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In recent years there has been a surge of interest in what has come to be known as the “universal
relations” between various global properties of neutron stars. These universal relations are equation of state
independent relations between quantities such as the moment of inertia I, the tidal deformability or Love
number λ, and the quadrupole Q (I-Love-Q relations), or the relativistic multipole moments (3-hair
relations). While I-Love-Q relations have been studied extensively in both general relativity and various
alternatives, 3-hair relations have been studied only in general relativity. Recent progress on the definition
of the multipole moments of a compact object in the case of scalar-tensor theories allows for the study of
3-hair relations in modified theories of gravity. Specifically, the aim of this work is to study them for
scalarized stars in scalar-tensor theories with a massless scalar field that admit spontaneous scalarization.
We find that the 3-hair relations between the mass and angular momentum moments that hold in general
relativity hold for scalarized stars as well. The scalar moments also exhibit a universal behavior, which is
equation of state independent within one specific theory, but differs between different theories. Combining
astrophysical observations one can in principle measure the different properties of scalarized neutron star
and tell different theories apart.
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I. INTRODUCTION

Neutron stars have been studied extensively in Scalar-
Tensor Theories (STT) of gravity. In contrast to black holes
that do not possess scalar hair in these theories [1–3], for
neutron stars the matter acts as a source of the scalar field
and supports nontrivial scalar configurations. The simplest
class of STT, Brans-Dicke theory, always leads to the
development of a nontrivial scalar field for all matter
configurations and the differences with general relativity
(GR) can be considerable. This is actually a disadvantage,
as Brans-Dicke theory deviates from Einstein’s theory of
gravity in the weak field regime where GR is tested with
very high precision. Hence, weak-field tests can already

place tight constraints that leave little room for strong-field
deviations. This argument can be circumvented in a specific
class of theories that are perturbatively equivalent to GR in
the weak field regime but exhibit significant deviations in
the strong field regime [4]. In particular, neutron stars in
such theories can exhibit spontaneous scalarization.1 The
essence of spontaneous scalarization is that, once a star
exceeds a compactness threshold, it is energetically more
favorable to develop a nontrivial scalar configuration [4,9].
Scalarized neutron stars have been examined further
[10,11] including slow [12–15] and rapid [16,17] rotation.
The interest in theories that exhibit spontaneous scalariza-
tion is justified by the fact that it is the only known
mechanism of restricting deviations of gravity to the strong
curvature regime, while leaving weak curvature solution
unmodified.*georgios.pappas@roma1.infn.it
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1As a matter of fact very similar phenomenon of scalarization
is observed also for black holes in scalar-tensor theories in the
presence of nonlinear fields [5–8].
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As in GR, the properties of neutron stars in STT depend
on the specific equation of state (EOS) that one selects to
describe their interior. The various uncertainties in the
microphysics result in a proliferation of EOSs. The proper-
ties of the star and the relevant observables depend both on
the choice of the EOS and on the theory of gravity and these
dependencies appear to be degenerate. That is, using a
different theory of gravity, such as STT, is hard to
distinguish from changing the EOS. A way around this
problem has already been proposed and continues to be
developed in the form of universal, or EOS independent,
relations between various quantities that characterize the
structure of neutron stars (for some recent reviews see
[18,19]). Such universal relations have been studied in STT
as well, though not as widely as in GR. A particular class of
the universal relations that has been studied in GR but not
in STT are the 3-hair relations between the multipole
moments of a neutron star (for the results in GR see
[20–22]). The goal of this work is to extend the GR results
on 3-hair relations to the case of scalarized stars and to
explore the possibility of having a universal description of
the moments of the additional degree of freedom, i.e., the
scalar field. Wewill also explore how the scalar moment are
related to observables and whether we can use such
observables to put constraints on the parameters of the
STT, as well as the degree of scalarization of a neutron star.
Since the class of STT discussed above cannot be

constrained by the weak field experiments, one has to
use observations involving strong field effects, such as the
gravitational wave emission of neutron stars located in
close binary systems leading to shrinking of their orbits.
These observations pose strong constraints on the theory
[12] and the latest results lead to tight bounds on the free
coupling parameters [23,24]. Thus, the nonrotating and
slowly rotating scalarized neutron stars do not differ
significantly from the GR case and it would be very
difficult to probe the presence of a scalar field. Only the
rapidly rotating case can lead to larger deviations from the
nonscalarized solutions [16]. This motivates an investiga-
tion of the universal relations for rapidly rotating stars,
which is the focus of this paper.

