X-driven, AML PDX models, treated with 2mg/kg SPHINX31 at indicated times (arrows) (n= 6). ***p < 0.001 (t-test). ****p < 0.0001 (t-test). d,
day; Log-rank (Mantel–Cox) test was used for survival comparisons
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Fig. 2 SRPK1 inhibition has no lasting effects on normal hematopoiesis. a Quantitation of LSK (Lin−/Sca1+/Kit+) and HSC (LSK/CD150+/CD34−)
compartments in bone marrow from WT mice three weeks after treatment with vehicle or SPHINX31 (2 mg/kg). b Colony-forming assay of WT lineage
negative (Lin−) HSPCs during (plating 1) and after (platings 2 & 3) treatment with 3 μM SPHINX31 (mean ± s.d., n= 3). c Colony-forming efficiency of
CD34+ human cord blood cells (n= 4) in the presence of 1.5, 3, or 6 uM SPHINX31 (mean ± s.d., n= 4). These changes are not significant at the 95%
confidence level according to one-way Anova on repeated measures. Error bars refer to variation across 4 different individuals (blue circle, brown square,
red triangle, and green triangle). d Colony-forming efficiency of primary human MLL-X AML cells treated with 1.5, 3, or 6 μM SPHINX31 or 1 μM iBET-151
(mean ± s.d., n= 3 technical replicates). e Colony-forming efficiency of primary human MLL-WT AML cells treated with 1.5, 3, or 6 μM SPHINX31 or 1 μM
iBET-151 (mean ± s.d., n= 3 technical replicates). HSC, hematopoietic stem cells; CFU, colony forming units; n.s., not significant; *p < 0.001 (t-test)
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anti-leukemic properties are redundant or additive, particularly as
iBETs inhibit multiple BET family members beyond BRD424. To
evaluate this, we employed an 8 (SPHINX31) by 6 (iBET) dose
matrix in THP-1 cells and we analyzed the combination effect
using the Bliss independence model25. We observed that there is a
strong synergistic effect between the two drugs across a clinically
relevant range of iBET doses (Supplementary Fig. 11a). We
verified this by showing that 200 nM iBET-151 markedly reduced
the IC50 of SPHINX31 against THP-1 and MOLM-13 (Supple-
mentary Fig. 11b). To examine if this combination is effective
in vivo we tested the impact of the combination in the RAIL

xenotransplantation model and found strong synergy, with
significant deceleration of AML growth and prolongation of
mouse survival (Fig. 4j, k, Supplementary Fig. 11c), without
noticeable toxicity. We also performed the same experiments
using the MLL-WT HEL cells and did not observe any synergistic
effect either in vitro or in vivo (Supplementary Fig. 11d–f).

Discussion
Taken together our findings indicate that the splicing kinase
SRPK1 is a novel, druggable therapeutic vulnerability of AMLs
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driven by several recurrent MLL rearrangements26. Phosphor-
ylation of SRSF1 is required for dissociation of its RNA recog-
nition motif from its own RS domain27 and from CLK128,
enabling free SRSF1 to recruit U1 snRNP to the 5’ splice site.
Failure to recruit U1 snRNP and any associated effects on splicing
or spliceosome assembly can then alter splice site as well as
polyadenylation choice29 as observed here for BRD4. Whilst
SRPK1 inhibition led to changes in mRNA isoform levels of many
genes, the impact on BRD4 isoforms was striking and the genetic
recapitulation of this event in isolation using BRD4-ex12-SA
gRNA significantly inhibited the growth of MLL-rearranged
AMLs (Supplementary Fig. 11g), in association with suppression
of target oncogenes including MYC and BCL2. Additionally, the
anti-leukemic effects of the SRPK1 inhibitor SPHINX31 were
strongly inhibited by ectopic expression of BRD4S further sug-
gesting that the BRD4 isoform switch is one key mediator of the
anti-leukemic effects of this compound. The fact that SRPK1 loss/
inhibition leads to isoform switching rather than full inhibition of
BRD4, may underlie its specificity to MLL-rearranged AMLs in
contrast to the effects of direct BRD4 inhibitors which have
broader anti-leukemic properties30, although the mechanisms for
this specificity need to be fully established in future studies.
Furthermore, SPHINX31 and i-BET-151 showed synergistic anti-
AML effects without noticeable toxicity in mice, pointing to a
possible clinical use of SRPK1 inhibitors, either alone, or in
combination with bromodomain inhibitors.

Recent studies have shown that modulation of splicing is a
promising therapeutic approach in leukemias with mutations in
genes encoding spliceosomal proteins31–33. Our findings extend
the applicability of this approach to AMLs lacking such mutations
and also propose that inhibition of SRPK1 should be investigated
in the treatment of other malignancies where BRD4 isoform
balance plays a role, such as metastatic breast cancer34, in which
SRPK1 is also an important mediator20.

Methods
Cell culture. MOLM-13, THP-1, NOMO-1, EOL-1, HEL, K562, and HL-60 were
cultured in RPMI1640 (Invitrogen) supplemented with 10% FBS (PAA) and 1%
penicillin/streptomycin/glutamine. OCI-AML2 and OCI-AML3 were cultured in
alpha-MEM (Lonza) supplemented with 20% FBS (PAA) and 1% penicillin/
streptomycin/glutamine. HPC-7 was cultured in IMDM (Invitrogen) supplemented
with 10% FBS, 100 ng ml−1 SCF (Peprotech), 7.48 × 10−5 M 1-thioglycerol
(Sigma), 1% penicillin/streptomycin/glutamine. 32D was cultured in RPMI1640
(Invitrogen) supplemented with 10% FBS, 10 ng ml−1 IL3 (Peprotech) and 1%
penicillin/streptomycin/glutamine. 293T, MDA-MB-231 and BT-474 cells were
cultured in DMEM (Invitrogen) supplemented with 10% FBS (PAA) and 1%
penicillin/streptomycin/glutamine. All cancer cell lines were obtained from the
Sanger Institute Cancer Cell Collection and negative for mycoplasma contamina-
tion. Human cell lines employed were either not listed in the cross-contaminated or

misidentified cell lines database curated by the International Cell Line Authenti-
cation Committee (ICLAC) or were previously verified by karyotyping.

