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Abstract
Adaptive production systems are a key trend in modern advanced manufacturing. This stems from the requirement for the
system to respond to disruption, either in the form of product changes or changes to other operational parameters. The design
and reconfiguration of these systems are therefore a unique challenge for the community. One approach to systems design
is based on functional and behavioural modelling, drawn from the field of design theory. Existing approaches suffer from
lack of focus on the adaptive properties of the system. While traditional production systems design focusses on the physical
system structure and associated processes, new approaches based on functional and behavioural models are particularly
suited to addressing the challenges of disruptive production environments resulting from Industry 4.0 and similar trends.
We therefore present a Function-Behaviour-Structure (FBS) methodology for Evolvable Assembly Systems (EAS), a class
of self-adaptive reconfigurable production systems, comprising an ontology model and design process. The ontology model
provides definitions for Function, Structure, and Behaviour of an adaptive production system. This model is used as the
input to a functional modelling design process for EAS-like systems, where the design process must be integrated into the
system control behaviour. The framework is illustrated with an example taken from a real EAS instantiation using industrial
hardware.

Keywords Functional modelling · Function-Behaviour-Structure · Design methods · Adaptive systems · Manufacturing
systems · Evolvable Assembly Systems

1 Introduction

1.1 Motivation

Mass customisation, shorter product lifecycles, smaller pro-
duction batches, and higher product variability all lead to
the requirement for manufacturing systems that are rapidly
reconfigurable and self-adaptive in response to disruption
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[3]. This requires methods to aid in the design and mod-
elling of such systems, both by humans and for automated
self-design or self-reconfiguration by an agent control layer.
In this work, we take an approach based on considering how
system structure and behaviour relate to the intended system
functions, drawing on the Function-Behaviour-Structure
(FBS) formalisations by Gero, Rosenman, Umeda, and oth-
ers [14, 16, 27, 34, 40, 48, 49]. The main driver is to be
able to identify when a reconfiguration needs to occur and
what that reconfiguration should address, and then “design
the change” that would accomplish it.

1.2 Literature review—design frameworks

In general, the design process links requirements to compo-
nents that are either to be freshly designed or selected from
a set of existing components. For production systems, these
requirements stem from the product and also a range of
other quality requirements to optimise or evaluate against.

The range of approaches for design include the axiomatic
approach [44], which uses domain models and rules to
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generate new designs, and the algorithmic approach [30]
which goes step-by-step, decomposing the problem, solving
the sub-problems, then re-synthesising the sub-solutions to
form the final design solution. This allows the problem to
be addressed at the correct level of granularity, appropriate
to current practices.

The FBS approach of Gero, Rosenman, Kannengiesser,
and others [14, 17, 34, 35] forms part of the research area
in functional modelling [13, 51]. Functional modelling is
concerned with how to represent knowledge about function,
and can be applied to systems modelling and design. The
FBS approach takes a holistic viewpoint looking at both
the socio-cultural and techno-physical aspects of a system,
clearly separating the subjective function of a system from
its objective structure.

This function-based description of an object allows for a
more effective decomposition according to the various uses
an object must fulfil at any given time. When this is applied
to modular and reconfigurable systems, the decomposition
can be directed according to the available modules [23, 24].
Such reconfiguration must take into account the availability
and connectivity of existing modules, and this problem is
further complicated when a product-process-system view is
taken [47]. In such a case, the reconfiguration from currently
available capabilities to required capabilities may take
place at any level. This requires a clear definition of task
decomposition and assignment to modules or processes.

There are a number of integrated approaches for deriving
the required process for a product representation. Some
examples use graphs or petri nets [43] or a rule-based
approach [31], but these often either operate at an abstract
level in terms of the system or are extremely knowledge-
intensive on the human side [52]. This is due to being
focussed towards assisting system designers in system
configuration, simulation, and evaluation.