We should note that there is another way to evade the
strong constraints coming from the binary pulsar observa-
tions, namely the inclusion of nonzero scalar field mass.
This would lead to a finite range for the scalar field of the
order of its Compton wavelength and can reconcile the
theory with observations for a much larger range of
parameters. Nonrotating neutron stars in massive STTwere
examined for the first time in [25,26] and the results were
extended in [27] and [28] for slow and rapid rotation
respectively. The studies indeed showed that the neutron
stars can differ dramatically from the pure general relativistic
case. Defining the multipole moments in these theories is
more complicated though and we will leave it for future
studies.

The rest of this work is organized in the following way,
Sec. II gives a brief description of the formalism for
construction neutrons stars in STT, while Sec. III gives a
brief description of the calculation of the moments.
Section IV presents the results on the various universal
relations between the multipole moments, and Sec. V
discusses how the various relations could be used to extract
information about the moments and the particular STT
from observations. Finally, we end with our conclusions.

II. STARS IN SCALAR-TENSOR THEORY

The general form of the Einstein frame action in STTs
with a massless scalar field is [29–31]

S ¼ 1

16πG�

Z
d4x

ffiffiffiffiffiffi
−g

p ðR − 2gμν∂μφ∂νφÞ

þ Sm½Ψm;A2ðφÞgμν�; ð1Þ

where G� is the bare gravitational constant, R is the Ricci
scalar curvature with respect to the Einstein frame metric
gμν, the matter fields are collectively denoted by Ψm and
their action is Sm. In the Einstein frame the scalar field φ is
directly coupled to the matter via the function AðφÞ. This
function plays the role of a conformal factor that relates the
Einstein frame metric gμν to the Jordan frame metric
g̃μν ¼ A2ðφÞgμν. By definition, the matter fields couple
minimally to the Jordan frame metric and this guarantees
that the weak equivalence principle is satisfied. We have
chosen to work in the Einstein frame, as in this frame the
field equations have the same structure as in GR and this
simplifies calculations. Moreover, the multipole moments
presented below have been previously defined and calcu-
lated in the Einstein frame [32]. We stress that any physical
quantities in the Jordan frame can be expressed in terms of
these moments [33].
In what follows we use geometrical units c ¼ G� ¼ 1

and the dimensional quantities are given in km. We will
focus on stellar configurations that are stationary and
axisymmetric and we will describe the matter in the
Einstein frame as a perfect fluid with pressure p and
energy density ε. The spacetime metric can then be written
in the following general form

ds2 ¼ −eγþσdt2 þ eγ−σr2sin2θðdϕ − ωdtÞ2
þ e2αðdr2 þ r2dθ2Þ: ð2Þ

All metric functions γ, σ, ω and α, as well φ, p and ε, will
depend only on the coordinates r and θ. For numerical
calculations it is more convenient to use the angular
coordinate μ ¼ cos θ instead of θ. Using our ansätze, the
field equations that one obtains from varying the action
with respect to the metric take the form
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�
Δþ 1