Lentivirus production and transduction. Lentiviruses were produced in HEK293
cells using ViraPower Lentiviral Expression System (Invitrogen) according to
manufacturer's instructions. 1 × 106 cells and viral supernatant were mixed in 2 ml
of culture medium supplemented with 8 μg ml−1 (human) or 4 μg ml−1 (mouse)
polybrene (Millipore), followed by spinfenction (60 min, 900 × g, 32 °C) and fur-
ther incubated overnight at 37 °C. The medium was refreshed on the following day
and the transduced cells were cultured further.

gRNA competition assays. gRNA competition assays were performed using single
and dual gRNA vectors2. For the validation of individual target genes, one gRNA
was derived from the CRISPR library used in the screens and another gRNA was
designed using http://www.sanger.ac.uk/htgt/wge/. Viral supernatants were col-
lected 48 h after transfection. All transfections and viral collections were performed
in 24-well plates and transduction was performed as mentioned above. For gRNA/
BFP competition assays, flow cytometry analysis was performed on 96-well plates
using a LSRFortessa instrument (BD). Gating was performed on live cells using
forward and side scatter, before measuring of BFP+ cells. The gRNA sequences are
listed in Methods.

Isolation of hematopoietic progenitors. Flt3ITD/+ mice were kindly provided by
Gary Gilliland and crossed with Rosa26Cas9/+ mice. Freshly isolated bone marrow
from 6- to 10-week-old female Rosa26Cas9/+, Flt3ITD/+; Rosa26Cas9/+ or moribund
Npm1flox−cA/+; Flt3ITD/+, Npm1flox−cA/+; NrasG12D/+ mice were used. Bone
marrow cells were exposed to erythrocyte lysis (BD PharmLyse, BD Bioscience),
followed by magnetic bead selection of Lin− cells using the Lineage Cell Depletion
Kit (Miltenyi Biotec) according to the manufacturer’s instructions. Lin− was cul-
tured in X-VIVO 20 (Lonza) supplemented with 5% BIT serum (Stem Cell
Technologies) 10 ng ml−1 IL3 (Peprotech), 10 ng ml−1 IL6 (Peprotech) and 50 ng
ml−1 of SCF (Peprotech). Retrovirus constructs pMSCV-MLL-AF9-IRES-YFP and
pMSCV-MLL-ENL-IRES-Neo were used with package plasmid psi-Eco to produce
retrovirus. 293T cells (Life Technologies) were cultured and prepared for trans-
duction in 10 cm plates as described above. For virus production, 5 μg of the above
plasmids and 5 μg psi-Eco packaging vector were transfected dropwise into the
293T cells using 47.5 μl TransIT LT1 (Mirus) and 600 μl Opti-MEM (Invitrogen).
The resulting viral supernatant was harvested and transduction of primary mouse
cells was performed in 6-well plates as mentioned above. After transduction,
transduced cells were sorted for YFP (for MLL-AF9) or selected with neomycin (for
MLL-ENL).

For in vivo experiments related to Fig. 2, 6–10-week-old female Rosa26Cas9/+

mice were treated triweekly for two weeks with either vehicle or 2 mg/kg
SPHINX31 (Exonate). Four weeks post-treatment, bone marrow cells from these
mice were freshly extracted (as mentioned above) and blocked with anti-mouse
CD16/32 (BD Pharmigen, cat. no. 553142) and 10% mouse serum (Sigma). For the
identification of LK/LSK, LT-HSC, myeloid and B-cell subpopulations, staining was
performed using CD4 PE/Cy5 (Biolegend, cat. no. 100514), CD5 PE/Cy5
(Biolegend, cat. no. 100610), CD8a PE/Cy5 (Biolegend, cat. no. 100710), CD11b
PE/Cy5 (Biolegend, cat. no. 101210), B220 PE/Cy5 (Biolegend, cat. no. 103210),
TER-119 PE/Cy5 (Biolegend, cat. no. 116210), GR-1 PE/Cy5 (Biolegend, cat. no.
108410), SCA-1 Pacific Blue (Biolegend, cat. no. 122520), CD150 PE/Cy7
(Biolegend, cat. no. 115913), CD34 FITC (BD Pharmigen, cat. no. 553733) and
CD117 APC-eFluor780 (eBioscience, cat. no. 47-1171). In each of the multi-colour
flow cytometry experiments, we included the fluorescence minus one (FMO)
controls. FMO controls provide a measure of spillover in a given channel.

Fig. 3 The effects of SRPK1 inhibition on global RNA splicing and BRD4 isoform levels. a Frequency and type of significantly altered splicing events (FDR
≤0.001) in THP-1 cells after 24 h of treatment with 3 μM SPHINX31. b Number and distribution of genes with one or more differential exon usage events
(FDR <0.001) in THP-1 cells after 24 h of treatment with 3 μM SPHINX31. c Overlap of genes with splicing changes after genetic or pharmacological
inhibition of SRPK1 in THP-1 cells (hypergeometric test). d, e Quantification, by isoform-specific qRT-PCR of selected isoform changes identified upon
pharmacological vs genetic inhibition of SRPK1 (mean ± s.d., n= 3). f Intron-exon structure of BRD4 long and short isoforms g Western blot of THP-1 cell
lysates after SPHINX31 treatment (72 h), showing a marked switch from the BRD4S to the BRD4L protein isoform using both an N-terminal antibody that
detects both isoforms (N-Ab) and a C-terminal Ab that detects only BRD4L (C-Ab). h Schematic illustration of the target sites/sequences for two gRNAs
designed to specifically disrupt the BRD4 exon 12 splice acceptor site, which defines BRD4S (sgRNA sequences underlined, with PAM sequence underlined
in red). i Western blot for BRD4 in THP-1 cells transduced with each of these two gRNA display the same BRD4 isoform switch as seen with SPHINX31.
j Competitive co-culture of THP-1 cells transfected with lentiviral gRNAs against BRD4 (BFP positive) vs non-transfected cells normalized to %BFP on day 4
(mean ± s.d., n= 3). gRNAs were designed against known essential BRD4 domains (BD2 or ET) or the splice acceptor of BRD4S exon 12. k Dose-response
curves of THP-1 cells to SPHINX31 after overexpression of wild-type BRD4L, BRD4S and bromodomain mutant (Y97A/Y390A) BRD4S (mean ± s.d., n= 3).
l Western blot for BRD4 (N-terminal antibody, N-Ab) in THP-1 cells transduced with a gRNA targeting SRPK1 and plasmids expressing a phosphomimic
version of SRSF1 cDNA or an empty control, showing block of the BRD4S-to-BRD4L isoform switch upon expression of the former. **P < 0.001 (t-test)
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This allows for correct gating and selects only the stained cells in the experimental
sample. Flow cytometry analysis was performed using a LSRFortessa instrument
(BD) and resulting data were subsequently analyzed using FlowJo.