There are some approaches for the computer-aided design
and modelling of assembly systems [6, 20, 26, 36, 52]
but they generally do not address system qualities such
as self-adaptation, self-reconfiguration, and self-healing,
more generally called the self-x qualities [28, 29]. Those
approaches that do address self-x qualities in an automated
manner [10, 25, 46, 50]—for example through agent-based
systems—often focus primarily on one aspect, such as the
software and configuration side, rather than a complete
product-process-system approach that includes a formal
description of the system from its function to the physical
hardware.

Other works seek to address the design of specific
sorts of production system in more specific detail, for
example “Assembly 4.0” type systems [9], or large-scale
aerostructure assembly [21], or are primarily concerned by

the safety and ergonomics considerations at the heart of
manual assembly system design [7, 8, 37].

Despite this existing body of work, we can therefore
identify three main issues relating to design frameworks:

1. The majority of existing production system design frame-
works only address single-product or single-family pro-
duction, rather than a system that may have to drastically
refocus on another product or process entirely, as well as
being under a changing set of non-product requirements.

2. Existing FBS approaches do not address adaptive
production systems; they focus on creating design
artefacts such as the product itself, or a static system.
There is a critical requirement for a method applicable
to self-x production systems that change over time.

3. Many production system design frameworks are either
extremely abstract or knowledge-intensive, making
their automated application to self-x systems problem-
atic. The majority of automation-focussed frameworks
for self-x systems focus primarily on only one aspect of
the system, missing a formal description of the whole
system.

With this in mind, we propose a solution that is capable
of addressing a wide range of dynamic requirements, takes
advantage of the inherent self-x properties of the system
components as a “top-level attribute” of the framework,
and allows for a formal description of the whole system in
order to enable its application to automated—in our case
agent-based—control systems.

2 Overall approach

The design process for an adaptive production system
starts with the products that are to be manufactured.
These are defined in “recipe files” that are the starting
point for the system’s functional requirements. Other
requirements are also considered: the requirements for
adaptation, and the requirements relating to achieving
and maintaining system quality. The other main input
to the design process is a set of what Gero would call
“design prototypes” [14]—the set of possible or available
manufacturing resources for use in this system specified as
“blueprint files”. From these two main inputs, the design
process generates the set of behaviours required of the
recipes and generates a solution from the available set of
resources that could express those behaviours. An overview
of the approach is given in Fig. 1. Section 3 defines the
design process and the ontology supporting it in more detail.
Specific details of how recipe and blueprint files formalise
product characteristics and system structure respectively
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Fig. 1 Behavioural design
process: overall approach Function Behaviour Structure

Design Output

is described in Section 4, along with an overview of the
implementation of behavioural evaluation that forms the
core of the approach. Finally, Section 5 describes a real
prototype implementation example.

3 General behaviour model

3.1 Views

A key concept in Umeda et al.’s work on FBS diagrams is
their use of different “views” or “aspects” [48, 49] that are
described as “a collection of all relevant entities, attributes,
relations, and physical phenomena of the current interest”.

In essence, this concept formalises the fact that it is not possi-
ble or feasible to represent everything about an entity (in our
case a product, system, or sub-system) in a single encap-
sulated description. When you are designing a takeaway
coffee cup for example, you are interested in how well it
holds liquid—it is unlikely that you are concerned about the
permittivity of the material to light. With this in mind, we
use the concept of views to allow only the relevant aspects
of function, behaviour, or structure to be considered.1

Gero et al. also refer to this concept of views (although
not by the same terminology), by acknowledging that

1It is up to the system designer to ensure that all the relevant views are
considered; in some cases, it is desirable for a cup to be transparent, in
which case the permittivity to light is a highly relevant consideration.

different actors will be concerned with different aspects
of the functions, behaviours, or structure of an object. In
[15], they give the example of a mobile phone: the user is
interested in the structure as given by the screen, the keys,
the size, and so on, resulting in a behavioural analysis on
the use of the phone; an electrical engineer may find the
electronic circuits of the phone to be relevant structural
factors, which can then be used to account for behaviours
relating to the operating system, the ring tone, or the ability
of the phone to connect to various different kinds of wireless
networks.