r
∂r −

μ

r2
∂μ

�
ðγeγ=2Þ ¼ eγ=2

�
16πpe2α þ γ

2

�
16πpe2α −

1

2
ð∂rγÞ2 −

1

2

1 − μ2

r2
ð∂μγÞ2

��
; ð3Þ

Δðσeγ=2Þ ¼ eγ=2
�
8πðεþ pÞe2α 1þ υ2

1 − υ2
þ r2ð1 − μ2Þe−2σ

�
ð∂rωÞ2 þ

1 − μ2

r2
ð∂μωÞ2

�
þ 1

r
∂rγ −

μ

r2
∂μγ

þ σ

2

�
16πpe2α −

1

r
∂rγ þ

μ

r2
∂μγ −

1

2
ð∂rγÞ2 −

1

2

1 − μ2

r2
ð∂μγÞ2

��
; ð4Þ

�
Δþ 2

r
∂r −

2μ

r2
∂μ

�
ðωeγ=2−σÞ ¼ eγ=2−σ

�
−16π

ðεþ pÞðΩ − ωÞ
1 − υ2

e2α þ ω

�
−
1

r
∂r

�
1

2
γ þ 2σ

�
þ μ

r2
∂μ

�
1

2
γ þ 2σ

�

−
1

4
ð∂rγÞ2 −

1

4

1 − μ2

r2
ð∂μγÞ2 þ ð∂rσÞ2 þ

1 − μ2

r2
ð∂μσÞ2

− r2ð1 − μ2Þe−2σ
�
ð∂rωÞ2 þ

1 − μ2

r2
ð∂μωÞ2

�
− 8π

εð1þ υ2Þ þ 2pυ2

1 − υ2
e2α

��
; ð5Þ

∂μα ¼ −
∂μγ þ ∂μσ

2
− fð1 − μ2Þð1þ r∂rγÞ2 þ ½−μþ ð1 − μ2Þ∂μγ�2g−1

×

�
1

2
½r∂rðr∂rγÞ þ r2ð∂rγÞ2 − ð1 − μ2Þð∂μγÞ2 − ∂μ½ð1 − μ2Þ∂μγ� þ μ∂μγ� × ½−μþ ð1 − μ2Þ∂μγ�

þ 1

4
½−μþ ð1 − μ2Þ∂μγ� × ½r2ð∂rγ þ ∂rσÞ2 − ð1 − μ2Þð∂μγ þ ∂μσÞ2 þ 4r2ð∂φÞ2 − 4ð1 − μ2Þð∂μφÞ2�

þ μr∂rγ½1þ r∂rγ� − ð1 − μ2Þrð1þ r∂rγÞ
�
∂μ∂rγ þ ∂μγ∂rγ þ

1

2
ð∂μγ þ ∂μσÞð∂rγ þ ∂rσÞ þ 2∂μφ∂rφ

�

þ 1

4
ð1 − μ2Þe−2σ½−½−μþ ð1 − μ2Þ∂μγ�½r4ð∂rωÞ2 − r2ð1 − μ2Þð∂μωÞ2�

þ 2ð1 − μ2Þr3∂μω∂rωð1þ r∂rγÞ�
�
; ð6Þ

where the differential operator Δ is defined as

Δ ¼ ∂2
r þ

1

r
∂r þ

1 − μ2

r2
∂2
μ −

2μ

r2
∂μ: ð7Þ

The last field equation (6) for the metric function α is of
first order compared to the second order field equations for
the rest of the metric functions. The field equation for the
scalar field is

Δφ ¼ −∂rγ∂rφ −
1 − μ2

r2
∂μγ∂μφþ 4πkðφÞðε − 3pÞe2α:

ð8Þ

The above system of equations has to be supplemented
with equations that describe the dynamics of the fluid,
namely the equation for hydrostatic equilibrium and the
equation of state (EOS) for nuclear matter. The latter is a
relation between pressure and energy density and we
impose it in the Jordan frame, since the matter couples

minimally to the Jordan frame metric. This minimal
coupling also implies that the fluid will satisfy the usual
conservation laws in terms of the Jordan frame variable, p̃
and ε̃. The equations above have been given in the Einstein
frame and p and ε are related to p̃ and ε̃ as follows

ε ¼ A4ðφÞε̃;
p ¼ A4ðφÞp̃: ð9Þ

One can use these relations to express the EOS and the
equation for hydrostatic equilibrium in terms of p and ε in
order to work exclusively with Einstein frame variables. We
find it more convenient to work directly with p̃ and ε̃.
Hence, in the numerical implementation we use Eqs. (9) to
express p and ε in terms p̃ and ε̃ in all the equations above
and we express the equation for hydrostatic equilibrium in
the form

∂ip̃
ε̃þ p̃

− ½∂iðln utÞ − utuϕ∂iΩ − kðφÞ∂iφ� ¼ 0; ð10Þ

MULTIPOLE MOMENTS AND UNIVERSAL RELATIONS … PHYS. REV. D 99, 104014 (2019)

104014-3



where we have introduced the coupling function
kðφÞ ¼ d lnðAðφÞÞ=dφ. The Einstein frame four velocity
uμ is defined as

uμ ¼ e−ðσþγÞ=2ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2

p ½1; 0; 0;Ω�; ð11Þ

where the proper velocity is v ¼ ðΩ − ωÞr sin θe−σ and Ω
is the fluid angular velocity Ω ¼ uϕ=ut.
What is left to be fixed then is the particular form of the