For blood counts, 20 μl of blood was collected from the tail-vein of the mice
using a capillary pipette containing anticoagulants (EDTA). The EDTA anti-
coagulated blood samples were used to obtain a complete blood count using a
VetABC analyzer (Horiba ABX). Samples were counted no longer than five
minutes after blood was drawn.

For replating assays using the SRPK1 inhibitor, 5000 lineage negative cells and
primary murine AML cells were plated in three wells of 6-well-plate of M3434
methylcellulose (Stem Cell Technologies) in the presence of 3 µM SPHINX31. For
replating assays using SRPK1 gRNA, 5000 lineage negative cells and primary
murine AML cells were plated in three wells of 6-well-plate of M3434
methylcellulose (Stem Cell Technologies) after selection with 1.0 μg ml−1

puromycin for 3 days starting from day 2 post-transduction. The colonies were
counted 7 days later and further 5000 cells re-seeded and re-counted after a week
until the 3rd replating.

Flow cytometry analyses of AML cells. Cells were transduced with gRNA vectors
or treated with SPHINX31 and stained at the indicated time points with anti-
mouse CD11b PE/Cy5 (Biolegend, cat. no. 101210) and anti-human CD11b PE
(eBiosciences, cat. no. 9012-0118) or anti-human CD13 FITC (eBioscience, cat. no.
11-0138-42). Data were analyzed by using LSRFortessa (BD) and FlowJo.

Apoptosis levels were measured in human and/or mouse AML cells transduced
with dual gRNA vectors (against SRPK1 and 3’ BCL2 enhancer) and/or treated with
1 or 3 μM SPHINX31 (Exonate) at indicated time points, by using Annexin V (Life
Technologies, cat. no. V13242). Data were analyzed by using LSRFortessa (BD)
instruments.
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Cell cycle stages were measured in human and/or mouse AML cells transduced
with dual gRNA vectors against SRPK1 and/or treated with 1 or 3 μM SPHINX31
(Exonate) at indicated time points, using Propidium Iodide from Abcam
(ab14083). Data were analyzed using LSRFortessa (BD) instruments.

Drug and proliferation assays. All suspension cells were plated (96-well) in tri-
plicate at 5000–10,000 cells per well and treated for 72 h with vehicle or the
indicated concentrations of SPHINX31 (0.04-50 μM, Exonate), Cytarabine
(0.075–40 μM, Sigma), Daunorubicin (0.075–80 μM, Selleckchem) and indicated
IC20 doses of iBET-151 (0.04–25 μM, Selleckchem). On day 3, plates were mea-
sured (for treatments with Cytarabine and Daunorubicin) using CellTiter 96
AQueous Non-Radioactive Cell Proliferation Assay (Promega) in order to calculate
the relative cell proliferation. Regarding the treatment with SPHINX31, an equal
volume for all wells was split-back with fresh media and compound, such that the
resulting cell density in each well matched the initial seeding density. Plates were
measured on day 6 using CellTiter 96 AQueous Non-Radioactive Cell Proliferation
Assay (Promega) in order to calculate the relative cell proliferation. All the com-
pounds were dissolved in DMSO.

For synergy studies between SPHINX31 and iBET, THP-1 cells were seeded in
96-well plates at 10,000 cells per well and treated with SPHINX31 (dose range of
0.039–5 μM) and iBET (dose range of 9.8–312.5 nM) in an 8 by 6 matrix. Each
treatment was carried out in triplicate. Cells were treated for 72 h, and cell viability
was determined using CellTiter 96 AQueous Non-Radioactive Cell Proliferation
Assay (Promega) in order to calculate the relative cell proliferation. Cell viability
for each treatment was normalized against the DMSO control group. A Bliss
independence model was employed to evaluate combination effects and calculate
the Bliss independence score3. All the compounds were dissolved in DMSO.

Rescue of phenotype assays. THP-1 cells were transduced with the lentiviral
cDNA constructs pKLV2-SRPK1-PURO, pKLV2-TY1-SRSF1-PURO, pKLV2-
SRSF1(ΔN/RS)-PURO (non-phosphorylatable SRSF1, truncated before the SRSF1
SR repeat domains), an empty pKLV2 vector control or with a phosphomimic
SRSF1 cDNA construct27. The SRPK1 cDNA of the pKLV2-SRPK1-PURO vector
was modified at the PAM sequence (Chr 6: 35,921,124 - Human GRCh38) with a
change from G to C, retaining the Arginine residue (CGC instead of CGG) in order
to prevent the cutting through the SRPK1 gRNA-3.

Transduced cells were selected for puro and further transduced with lentiviral
SRPK1 or empty gRNA. Competition assays of gRNAs/BFP-positive cells
were performed using flow cytometry analysis on 96-well plates using a
LSRFortessa instrument (BD). Gating was performed on live cells using forward
and side scatter, before measuring of BFP+ cells. The gRNA sequences are listed in
Table 1.

Furthermore, transduced cells were selected for BFP, further treated with
SPHINX31 at the indicated doses, in 96-well plates. An equal volume for all wells
was split-back with fresh media and compound, such that the resulting cell density
in each well matched the initial seeding density. Plates were measured on day 6
using CellTiter 96 AQueous Non-Radioactive Cell Proliferation Assay (Promega)
in order to calculate the relative cell proliferation.