3.2 Function

Following the consensus in the literature, we maintain the
definition of function as a subjective abstraction of purpose
[12, 16, 49]. We can consider an Evolvable Assembly
System to have a number of simultaneous functions.

As a production system, the main function is to produce
a set of products. There are performance requirements
associated with that function, both in terms of KPIs and in
terms of complying with relevant regulatory frameworks.

In an EAS, there are two additional requirements on the
real production system designed to achieve that function.
First, the system should be flexible and reconfigurable to
accommodate the production of a large and changing set of
products. Second, the system should be able to adapt itself
in response to disruptions such as failure and unexpected
environmental changes.
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The function of assembling a product is expressed in
terms of the product to be assembled: informally “to
assemble a product with this set of features and properties”.
Therefore, the function of an assembly system is related to
the structure and behaviour of the products it is to assemble.
However, the product designers should not be concerned
with specifying the processes by which the assembly is
carried out. As an example, the product designer would
specify a hole should exist at a given location with a
given accuracy (among other parameters), but would not be
expected to specify the decision-making that occurs in the
system in order to choose whether it is drilled, bored, or
laser cut, or to ensure the selection of the correct drill bit,
or the precision of the motion required to reach that point.
These latter issues are related to the behaviour of the system;
issues that the product designer should not be burdened
with, and in many cases, may not be in a position to know.

In terms of requiring our systems to adapt to changes,
this could occur at a high level, for example a change
in product to be assembled, the failure or addition of
a manufacturing capability, and so on. Alternatively, it
could occur at a low level, for example compensating
for the uncertainty, variability, deformation, or deflection
of a part that is being worked on. This means that
the adaptation requirements are defined in a multi-
dimensional configuration space, according to the available
and configurable variables in the system.

The remaining aspects of the system function encapsulate
more traditional system performance indicators; for exam-
ple, the system should achieve a certain throughput, not
exceed a given power consumption, or must perform actions
in a certain manner in order to comply with regulations.

With these three aspects in mind, we can define our
concept of Function as follows:

Definition 1 (Function) F = 〈FPr, FA, FQ〉 where
FPr = f (RPr) : functions relating to product requirements
RPr ,
FA = f (RA) : functions relating to adaptation requirements
RA, and
FQ = f (RQ) : functions relating to achieving and
maintaining system performance and quality requirements
RQ.

Further examining RPr allows us to express the
requirements stemming from the product’s behaviour
(RPrB ) and structure (RPrS ), such that RPr = 〈RPrS ,

RPrB 〉. The behaviour of the product PrB should be
described using any relevant views. If a product’s flexibility
is relevant to the production, for example in the case of large
panels that may deflect during assembly, then this should be

modelled in PrB . Likewise, if the product is to be machined
from a given material, the parameters that determine the
deflection response of the material workpiece should be
modelled in PrB . Another example is when the product
is (or contains) liquids or gases—the behaviours of these
substances are highly relevant to the design of the system
behaviours and structures that will be used to manipulate
and store them.

The structure of the product PrS may be expressed in
any format that describes the product features, for example a
CAD model. In the case of a product family, there are likely
to be two views: one that describes the fixed attributes that
are common to all variants (usually some sort of physical
description), and one that describes the variables (this can
be thought of as the “product recipe”).

3.3 Behaviour

A key concept in behavioural approaches like FBS is
the distinction between expected behaviour Be and the
actual behaviour expressed by the system’s structure Bs .
We maintain this distinction, but while previous work
on FBS models was primarily concerned with fixed
behaviour in a static system—which in our case would be a
system resulting in a fixed assembly process—we are also
concerned with adaptive behaviours. We therefore consider
three types of behaviour in each case:2

Definition 2 (Behaviour) Bx = 〈BxNAP
, BxAP

, BxR
〉 where

x ∈ {e, s},
Be is expected behaviour—i.e. target behaviour,
Bs is structurally expressed behaviour—i.e. behaviour
achieved in the real world,
BxNAP

is non-adaptive production behaviour,
BxAP

is adaptive production behaviour, and
BxR

is reconfiguration behaviour.