Einstein frame coupling function. We will work with the
standard choice kðφÞ ¼ βφ where β is a constant. One of
the most important properties of this class of scalar-tensor
theories is that it is perturbatively equivalent to GR in the
weak field regime, while in the strong field regime non-
linear effects lead to nonuniqueness of solutions and
spontaneous scalarization [4]. In the calculations below
we will allow also for nonzero background value of the
scalar field φ∞ in some cases.
We solve the field equations using a modification of the

RNS code (see [34] for the original GR version of the RNS

code while the STT extension can be found in [16]). This
code is based on the Komatsu, Eriguchi, and Hachisu
(KEH) method [35] with certain modifications introduced
in [36]. A key property of this method is that the field
equations are presented in an integral form. This turns out
to be very useful for the calculation of the multipole
moments, as explained in the Appendix.

III. MASS, ANGULAR MOMENTUM AND SCALAR
FIELD MOMENTS IN SCALAR-TENSOR THEORY

Here we give a brief description of the framework and
the general results for the moments in the Einstein frame
[32] for a STTwith a massless scalar field. More details on
the particular calculation of the moments employed in the
RNS code can be found in Appendix, while a general
review of the calculation in GR can be found in [19].
When discussing the multipole moments it is more

convenient to use the following form of the metric that
is written again in quasi-isotropic coordinates similar to the
metric used by the RNS code (2), but with the new
functions B ¼ eγ and ν ¼ ðγ þ σÞ=2, i.e.,

ds2 ¼ −e2νdt2 þ r2sin2θB2e−2νðdφ − ωdtÞ2
þ e2αðdr2 þ r2dθ2Þ: ð12Þ

The field equations for this metric are directly related to the
ones given in the previous section, i.e., Eqs. (3)–(6). Note
that the Einstein frame field equations (3)–(5) are identical
to their GR counterparts2 (given in [36]), while Eq. (6) and
the equation for hydrostationary equilibrium (10) have
some additional contributions involving derivatives of the

scalar field ∂iφ. Therefore, as discussed in more detail in
[16,32], in the case of a massless scalar field the multipole
moments can be calculated in the same way as in GR with
scalar field corrections entering through the Ricci tensor
and the equation for α, i.e., Eq. (6). Similarly, the vacuum
field equations for the metric functions ν, B and ω, which
are used to define the moments, are the same as in GR and
can be found in [37]. One can easily show that the
asymptotic expansion of the metric functions and the scalar
field admits the following ansatz in terms of the Legendre

polynomials PlðμÞ, their derivatives dPlðμÞ
dμ , and the

Gegenbauer polynomials T1=2
l ðμÞ,3

ν ¼
X∞
l¼0

ν̄2lðrÞP2lðμÞ; ð13Þ

ω ¼
X∞
l¼1

ω̄2l−1ðrÞ
dP2l−1ðμÞ

dμ
; ð14Þ

B ¼ 1þ
X∞
l¼0

B̄2lðrÞT1=2
2l ðμÞ; ð15Þ

φ ¼
X∞
n¼0

Φ̄2nðrÞP2nðμÞ: ð16Þ

where the coefficients in these expansions are of the form

ν̄2lðrÞ ¼
X∞
k¼0

ν2l;k
r2lþ1þk ð17Þ

ω̄2l−1ðrÞ ¼
X∞
k¼0

ω2l−1;k

r2lþ1þk ; ð18Þ

B̄2lðrÞ ¼
B2l

r2lþ2
; ð19Þ

Φ̄2nðrÞ ¼
Φ2n

r2nþ1
: ð20Þ

The calculated multipole moments of the spacetime are
combinations of the expansion coefficient in (17)–(20) (see
discussion for the GR case in [19]) and below we give
explicitly the first few multipole moments using the
formalism developed in [32]. We should note that even
though the calculation of the metric coefficients (17)–(19)
is the same as in GR, the coefficients in the scalar field
expansion enter explicitly in the multipole moments
given below.

2This is true only if there is no potential for the scalar field.