THP-1 or HEL cells were electroporated in Buffer R (Invitrogen) with plasmids
encoding the WT BRD4S isoform (1–722 aa), the full-length WT BRD4 (BRD4L),
the BRD4S isoform mutated for both bromodomains (Y97A/Y390A) or an empty
vector as a control35. In each replicate 150,000–250,000 cells were electroporated
with 500 ng of each plasmid. Electroporation was performed using the Neon
Transfection System (Thermo Fisher Scientific). Electroporation conditions used
for THP-1 and HEL cells were based on manufacturer instructions (1350V, 35 ms,
1pulse). 2 days after electroporation, THP-1 and HEL cells were plated (96-well)
in triplicate at 10,000 cells per well and treated for 72 h with vehicle or the
indicated concentrations of SPHINX31 (0.04–50 μM, Exonate), Cytarabine
(0.075–40 μM, Sigma) or Daunorubicin (0.075–80 μM, Selleckchem). On day 3, an
equal volume for all wells was split-back with fresh media and compound, such

that the resulting cell density in each well matched the initial seeding density. Plates
were measured on day 6 using CellTiter 96 AQueous Non-Radioactive Cell
Proliferation Assay (Promega) in order to calculate the relative cell proliferation.
All the compounds were dissolved in DMSO.

Adult primary leukemia and cord blood sample drug and proliferation assays.
All human AML and cord blood samples were obtained with informed consent
under local ethical approval (REC 07-MRE05-44). Primary human AML cells or
cord-blood-derived CD34+ cells were tested for colony-forming efficiency in
StemMACS HSC-CFU semi-solid medium (Miltenyi Biotec) in the presence of the
indicated concentration of SPHINX31 or DMSO. Colonies were counted by
microscopy 11–12 days (AML cells) or 12–14 days (CD34+ cells) after plating.

Western blot analysis. Cells were treated with indicated concentrations of
SPHINX31 or transduced with dual/single lentiviral gRNA or an empty vector and
selected with 1.0 μg ml−1 puromycin for 3 days starting from day 2 post-
transduction. The transduced cells were further cultured for 2 days before lysis. Cell
pellets were resuspended in whole cell lysis buffer (50 mM Tris-HCl, pH= 8,
450 mM NaCl, 0.1% NP-40, 1 mM EDTA), supplemented with 1 mM DTT, pro-
tease inhibitors (Sigma), and phosphatase inhibitors (Sigma). Protein concentra-
tions were assessed by Bradford assay (Bio-Rad) and an equal amount of protein
was loaded per track. Prior to loading, the samples were supplemented with SDS-
PAGE sample buffer and DTT was added to each sample. 10–40 μg of protein was
separated on SDS-PAGE gels, and blotted onto polyvinylidene difluoride mem-
branes (Millipore). All the uncropped, full-size scans of western blots are presented
in Supplementary material.

Chromatin immunoprecipitation and quantitative PCR (ChIP-qPCR) analysis.
THP-1 and HEL cells were treated for 24 h with either DMSO (0.1%, vehicle) or
SPHINX31 (3 μM). Firstly, THP-1 and HEL cells were cross-linked with 1% for-
maldehyde for 10 min. 20 × 106 THP-1 or HEL cells were used for each immu-
noprecipitation with 3 ug of specific antibodies or IgG, 6 days post-transduction
with gRNAs or 24 h after SPHINX31 treatment. Cells were resuspended in ChIP
Lysis Buffer (1%SDS, 10 mM EDTA, 50 mM Tris-HCl, pH= 8, protease inhibitors)
and sonicated in Bioruptor Pico (Diagenode) for 10 cycles. Sonicated chromatin
was diluted 1:10 in modified RIPA buffer (1% Triton; 0.1% deoxycholate; 90 mM
NaCl; 10 mM Tris-HCl, pH 8; EDTA free protease inhibitors) and incubated
overnight with 3 μg of anti-BRD4 (C-term) from Bethyl Laboratories (A301-568A)
and 3 μg IgG Isotype Control from Abcam (ab171870). Next protein A/G (50% A
50% G) Dynabeads (Invitrogen) were added to the chromatin and incubated 2 h at
4 °C followed by magnetic separation. Beads were subsequently washed twice with
mixed micelle buffer (150 mM NaCl, 0.2% SDS, 20 mM Tris-Cl, pH 8.0, 5 mM
EDTA, 5.2% sucrose, 1% Triton X-100); high salt buffer (250 mM NaCl, 5 mM
Tris-Cl, pH 8.0, 0.5 mM EDTA, 0.05% sodium deoxycholate, 25 mM HEPES pH
8.0, 0.5% Triton X-100) and LiCl buffer (250 mM LiCl, 10 mM Tris-Cl, pH 8.0,
10 mM EDTA, 0.5% NP40-Nonidet, 0.5% sodium deoxycholate) and once with
elution buffer (1%SDS; 100 mM NaHCO3). Beads were then resuspended in elution
buffer supplemented with DNAse free RNAse (Roche, #11119915001). Cross-
linking was reverted by the incubation at 37 °C for 30 min followed by the incu-
bation at 65 °C overnight. Immunoprecipitated DNA was purified with ChIP DNA
Clean & Concentrator Columns (Zymo) and analyzed on an ABI 7900 real-time
PCR machine, Fast SybrGreen PCR mastermix according to the manufacturer’s
instructions. Primer sequences are listed in Table 1. Experiments were performed
as paired biological triplicates, with single cultures split for treatment in each
replicate experiment.

RNA immunoprecipitation and quantitative PCR (RIP-qPCR) analysis. THP-1
cells harboring the lentiviral cDNA construct pKLV2-TY1-SRSF1-PURO were
homogenized in adequate volumes of polysome lysis buffer (10 mM HEPES-KOH