BxNAP
Non-adaptive production behaviour: This is the
type of behaviour considered in previous work
on FBS models. It covers the “steady state” of
production process in an assembly system and is
often described as a simple sequence of actions.

BxAP
Adaptive production behaviour: The first addition
of adaptivity is to the production behaviour above.
Our systems are self-adaptive, leading to an
adaptive function. This in turn implies adaptive
behaviour. Behaviour cannot then be simple action

2The notation in this section can be applied either to the expected
behaviours in Be or the actually expressed behaviours in Bs .
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sequences, but must instead encapsulate predictive
decision-making.

BxR
Reconfiguration behaviour: Finally, we explicitly
require our systems to self-configure and self-
reconfigure. This requires our systems to be
able to integrate the “design process” into their
own behaviours—to be able to identify when
a reconfiguration needs to occur and what that
reconfiguration should address, and then “design
the change” that would accomplish it.

In terms of implementation, the production behaviours
required of the system for a given product are determined
by the set of tasks required to assemble it. In our work,
these behaviours are specified as labelled transition systems
(LTSs) that describe the flow of activity in each behaviour.
For a given product to be produced, these behaviours are
compiled into a recipe file that formalises the product
recipe and fully captures the decision-making that may have
to occur during the adaptive production of that product.
To continue the hole-making example, where the function
specified that a hole should exist, the behaviour would specify
that a hole should be (for example) drilled at a given location,
with a given tool, with a given accuracy (among other
parameters). These parameters must be defined in relation to
the structure of the system, otherwise the behaviour cannot
be performed.

With these definitions of function and behaviour, we can see
an overlap between the different aspects of each as shown in
Fig. 2.

As system behaviour is either derived from function
or generated by structure, there are a number of different
views that can be taken into consideration, including motion
definition based on kinematics [22], high-level production
actions given by a Business-to-Manufacturing Markup
Language (B2MML) description [42], or a “digital twin”
simulation model [33]. Our model allows the designer to
use the most appropriate perspective. Later in the paper, we
present an example using the views of physical production
topology and production processes.

3.4 Structure

An Evolvable Assembly System is an example of a modular,
flexible, reconfigurable manufacturing system, and also

a complex, context-aware, collective adaptive system of
systems [38]. With this in mind, we must modify the
definition of structure from the literature. The structure
should deliver behaviours that will fulfil the desired system
functions, and is defined by the components, modules, or
sub-systems that comprise it, the connections between them,
and the states that the system may be in. However, we must
also consider a number of additional things:

– The system structure may change over time. System
components may be added or removed, connections
between components may change, and the system state
will change. Although this last aspect of changeable
state is not strictly new to the FBS literature—[49]
notes that “structure” is informally just state that does
not change very often—the changeability of the system
components and connections is not explicitly addressed
as a top-level object in existing frameworks.

– The system may have a set of “configurations” that it may
be in at any given time. These configurations will encap-
sulate a set of components and connections and will
often also include specific system state. For example,
in a flexible and reconfigurable manufacturing system,
the connections between system modules may change
depending on the product to be manufactured, and the
associated control code (which is part of the system
state) may change to reflect this. The structure is a set
of possible configurations, and the system must select a
single configuration to be used at any given moment.

For the non-adaptive production process, the definition
of structure from the literature given above is still mostly
suitable. At this level of behaviour, we are only interested in
the static assembly of a single product with a stable system
in a fixed configuration. However, the addition of adaptivity
to the process requires us to consider the other aspects of
the system: that it is an open dynamic system made up
of loosely coupled distributed autonomous resources. We
must therefore consider the potential addition or removal
of resources, that the connections between resources may
change, and that a resource may even change its structure.
As the structure of a system includes the hardware and software
configuration of the system, the variables that make up the
settings are part of our concept of structure for the system.