3We draw the reader’s attention to the definition for the
Gegenbauer polynomials given in [37], which might be different
in other sources in the literature.
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Mass (monopole):

M ≡M0 ¼ −ν0;0 ð21Þ

Scalar monopole:

W0 ¼ Φ0 ð22Þ

Angular momentum (dipole):

J ≡ S1 ¼
ω1;0

2
ð23Þ

Mass quadrupole:

M2 ¼
4

3
B0ν0;0 þ

1

3
Φ2

0ν0;0 þ
ν30;0
3

− ν2;0 ð24Þ

Scalar quadrupole:

W2 ¼ −
1

3
Φ0ν

2
0;0 − B0Φ0 −

Φ3
0

3
þΦ2 ð25Þ

Spin octupole:

S3 ¼ −
6

5
B0ω1;0 −

3

10
ν20;0ω1;0 −

3

10
Φ2

0ω1;0 þ
3ω3;0

2
ð26Þ

Mass hexadecapole:

M4 ¼ −
10

7
B0Φ2

0ν0;0 −
32

21
B0ν

3
0;0 −

16

5
B2
0ν0;0

þ 64

35
B2ν0;0 þ

24

7
B0ν2;0 −

38

105
Φ2

0ν
3
0;0

−
19

105
Φ4

0ν0;0 þ
2

7
Φ0Φ2ν0;0 þ

6

7
Φ2

0ν2;0

þ 3

70
ν0;0ω

2
1;0 −

19

105
ν50;0 þ

8

7
ν2;0ν

2
0;0 − ν4;0 ð27Þ

Scalar hexadecapole:

W4 ¼
26

21
B0Φ0ν

2
0;0 þ

38

105
Φ3

0ν
2
0;0 þ

19

105
Φ0ν

4
0;0

−
2

7
Φ0ν0;0ν2;0 −

6

7
Φ2ν

2
0;0 −

3

70
Φ0ω

2
1;0

þ 8

7
B0Φ3

0 þ 2B2
0Φ0 − B2Φ0 − 3B0Φ2

þ 19Φ5
0

105
−
8

7
Φ2Φ2

0 þΦ4 ð28Þ

Spin 25-pole:

S5 ¼
104

63
B0ν

2
0;0ω1;0 þ

11

7
B0Φ2

0ω1;0 þ
24

7
B2
0ω1;0

−
32

21
B2ω1;0 −

20

3
B0ω3;0 þ

25

63
Φ2

0ν
2
0;0ω1;0

þ 25

126
ν40;0ω1;0 −

5

21
ν0;0ν2;0ω1;0 −

5

3
ν20;0ω3;0

þ 25

126
Φ4

0ω1;0 −
5

3
Φ2

0ω3;0 −
5

21
Φ2Φ0ω1;0

−
ω3
1;0

28
þ 5ω5;0

2
ð29Þ

These are all the nonzero multipole moments up to S5 for
a stationary and axisymmetric spacetime with equatorial
symmetry and in the presence of a scalar field with the same
symmetries.
As emphasized earlier already, these moments are the

Einstein frame moments. Defining the moments in the
Einstein frame is straightforward, while attempting to do so
in the Jordan frame appears to be significantly harder. The
Jordan frame is related to the Einstein frame through a
conformal transformation that depends on the scalar field.
In terms of the multipole moments, a conformal trans-
formation of the metric would generally result in a mixing
of the moments, with the new moments being combina-
tions of the old ones. This is clearly not an essential
redefinition of the multipole moments. In our specific case
we would additionally have the mixing of mass and angular
momentum moments with scalar field moments, due to the
conformal factor being a function of φ. Any physical
quantity that one would wish to express in term of some
Jordan frame moments (assuming that they can be rigor-
ously defined), can be always reexpressed in terms of the
Einstein frame moments, using the relations between
Einstein and Jordan frame variables. A further advantage
of the Einstein frame moments is the following. In the
context of STT the functional form of the conformal factor
A2ðφÞ is specific to a theory or a class of theories and can
be parametrized in terms of appropriate parameters or
coupling coefficients of the theory. In the selected formu-
lation, these coupling coefficients of a specific theory
appear as the coefficients that mix the Einstein frame
moments, instead of being hidden in some Jordan frame
moments. This gives a more transparent handle on a
specific STT (see e.g., [33]). Therefore, while the choice
made here does not lose in generality, it can be further
argued to be multiply advantageous.
As a last note, we mention that below we will use the

reduced moments defined as,

M̄2n ¼ ðiÞ2n M2n

j2nM2nþ1
; ð30Þ

and
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S̄2nþ1 ¼ ðiÞ2n S2nþ1

j2nþ1M2nþ2
; ð31Þ

where n ≥ 0, i is the imaginary unit, and j≡ J=M2. A
similar normalization will be used for the scalar moments,
but this will be further explained in the following section.