Fig. 4 SRPK1 inhibition affects BRD4 chromatin recruitment at the BCL2 enhancer locus and synergizes with iBET-151 to inhibit growth of AML cells in vivo.
a Overlap between loci with reduced BRD4 binding after treatment with iBET in MOLM14 from Pelish et al.21 and after BRD4S-to-BRD4L isoform switching
by BRD4-ex12-SA_A gRNA in THP-1 cells. Both MOLM-14 and THP-1 harbor the MLL-AF9 oncogene (Fisher’s exact test). b BRD4 ChIP-seq of THP-1 cells
targeted with empty gRNA or gRNA BRD4-ex12-SA_A, 5 days post-transduction, showing eviction of BRD4 from the 3’ BCL2 enhancer (left). c, d
ChIP-qPCR experiments in THP-1 cells showing reduced binding of BRD4 after exposure to 1.5 μM SPHINX31 for 72 h or BRD4-ex12-SA_A gRNA (6 days
post-transduction). (mean ± s.d., n= 3). e Box plot showing correlation of BRD4 eviction from promoters or linked distal intergenic regions with reduced
expression of the affected genes, when compared to unselected genes genome-wide (All) (*p < 0.001; Wilcoxon test). Red, dashed line corresponds to no
change in the gene expression. f Location of gRNAs targeting the 3’ BCL2 enhancer. g Competitive co-culture showing the requirement for the BCL2 3’
enhancer for MOLM-13 and THP-1 cell growth and proliferation. Results were normalized to day 4 (mean ± s.d., n= 3). h Reduction of BCL2 protein in
THP-1 cells by gRNA targeting of the 3’ BCL2 enhancer (i) and by BRD4-ex12-SA_A gRNA. j Quantification of luminescence for mice transplanted with
luciferase-labeled THP-1 cells and treated with low dose of iBET-151 (10mg/kg) or SPHINX31 (0.8 mg/kg) or both, showing a synergistic effect between
the two drugs. **P < 0.01. ***P < 0.001. k Survival of mice transplanted with THP-1 cells treated as described in j (n= 8–9 animals per group). **P < 0.01.
compared to vehicle (black). ***P < 0.001. compared to iBET-151(green) or SPHINX31 (blue). ***P < 0.001. Log-rank (Mantel–Cox) test was performed for
the survival assays in k
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(pH 7.0), 100 mM KCl, 5 mM MgCl2, 25 mM EDTA, 0.5% IGEPAL, 2 mM
dithiothreitol (DTT), 0.2 mg/mL Heparin, 50 U/mL RNase OUT (Life Technolo-
gies), 50 U/mL Superase IN (Ambion) and 1 × complete protease inhibitor tablet
(Roche). The suspension was centrifuged at 14,000 × g at 4 °C for 10 min to remove
debris. Lysates containing 1 mg protein were incubated with 500 ng normal IgG
(Cell Signalling Technologies, #2729) or anti-TY1 (Diagenode, C15200054), at 4 °C
overnight on an inverse rotator. Protein A–sepharose beads (Life Technologies,
50 μL per tube) were first blocked in NT2 buffer (50 mM Tris-HCl (pH 7.5), 150
mM NaCl, 1 mM MgCl2 and 0.05% IGEPAL) supplemented with 5% BSA, 0.02%
sodium azide and 0.02 mg/mL heparin at 4 °C for 1 h, and then added into the
lysates followed by a 3-h incubation at 4 °C on an inverse rotator. The beads were
subsequently washed five times in NT2 buffer. RNAs were released by incubating
in proteinase K buffer (50 mM Tris (pH 8.0), 100 mM NaCl, 10 mM EDTA, 1%
SDS and 1 U/mL proteinase K) for 30 min at 65 °C, and pelleting by adding an
equal volume of isopropanol and centrifuging at 12,000 g at 4 °C for 10 min. After
washing once with 75% ethanol, RNAs were reverse-transcribed into first-strand
cDNA and used for real-time RT–PCR analysis to detect the indicated mRNAs.
Data were normalized to IgG control groups.

Nuclear/cytoplasmic protein fractionation. THP-1 cells were either transduced
with a phosphomimic SRSF1 cDNA or a dual lentiviral SRPK1 gRNA as well as an
empty vector and selected with 1.0 μg ml−1 puromycin for 3 days starting from day
2 post-transduction. The transduced cells were lysed on day 5 post-transduction
and protein fractionation (nuclear/cytoplasmic) was performed using the PARIS
fractionation kit from Ambion (AM1921).

Antibodies. Western blot experiments were performed using the following anti-
bodies: anti-SRPK1 from Abcam (ab90527, with 1:1000 working dilution), anti-
SRSF1 from Abcam (ab38017, with 1:2000 working dilution), anti-pSRSF from
EMD-Millipore (MABE50, with 1:1000, working dilution), anti-ACTIN from
Abcam (ab8227, with 1:5000 working dilution), anti-BRD4 (N-term) from Abcam
(ab128874, with 1:1000 working dilution), anti-BRD4 (C-term) from Bethyl
Laboratories (A301-985A, with 1:1000 working dilution), anti-MYC from Abcam
(ab32, with 1:1000 working dilution), anti-BCL2 from Abcam (ab32124, with
1:1000 working dilution) and anti-TBP from Abcam (ab51841, with 1:2000
working dilution). For the ChIP experiments, the following antibodies were used:
anti-BRD4 (C-term) from Bethyl Laboratories (A301-568A) and IgG Isotype
Control from Abcam (ab171870).

Quantitative RT-PCR. Total RNA was isolated from AML cells using the RNeasy
Mini or Micro Kit (Qiagen). For cDNA synthesis, total RNA was reverse-
transcribed with the SuperScript VILO cDNA Synthesis kit (Life Technologies).
The levels of specific RNAs were measured using the ABI 7900 real-time PCR
machine and the Fast SybrGreen PCR mastermix according to the manufacturer’s
instructions. BRD4, HOXA9, MYC, and BCL2 mRNA levels were normalized to,
the housekeeping gene, GAPDH.

Validation of the splicing modulation after SRPK1 inhibition (gRNA or
SPHINX31) was measured by quantification of the isoform changes compared to
the non-edited/non-treated cells. BRD4 isoform switching was defined by the
relative enrichment of the long isoform levels compared to the short isoform levels
in either treated vs untreated or transduced vs non-transduced conditions.

To determine the effect of IC50 SPHINX31 on BRD4 isoform switching, in
comparison to IC50 of other anti-leukemic drugs iBET-151 (Selleckchem), MI-503
(Active Biochem) and Cytarabine (Selleckchem), quantification of the relative
enrichment of the long isoform compared to the short isoform of BRD4 was
performed, after treatment of the cells for 72 h.