In terms of our hole-making example, the structure of the
system needs to specify some resources that can exhibit the

Fig. 2 The conceptual overlap between types of function (above) and types of behaviour (below) in an EAS
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behaviours that we require. Therefore, it will need to have a
drill and bits that are suitable for the material our product is
made of (taking into account the system behaviours implied
by the product behaviours). Along with this, it will also need
some method of manipulating either the drill or the product
such that the holes can bemade in the correct positionswith suf-
ficient accuracy. Perhaps some metrology system could also
be necessary to ensure this positional accuracy, or perhaps
the manipulator and drill combined will have sufficient
accuracy on their own—this is something to be decided
either during the design process itself, or during operation.

We can therefore define structure as follows:

Definition 3 (Structure) S = {C0, . . . , Cn} where
Ci = 〈M,Conn, State〉 is a configuration,
M is the set of systemmodules, components, or sub-systems,
Conn is the set of connections between elements in M , and
State is the state of the system.

As with function and behaviour, structure can also
be described using different views. For example, each
mi ∈ M may be described with a physical description of
the hardware (most appropriate for traditional machining
equipment), or in terms of its software architecture (most
appropriate for a cloud manufacturing or agent-based
control system). Likewise, where the State of the system
contains the “layout”, this could be described topologically
(in terms of the connections Conn between modules), or
geographically (in terms of the relative or absolute locations
of modules). Similarly the State may be concerned with the
settings, or “configuration state”, of a module, which for a
software system may be the code being run or the values in
a set of fixed variables, and in a hardware system may be
various settings on the equipment.

3.5 Design process

The FBS framework of Gero et al. [14] describes both an onto-
logical framework for Function, Behaviour, and Structure
and a process for design using those concepts. We extend
and adapt this process for the design of adaptive production
systems. This is not only what Gero would call “creative
design”—where all variables and their ranges can be mod-
ified, with no limits on the hardware that can be designed
or included in the system—but also “innovative design” in
terms of integration of existing hardware. In this case, the
variables in RA limit the adaptation by fixing some of the
variables in the process and allowing some to be modified.

We can now consider the fully modified design process
shown in Fig. 3:

0. Requirements gathering takes the set of product
requirements (RPr based on the product behaviour and

Fig. 3 EAS operational design process (see Section 3.5 for labels)

structure PrB → RPrB , P rS → RPrS ) and system
adaptation and quality requirements (RA and RQ),
and generates the system function (F ) from them.

1. Formulation converts the required system function
(F ) into a set of behaviours (Be) that are expected to
result in the required function.

2. Synthesis generates a structure (S) containing a set
of configurations (C) that are expected to exhibit
the desired behaviours (Be) and selects an initial
configuration for the system.

3. Analysis is the process of observing or deriving
the actual behaviour (Bs) exhibited by the currently
chosen configuration of the structure (S).

4. Evaluation compares the two behaviours to deter-
mine whether the actual behaviour (Bs) matches the
expected behaviour (Be). The result of this compar-
ison determines whether or not the “design” will be
accepted, or if a reformulation is required.

5. Documentation involves the production of a design
description or document (D) that describes the design
to be implemented. This would be carried out if
the result of the evaluation process is favourable. In
our process, the output of this stage is a description
of the changes to be implemented, in terms of the
structure and configuration of the system.

6–11 Reformulation is the process by which changes can
be made to the design if the result of the evaluation
process is unfavourable. During reformulation, the
process “loops back” to make a change to one of the
properties of the design before the design process
continues. Reformulation can take five forms:
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6. Type 1S uses changes to the structure or set
of configurations to address unsatisfactory
behaviour.

7. Type 1C selects an existing configuration to
address unsatisfactory behaviour.

8. Type 2 uses changes to the (expected) behaviour
to address unsatisfactory behaviour.

9. Type 3Pr uses changes to the functional product
requirements to address unsatisfactory behaviour
or to respond to changes in product requirements.