IV. EOS INDEPENDENT BEHAVIOR OF
SCALARIZED STARS

To explore the existence of universal relations between the
various moments of scalarized stars, similar to the 3-hair
relations between the moments in GR, we have constructed
sequences of scalarized models using various EOSs. For
these stars we have calculated the mass and angular
momentummoments up toM4, aswell as the scalarmoments
up to W4, following the procedure outlined in the previous
section and the expressions given there. While the mass and
angular momentum moments can be directly compared to
their GR counterparts, the scalar moments do not have a GR
counterpart and are in this sense novel features.
We use several equations of state in order to cover a wide

range of stiffness. These are the APR4 [38], SLy4 [39],
A [40], FPS [41] and the zero temperature limit of the Shen
EOS [42,43]. APR4 and Sly4 are modern realistic EOS that
are in agreement with the observations. EOS A and FPS are
too soft and already excluded by observations, as they do
not reach two solar masses [24,44]. The Shen EOS does
reach the two solar mass barrier, but it is stiffer and leads to
somewhat larger radii, so it is disfavored by observations
[45–47]. We have included softer and stiffer EOS even
though they are ruled out or disfavored, as our main goal is
to demonstrate the universality of the relations given below.
Hence, it is instructive to use a broader set of EOS in order
to verify that this universality is not simply a residual effect
from considering EOSs with very similar properties.
The scalarized models have been constructed assuming

values of β in the range between −4 and −10 covering a big
part of the parameter space. We should note that the current
observational limit is β > −4.5 [24,44] for theories with a
massless scalar field. Nevertheless, we have again decided
to include larger values of jβj, to demonstrate that the
universality persists for significantly scalarized stars and it
is not an artefact of very weak scalarization. It is worth
mentioning that considering values of β lower than −4.5 is
justified if one includes a mass for the scalar field. In that
case, the scalar field is confined within its Compton
wavelength and therefore, for large enough scalar field
masses, the emission of scalar gravitational radiation is
suppressed and binary pulsar observations cannot set as
tight constraints on the parameter β [25–27] as in the
massless case. One should note however that defining the
multipole moments in the case of massive scalar field is
much more involved because of the finite range of the
scalar field and its exponential decay at infinity. This
remains an open problem which we plan on addressing

in future work. One more issue we should address at this
point is that of the asymptotic value of the scalar field,
which in the class of models that we are investigating, is
constrained to be almost zero by observations. Never-
theless, we have also calculated models with a nonzero
asymptotic value of the scalar field φ0 in order to have a
more complete investigation of scalarized stars. For these
latter models we have used a somewhat larger value of φ0

(i.e., φ0 ¼ 0.03), similar to previous studies [48], in order
to have a better assessment of how that would affect the
behavior of the universal relations.
For the particular choice of the coupling function the

field equations are invariant under the transformation
φ → −φ. Thus the neutron star solutions with opposite
signs of the scalar field are otherwise indistinguishable
(e.g., the metric functions describing the two solutions are
the same). Therefore, in the presented results we have
chosen arbitrarily one particular sign of φ and normalized
the scalar field multipole moments accordingly. In any
case, solutions with the opposite sign for the scalar field
also exist and would simply result to scalar moments with
an opposite sign.
We now proceed with the presentation of our results. Our

first results concern the mass and angular momentum
moments of scalarized stars and their behavior with respect
to their GR counterparts. These results are shown in Fig. 1,
where we have plotted S̄3 against M̄2 and M̄4 against M̄2.
The figures include models within the full range of the β
parameter that we have used both zero and nonzero
asymptotic values of the scalar field.
As shown in Fig. 1, the S̄3 − M̄2 and M̄4 − M̄2 relations