All samples, including the template controls, were assayed in triplicate. The
relative number of target transcripts was normalized to GAPDH expression in the
same sample. The relative quantification of target gene expression was performed
with the standard curve or comparative cycle threshold (CT) method. The primer
sequences are listed at the end of the Methods section.

May–Grunwald–Giemsa and cytospin staining. 105 cells were cytospun for 5min
at 300 × g onto glass slides. Slides were then stained for 3 min with May–Grunwald
solution (Sigma-Aldrich) at room temperature. After washing in water, they were
incubated for 20min in Giemsa solution (Sigma-Aldrich) (1:20 in water). Slides were
washed again in water before being mounted with Mowiol embedding medium.

Histological analyses. Mice were euthanized, autopsied and the dissected spleen
tissue samples were fixed in 4% paraformaldehyde, dehydrated, and embedded in
paraffin. Paraffin blocks were sectioned at 4 μm and stained with hematoxylin and
eosin (H&E). Images were acquired using a MIRAX Slide Scanner (Zeiss).

Generation of PDX models. Six- to ten-week-old NSG female mice were injected
with 106 patient-derived AML cells by intravenous injection. Indicated doses of
SPHINX31 or vehicle were delivered to the mice via intraperitoneal injection (IP)
on day 10 post-transplant, triweekly for two weeks (6 treatments). Indicated doses
of vehicle or SPHINX31 were delivered to the mice via intraperitoneal injection

(IP) on day 10 post-transplant. SPHINX31 was dissolved in 20%(w/v) 2-
hydroxypropyl-beta-cyclodextrin vehicle (Sigma, H107). At day 10 post-transplant,
tumor burdens of animals were detected using IVIS Lumina II (Caliper) with
Living Image version 4.3.1 software (PerkinElmer). Briefly, 100 μl of 30 mg/ml
D-luciferin (BioVision) was injected into each animal intraperitoneally. Ten min

Table 1 List of primer sequences

gRNA competition assay

Human gRNAs Sequence
SRPK1 (1) GGTGTGGATGATACGGCACT
SRPK1 (2) CTGCATGGTATTTGAAGTTT
SRPK1 (3) TTACCGGTCTCACCATGGAG
BRD4S-ex12-SA_A TTTCTCTCTCCCTCTACGT
BRD4S-ex12-SA_B TTAGGCAGGACCTACGTAG
BRD4_ET_domain AGTCGATTTCAATCTCGTCG
BRD4_BD2_domain GTAGAAGGGCCAGGCGTAGG
BCL2 Intergenic (1) GAGTGTCTCAATGGGCAGCG
BCL2 Intergenic (2) AAGAGCCACGGCCTAAAGCA
Mouse gRNAs Sequence
Srpk1 (1) ACCTGCAGACCCCGATGGTG
Srpk1 (2) TGAATGAGCAGTACATTCGA

RT-PCR

Forward Primer Reverse Primer

HOXA9 GAATGAGAGCGGCGGAGAC GAGCGAGCATGT
AGCCAGTTG

c-MYC AATGAAAAGGCCCCCAAGGTAGTTATCC GTCGTTTCCGCA
ACAAGTCCTCTTC

BCL2 CTGCACCTGACGCCCTTCACC CACATGACCCCA
CCGAACTCAAAGA

BRD4 CTCCTCCTAAAAAGACGAAGA TTCGGAGTCTTCG
CTGTCAGAGGAG

GAPDH GATGCCCTGGAGGAAGTGCT AGCAGGCACAA
CACCACGTT

RIP qPCR

Forward Primer Reverse Primer

BRD1 ACATCCCATGGACTTTGCCACA CTCACCGCGGCTCTATA
GAACA

BRD4 CTCCTCCTAAAAAGACGAAGA TTCGGAGTCTTCGCT
GTCAGAGGAG

MYB AGCACCGATGGCAGAAAGTACT TCTCCCCTTTAAGTGC
TTGGCA

MED24 AGGAGCTCAAGTGGACAGCTTT GGTGAGCTTCAGCAG
GAACTCA

ChIP qPCR

Forward Primer Reverse Primer

BCL2 ACAGCGCCAACAGAACTACT CCCCACAACGGAGCTGTAAT
MYC CAAGCTCTCCACTTGCCCCT GCCCTGAGATGTGTCTGCCT
EZH2 CTTCTGAGTCCCACCGGGTG GCCGTGTGTTCAGCGAAAGA
DUSP6 GTAGAGGAAGGTCGGGGAGA CACACAGGGCCATCTCAACT
DGKI GCCACCCCCTCATCTCTCAC TCTTCCAAGGACCCAGGGGA

Splicing Validation – RT-qPCR

Exon Skipping Forward Primer Reverse Primer

BRD1 (Exons
11-12)

AATGTCACTGAGGTCGCTGG ACGTGCTGAAG
ATTGGGGAG

BRD4-Long
(Exons 10-12)

TCGGAGCCATCTCTGTTTC CGACTTTGAG
ACCCTGAAGC

BRD4-Short
(Exons 10-12)

AATGATTAGGCAGGACCTGTT CGACTTTGAG
ACCCTGAAGC

Exon Inclusion Forward Primer Reverse Primer
MYB (Exon 8-
Intron 8)

TGAGCTAAAAGGACAGCAGGT CAAAGCACAA
GGAGCCATC

Alternative 5'
Splice Site

Forward Primer Reverse Primer

PIM1 (Exon
4-Intron 4)

CGACATCAAGGACGAAAACA AGACACCCA
CACCCTTTCCT

Intron Retention Forward Primer Reverse Primer
MED24 (Exon
6-Intron 6)

AAGTCCCTGGGATGTGTGC CTGGAGAAA
ACCCTCAGCAG

KAT5 (Exon
1- Intron 1)

CGGAACCAGGACAACGAAGA ACCTCTCGG
AGCAGCTAAGA

METTL3 (Exon
9-Intron 8)

AGACCCTGGTTGAAGCCTTG TGGGGCCCAA
TTCAATAGGT

VEGFA (Exon
5-Intron 5)

ACCAAAGAAAGATAGAGCAAGACAA ATTGTTGCT
GCCACCACAAG

MED16 (Exon
14-Intron 14)

GACTTGAGCATGGTGACACAG AAAGTGGGG
CAGGCGTAA

PRMT5 (Exon
12-Intron 11)

CACCCATTCCCTCATGTCTG TTTCCTTAACATC
TCTCCTTACCTT
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after injection, the animals were maintained under general anesthesia by isoflurane
and put into the IVIS chamber for imaging. The detected tumor burdens were
measured and quantified by the same software. Diseased mice were identified by
qualified animal technicians from the Sanger mouse facility. All animal studies
were carried out in accordance with the Animals (Scientific Procedures) Act 1986,
Amendment Regulations (2012) UK under project license PBF095404. Randomi-
zation and blinding were not applied.