10. Type 3A uses changes to the system adaptation
requirements to address unsatisfactory behaviour
or to respond to changes in adaptation requirements.

11. Type 3Q uses changes to the systemquality require-
ments to address unsatisfactory behaviour or to
respond to changes in quality requirements.

4 Implementationmethodology

There are three main implementation challenges to address
when considering our framework, as described in the
following sections.

4.1 System functional requirements

The first challenge is formalising system functional
requirements in a format that is machine-readable (stage
0 in the design process). The system requirements RPrS ,
RPrB , RA, and RQ are given as schemas defining a set
of constants and variable attributes with associated ranges:
R = 〈{constants} , {〈variable, range〉}〉. The schema in
RPrS represents physical forms of the set of products that

Fig. 5 Assembly cell connections

may be produced by the system: their shared attributes (the
constants) and the ways in which they vary (the variables),
as well as how much they can vary (the ranges). RPrB

represents the relevant aspects of product behaviour that
should be considered—for example the flow characteristics
of a liquid, or the relevant parameters for determining
workpiece deflection during machining. Where RPrS and
RPrB express potential product variation, RA expresses
allowable system variation in a similar manner. In the case
of RQ, these attributes are actually quality constraints on
the system; the constants are binary invariants and the
variables express ranged constraints. All of these schemas
can be directly translated into XML schemas for machine
readability. When it comes to producing a given product
at a given time, the system function can be reduced to a
single-product recipe. This is implemented as a recipe file
that specifies the parts and operations required by the final
product, the quality inspection tests to be carried out, and
the possible responses to each test (i.e. rework, discard, etc).
This recipe file is generated through stages 0–1, thereby
corresponding to the required production behaviours of
the system BeNAP

and BeAP
, and takes the form of a

labelled transition system that is stored in data structures
specified in ANSI/ISA-95 [1] using B2MML (e.g. [2]).

Fig. 4 Assembly cell layout
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The reconfiguration behaviours BeR
are specified in the

internal workings of the control system using a form of BDI
architecture [11, 32].

4.2 System structure

The second challenge is formalising system structure in a
format that is machine-readable. As described in Section 3,
structure S is a set of configurations C where each Ci =
〈M,Conn, State〉: the production system is made up of
a set of production resources (M: modules, components,
or sub-systems) with state (State) connected together in
some topology by their connections (Conn). Both the
resources and topology are represented as labelled transition
systems. Any previously existing resources are specified to
the system by blueprint files, implemented using the same
ANSI/ISA-95 and B2MML standards as the recipe files.
Both the resources and topology can then be modified if
necessary due to system adaptation.

4.3 Synthesis and evaluation of behaviour

The third challenge is around implementing methods for
representing system behaviour during the design process.
Stage 2 in the design process is the synthesis of a set
of behaviours Be that are expected to fulfil the system
requirements. This is accomplished by a process of task
simulation and controller synthesis [41] resulting in an

Fig. 6 Example labelled transition system for the cell conveyor
generated from module structure and behaviour. Solid lines are
processes and dotted lines indicate interaction with other resources

annotated labelled transition system (mapping the recipe
to the topology) that is then unfolded into an AND-OR
tree. This AND-OR tree is represented by a B2MML
“Operations Schedule” made up of several “Operations
Requests” that can be interpreted by the agent control layer
for execution on industrial hardware. While this controller
is executed, the system tracks all attributes mentioned in
F (Stage 3 of the design process, Analysis). As part of
Stage 4, Evaluation, the system checks these attributes do
not violate any associated ranges or constraints. A further
pre-emptive check via virtual task simulation is done to
compare the predicted system behaviour to the required
system behaviour before actual execution [4]. This helps
prevent a “try it and see” approach to the synthesis and
reformulation steps. Likewise, once a suitable configuration
is found by simulation, it can be saved for later use without
having to generate from scratch.