Whole-body bioluminescent imaging. For in vivo experiments, MOLM-13, THP-
1 and HEL cells expressing Cas9 were first transduced with a firefly luciferase-
expressing plasmid (System Biosciences). After propagation, the cells were trans-
duced with a dual lentiviral gRNA vector expressing either empty or SRPK1 gRNA
(day 0) and selected with puromycin from day 2 to day 5. At day 5 post-trans-
duction, the cells were suspended in fresh medium without puromycin. At day 6,
1 × 105 cells were transplanted into a Rag2−/− Il2rg−/− mouse by tail-vein injec-
tion. For the in vivo drug experiments related to Fig. 1 and Supplementary Fig-
ure 4, MOLM-13 and THP-1 cells were transduced with a firefly luciferase-
expressing plasmid (System Biosciences). 1 × 105 cells were transplanted into a
Rag2−/− Il2rg−/− mouse by tail-vein injection. Indicated doses of SPHINX31 or
vehicle were delivered to the mice via intraperitoneal injection (IP) on day 10 post-
transplant, triweekly for total two weeks (6 treatments). For the in vivo drug
experiments related to Fig. 4 and Supplementary Figure 5, THP-1 and HEL cells
were transduced with a firefly luciferase– expressing plasmid (System Biosciences).
1 × 105 cells were transplanted into a Rag2−/− Il2rg−/− mouse by tail-vein injec-
tion. Indicated doses of vehicle, SPHINX31 and/or iBET-151 were delivered to the
mice via intraperitoneal injection (IP) from day 10 post-transplantation. Both
SPHINX31 and iBET-151 were dissolved in 20%(w/v) 2-hydroxyproply beta-
cyclodextrin vehicle (Sigma, H107).

At day 10 post-transplant, the tumor burdens of the animals were detected
using IVIS Lumina II (Caliper) with Living Image version 4.3.1 software
(PerkinElmer). Briefly, 100 μl of 30 mg/ml D-luciferin (BioVision) was injected into
the animals intraperitoneally. Ten min after injection, the animals were maintained
in general anesthesia by isoflurane and put into the IVIS chamber for imaging. The
detected tumor burdens were measured and quantified by the same software.
Diseased mice were assessed blindly by qualified animal technicians from the
Sanger mouse facility. All animal studies were carried out in accordance with the
Animals (Scientific Procedures) Act 1986, Amendment Regulations (2012) UK
under project license PBF095404. Randomization and blinding were not applied.

SPHINX31 pharmacokinetics. Three Dba/2J mice were given i.p. injections of
0.8 mg/kg SPHINX31 and sacrificed after 24 h when blood was taken by cardiac
puncture into EDTA tubes. Plasma was isolated by centrifugation, and an equal
volume (100 µl) acetonitrile added. An internal standard of 100 µg/ml of a related
compound (compound 3 from Batson et al) was added to samples to account for
any loss of material during preparation. The solutions were centrifuged for 15 min
at 4 °C and the supernatant taken for analysis. Solutions were evaporated at 37 °C
for eight hours and resuspended in 30 µl acetonitrile ready for analysis by LC MS,
using a Waters 2795 HPLC system. Detection was achieved by positive ion elec-
trospray (ESI+ ) mass spectrometry using a Waters Micromass ZQ spectrometer
in single ion monitoring (SIM) mode, at 352 m/z units ([M+H]+). Chromato-
graphy (flow rate 1 mL·min−1) was achieved using a Phenomenex Kinetex column
(2.6 μ, C18, 100 Å, 4.6 × 50 mm) equipped with a Phenomenex Security Guard
precolumn (Luna C5 300 Å). Peaks occurring at these times in the SIM chroma-
tograms per compound were integrated using Water MassLynx software. The
chromatograms produced clear peaks at the expected molecular weights. The
integrated area under the peaks and read from a standard curve led to quantifi-
cation of the circulating concentration of SPHINX31.

Kinome analysis. Kinase binding assay for 489 kinases was carried out by
KINOMEscan, DiscoverX, at 1 µM SPHINX31. To identify potential inhibition of
kinases other than SRPK1, a truncated version of SRPK1 was used in the screen,
which does not contain part of the loop that SPHINX31 binds to, so the SRPK1
activity will not show positivity in this assay. The percent inhibition of kinase-
substrate interaction is determined and the red spots correspond to the kinases
where there is more 50% inhibition.

Radioactive kinase assays were carried out by the MRC Dundee Kinase Centre
for SRPK1, SRPK2, CLK1 and CLK2 from 10 µM to 0.0003 µM SPHINX31 with
ATP at the Km for each kinase.

SPHINX31 SRSF1 phosphorylation. 1 × 106 cells/ml, unless otherwise stated, were
treated with SPHINX31 at 1% DMSO for 48 h then lysed in buffer containing
50 mM Hepes, 150 mM NaCl, 0.5% Triton-X100, 1 mM EDTA, 1 mM PMSF,
10 mM Na3VO4, 10 mM NaF and protease inhibitor cocktail (Roche). 50 µg protein
was separated on SDS-PAGE gels and immunoblotted with anti-SRSF1 from
Abcam (ab38017), anti-pSRSF from EMD-Millipore (MABE50) and anti-ACTIN
from Abcam (ab8227).

VEGF enzyme-linked immunosorbent assay (ELISA). VEGF165a capture anti-
body, at a concentration of 0.25 μg/ml, was incubated on high-binding 96-well
plates overnight at room temperature. The plates were blocked (1% BSA in PBS)
and serial dilutions of recombinant human (rh)VEGF165 standards (ranging from
500 pg/ml to 1.95 pg/ml) were added, incubated alongside sample lysates, typically
200 μg in 100 μl per well. The plate was incubated for 2 h at room temperature with
shaking, washed and incubated with 100 μl/well of biotinylated goat anti-human
VEGF (0.1 μg/ml; R&D systems) for 2 further hours at room temperature. After
washing, 100 μl/well of Horseradish Peroxidase (HRP)-conjugated streptavidin
(1:200; R&D Systems) was added and plates were left at room temperature for
20 min. The plates were washed and color change induced with substrate A and B
(DY-999; R&D Systems) for 1 h under light protection. The reaction was stopped
by addition of 100 μl/well of 1 M HCl and the absorbance was read immediately in
an ELISA plate reader (Dynex Technologies Opsys MR system plate reader) at
450 nm with a control reading at 620 nm. A standard curve was calculated from
mean absorbance values of standards enabling the estimation of VEGF con-
centration for each sample.

RNA-seq analysis. For the experiment of the pharmacological inhibition, THP-1
cells were treated for 24 h with DMSO or 3 uM SPHINX31, followed by RNA
extraction. For the experiment of the genetic inhibition, THP-1 cells were transduced
with a dual lentiviral gRNA vector expressing either empty or SRPK1 gRNA (day 0)
and selected with puromycin from day 2 to day 5. At day 5 post-transduction, the
cells were suspended in fresh medium without puromycin. At day 6 cells were har-
vested for RNA extraction. RNAseq data from both experiments were generated as
biological triplicates and the 75 bp paired-end Illumina reads were aligned using
STAR to the human genome (hg19). Furthermore, reads that were aligned to multiple
locations in the genome, or marked as duplicates by Picard, or not aligned as a proper
read pair according to SAMtools were removed from further analysis.

The total number of reads that align to the exons of each gene in the human
genome as defined by GENCODE version 19 were obtained using HTSeq. Using
DESeq2 we obtained expression fold changes (FC) and False Discovery Rates
(FDRs) for genes between the above-mentioned two conditions. The genes that
were differentially expressed between these two conditions (padj ≤0.01) are given in
Supplementary Data 1.

The enrichments of C2 (curated gene-sets) and C6 (oncogenic-signatures) from
MSigDB in our gene-sets were computed using hypergeometric testing. Functional
enrichment profiles for the downregulated genes (log2FC ≤ -1) are given in
Supplementary Data 2. The test statistic values for the genes obtained from DESeq2
were used to rank the genes and Gene Set Enrichment Analysis (GSEA) was
performed for the C6 positional datasets.

Differential exon and splice junction usages between the two conditions
were computed using JunctionSeq, which uses the popular DEXSeq to
compute statistical significance. Splice junctions with FDR ≤ 0.001 were
annotated as Alternative 5’ splice sites, Alternative 3’ splice sites, Intron
retention, Exon inclusion, Exon skipping and Alternative Transcript End sites.
The frequencies of occurrences of these Alternative Splicing Events (ASEs) are
given in Fig. 3a and Supplementary Figure 8e. If one or both of the splice sites in
a given splice junction overlaps with splice sites of transcripts annotated as
“retained intron” or “non-sense mediated decay” by Ensembl, the splice junction
is annotated as “intron retention”. A splice junction (SJ1) is termed as exon
skipping or inclusion if there exists an in-between exon. If the mean fold change
of the splice junctions that share the splice sites with SJ1 is greater than 1 and the
fold change of SJ1 is less than 1, then SJ1 is annotated as an “Exon skipping” (ES)
event and if the vice-versa occurs then SJ1 is annotated as an “Exon inclusion”
(EI) event.

Genes that show differential splicing (FDR ≤ 0.0005), Supplementary Data 3)
are further tested for functional enrichment of C2 and C6 gene sets using
hypergeometric testing and the results are tabulated in Supplementary Data 5.

ChIP-seq data analysis. The ChIP-seq reads for BRD4 binding upon BRD4S-to-
BRD4L isoform change using gRNA (BRD4g) or upon transduction with an
empty gRNA, were aligned to hg19 using BWA aligner. Duplicate reads were
removed using Picard from further analysis and peaks were called using MACS2
using default parameters. The ChIP-seq was performed in duplicates for each
condition and the aligned reads along the peaks were then used to obtain dif-
ferential binding sites using DiffBind. A site was termed as differential if the
FDR ≤ 0.1 and the fold changes along with FDR is given in Supplementary
Data 6. The 6058 differential peaks were mapped to the genes using ChIPSeeker
and distribution of peaks across the genome is given in Supplementary Fig 10a,
b. In order to obtain the tag density profile for the 6058 regions that were
differentially downregulated upon BRD4S-to-BRD4L isoform change, replicates
were merged and normalized tag densities were generated (bigWig) including
the tag densities for BCL2 and MYC loci shown in Fig. 4b and Supplementary
Fig 10d.

The ChIP-seq data performed by Pelish et al.21 in duplicates for BRD4 binding in
MOLM-14 cell line upon DMSO or iBET treatment (BRD4-iBET) and downloaded
from Gene Expression Omnibus (GSM1893934 to GSM1893941). The sequenced
reads were aligned, processed and peaks called using the above-mentioned method.
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Only the overlapping peaks between the replicates were retained for identification of
differential binding sites of BRD4 binding upon iBET treatment (500 nM, 6 h). A peak
is termed as differential if the fold change is better than 1.5 and the FDR ≤ 0.1 and
these peaks were mapped to the genes using ChIPSeeker.

The high-confidence binding sites of MLL-AF9 fusion and MLL-WT proteins
in THP-1 cell line were obtained from Prange et al23. The overlaps of these peaks
with the 6058 differential peaks upon BRD4 isoform change (see above) are
presented in Supplementary Fig 10c.

Statistical analysis. Statistical analyses performed were specified in figure legends.
Differences were considered significant for P-values < 0.05. The significances of the
overlaps of the gene sets were computed using hypergeometric tests using R and
the significances of the overlaps of peak sets were calculated using Fisher’s exact
test using BedTools.

Data availability
The datasets used in this study have been deposited to the European Nucleotide
Archive and can be accessed from ENA: ERP104309. The other data that support
the findings of this study are available within the article or its supplementary
information.
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