Table 1 Behaviours available
to each module in the cell Module Behaviour Sub-behaviour (optional) Behaviour type

Conveyor Move To robot BxNAP

To workstation BxNAP

Workstation Load pallet BxNAP

Remove pallet BxNAP

Manual operation (varies) BxAP

Robot 1 Apply rivet BxAP

Move part Conveyor → part rack BxAP

Conveyor → workspace BxAP

Workspace → conveyor BxAP

Workspace → part rack BxAP

Part rack → conveyor BxAP

Part rack → workspace BxAP

Change end effector Pallet gripper BxR

Rib gripper BxR

Skin gripper BxR

Pneumatic rivet gun BxR

Robot 2 Change end effector Sealant gun BxR

Laser line scanner BxR

Robots 1 and 2 Scan part BxAP

Apply sealant BxAP
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Fig. 7 Simplified example
labelled transition system for
robot 1 generated from module
structure and behaviour. Solid
lines are processes, dashed lines
are configuration changes, and
dotted lines indicate interaction
with other resources. For
readability, some labels have
been combined and some states
and transitions have been elided

5 Prototype implementation

The proposed design process has been verified using
industrial data. To illustrate the approach, we present
one use case based on an implemented proof of concept
demonstrator at the University of Nottingham shown in
Fig. 4. In this case, the view we are considering is that of
the physical production processes, taking into account the
production capabilities and topology of the cell. The cell’s
function is to inspect and assemble a variety of aerospace rib
and skin components: this leads to requirements to handle
the components, apply fasteners and sealant, and inspect the
resulting products. Starting with some existing hardware,
we use the presented approach in an “innovative design”
manner to design the control approach and reconfigure
the cell. The demonstrator consists of two ABB IRB6700
robots, a shared central workspace, a tool rack accessible by
one robot, and both a shared tool/part rack and a part loading
conveyor belt accessible by the other robot and by a human
operator at a manual workstation. Each robot has access to
a number of different end effectors on their respective rack
and is equipped with an automatic tool changer.

The modules and connections of the structure can be seen
diagrammatically in Figs. 4 and 5. Note that the end effector
connections are ignored in Fig. 5 and will be presented in
a simplified form here for clarity. This is because they can
physically change location (in the rack or on the robot) and
connection based on the reconfiguration behaviours. These
different sets of connections, along with any drastic changes
in state, result in the set of configurations C for the system.

This “first pass” over the system structure results in the
set of processes (behaviours) shown in Table 1. Note that
some behaviours are shared behaviours that require multiple
modules to collaborate; for instance when robot 1 holds a
part and robot 2 scans it or applies sealant. The structure
and behaviour identified for each module is then used to
generate an LTS for that module, as shown in Figs. 6 and 7
for example.

The final cell structure is given by 〈M,Conn, State〉 for
each configuration, where the set of modules M and the
interconnections Conn are as follows:3

M =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Conveyor,
Workstation,
Robot 1,
Robot 2,
Part rack,
Tool rack,
Workspace,
Pneumatic rivet gun,
Sealant gun,
Laser line scanner,
Pallet gripper,
Rib gripper,
Skin gripper,
Parts

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

Conn =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(Workstation,Conveyor) ,

(Conveyor,Robot 1) ,

(Robot 1, Part rack) ,

(Robot 1, end effectors) ,

(Part rack, end effectors) ,

(Robot 1,Workspace) ,

(Robot 2,Workspace) ,

(Robot 2,Tool rack) ,

(Robot 2, end effectors) ,

(Tool rack, end effectors)

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

The State of the cell contains the program code
and associated variables for each module, for example

3Although they are sets, M and Conn are presented here in the style
of vertical vectors for space considerations. Also note that this is for a
view concerned with physical production capability only; if the system
is analysed using a different view, the M and Conn may be different.
For example, when considering the design of the agent-level control
system, the set of modules in M would be the set of agents in the
system, and Conn would be a fully connected network implemented
via a databus technology.
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program pointers, functional attributes, and generated data
such as inspection results. This state will be distributed
throughout the resource controllers, the Programmable
Logic Controllers (PLCs), and the agent control system.

We will now sketch an example of how the design
process is used to accommodate new products. To start, the
system will be in a given configuration Ci to perform a
sealant application on a rib. In this case, Ci will encompass
the sealant gun, rib gripper, and pallet gripper (to place
the rib on the pallet in the part rack to cure) in mi but
has no requirement for the skin gripper. This allows the
system to continue functioning if the skin gripper needs
to be reassigned to another cell if necessary, or removed
for maintenance tasks. If the system then receives a new
requirement in RPr to operate on skins, then type 3Pr

reformulation will trigger and the system will switch to the
existing configuration, say Cj , that encompasses the skin
gripper in mj . As the set of behaviours already includes
a skin gripper, no change in B should be required. In the
case of a new skin geometry, this would entail behavioural
analysis and evaluation to check that the existing gripper
was capable of picking the skin. If a completely novel
product is added to RPr , for example a spar, then the
synthesis stage of the process will fail to generate a suitable
structure and attempt to source a spar gripper by triggering
type 1S reformulation. In our real instantiation, this would
notify an operator of the need for a spar gripper, and reject
the operations request.

6 Conclusions

6.1 Discussion

The reported research addresses the need for behavioural
approaches to the design and modelling of flexible and
reconfigurable production systems of the sort studied in
the Evolvable Assembly Systems project. A novel design
process and associated definitions have been proposed for
such systems, taking into account how system structure
and behaviour relate to the intended system functions. The
process has been developed in such a way as to enable
automatic implementation by an agent control system. This
has been demonstrated through a real example instantiation
in the aerospace assembly domain.

The main advantages of the approach are that it enables
a wide range of dynamic requirements, takes advantage of
the inherent self-x properties of the system components, and
can be applied to automated agent-based control systems.
In order to aid robustness and applicability, the approach
has a formal foundation in both design theory (functional
modelling) and automated reasoning (labelled transition

systems and task simulation), combined with a standards-
compliant approach to implementation (using ANSI/ISA-95
data structures in B2MML).

6.2 Contribution and further work

The paper presents a novel extension of the Function-
Behaviour-Structure (FBS) frameworks of Gero, Rosenman,
Umeda, and others from the field of functional modelling.
The presented approach extends the theoretical FBS frame-
works not only to fully accommodate self-adaptive systems
but also to accommodate production systems whose func-
tion is determined by the FBS of other artefacts (i.e. the
products to be produced). This novel theory is supported
by practical application on real industrial hardware through
a standards-compliant implementation to demonstrate auto-
matic design, integration, and reconfiguration in response to
changing product requirements.

As discussed in this paper, new approaches based on
functional and behavioural models are particularly suited
to addressing the challenges of disruptive production envi-
ronments resulting from Industry 4.0 and similar trends.
Consequently, the contributions described here are highly rel-
evant to the manufacturing industry. High-value manufac-
turing, such as in the aerospace domain, is of particular
relevance. The ability of the system to reconfigure accord-
ing to changing requirements allows for an increase in
utilisation, and a reduction in cost and change over time
resulting in increased productivity. The example instantia-
tion is in a research demonstrator designed to be a “relevant
environment” [5] representative of a real industrial environ-
ment, and work is ongoing to further develop and apply the
approaches described here to industrial demonstrations at
higher Technology Readiness Levels [5, 39].

Our future theoretical research focus will be on more
complex integration of hybrid human-machine decision-
making through a joint cognitive systems approach [18].
This should provide for easier integration of automated
and manual operations in a production environment. A
potentially interesting avenue of review is the automatic
generation of certain aspects of the control or test code for
the system, followed by the comprehensibility by a designer,
tester, or operator of the system; previous work in the area
has highlighted a number of challenges [19, 45].
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