of GR [20,22] hold for scalarized stars as well. It would be
useful at this point to contemplate on this very interesting
result. Considering the Einstein frame multipole moments
as GR moments with some additional corrections due to the
scalar field, one might be tempted to conclude that this
results is expected. Indeed, in certain cases it has been
argued [48] that the main effect of the scalar field is to
stiffen the Einstein frame EOS with respect to the pre-
scribed Jordan frame EOS [c.f. Eqs. (9)]. However, the
presence of the scalar field is not in general trivially
equivalent to an EOS change, since the gradient of the
scalar field itself also acts as a source in the field equations.
Furthermore recent studies on I −Q relations for scalarized
stars have shown, in contrast to what we find here for the
3-hair relations, that for large values of jβj the scalarized
I −Q relations can somewhat deviate from the correspond-
ing GR I −Q relations [14,49]. Therefore, what we find
here for the 3-hair relations and for values of β as much as
β ¼ −10 is quite intriguing. Overall it seems that the 3-hair
universal relations are quite less sensitive to the choice of β
than the I −Q universal relations, being in a sense more
universal with respect to different theories of gravity.
The results presented here though, do not eliminate the

possibility that stars with an extremely high degree of
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scalarization in the context of STT or in the context of
exotic object in GR (e.g., a mixed boson-neutron star)
could deviate from these relations. Such objects are beyond
the scope of this investigation.
Having seen how the mass and angular momentum

moments behave we turn to the scalar field and its
moments. The first quantity of interest is the scalar charge
or scalar monopole W0. The degree of scalarization
of a neutron star will depend on the value that we choose
for the parameter β, with more negative values leading to
more scalarized stars and therefore larger values of the
scalar monopole as well as the higher order scalar
moments. In Fig. 2 we show the reduced scalar charge

W̄0 ≡ −W0=ðjaMÞ as a function of j and M̄2 for models
with β ¼ −4;−4.5;−5;−6 and φ0 ¼ 0 (top plots), as well
as a model with β ¼ −4.5 and φ0 ¼ 0.03 (bottom plots).
We should recall at this point some general properties of

the models that will help the reader interpret the plots. As
we mention above, the scalar moments are given in terms of
j and M̄2. Increasing value of j corresponds to increasing
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FIG. 2. Scalar charge. The plots in this figure show the scalar
monopole W0 as a function of the spin parameter j≡ J=M2 and
the reduced quadrupole M̄2 ≡ −M2=ðj2M3Þ. The scalar charge
demonstrates a universal behavior, i.e., all the EoSs form the
same surface. The relevant surface though, changes depending on
the value of β of the theory and the asymptotic value of the scalar
field ϕ0. The quantity that is plotted is the reduced scalar charge
W̄0 ≡ −W0=ðjaMÞ, where a ¼ 0.3. The reason that this scaling
that includes the spin parameter was chosen is because the degree
of scalarization has also a spin dependance, so the idea was to try
to flatten out the effect. The same scaling with respect to j seems
to work for all the different theory cases. The two upper plots
correspond to the same data for β ¼ −4.5 (the middle plot is the
surface formed by the points of the top plot), while the middle
plot also shows the β ¼ −4 surface, that exhibits little scalariza-
tion at high spins.
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FIG. 1. 3-hair relations between mass and angular momentum
moments. The figure on the left shows the relation between
the spin octupole and the quadrupole while the one on the right
shows the relation between the mass hexadecapole and the
quadrupole. The data points correspond to scalarized models
for various EoSs with β ¼ −4;−4.5;−5;−6;−8;−10, as well as
models for various EoSs with β ¼ −4.5 and a nonzero asymptotic
value of the scalar field φ0. On top of the data points we have
plotted the GR 3-hair relations as solid red curves. As one can
see, independent of the theory, all the points trace the GR curves.
Therefore, the 3-hair relations are the same in ST theory as in GR.
The quantities plotted are the reduced moments, i.e.,
M̄2 ≡ −M2=ðj2M3Þ, S̄3 ≡ −S3=ðj3M4Þ, and M̄4 ≡M4=ðj4M5Þ,
as they are defined in scalar-tensor theory in the Einstein
frame [32].

MULTIPOLE MOMENTS AND UNIVERSAL RELATIONS … PHYS. REV. D 99, 104014 (2019)

104014-7



rotation rate of the star and the higher the degree of
scalarization the higher the maximum spin that the models
can have. Neutron stars in GR can have a spin up to jmax ¼
0.7 independent of the EOS (see [50,51] for more details)
but scalarized stars can have larger spins. Larger values of
M̄2 correspond to less compact objects of lower mass
(values larger than 10 usually correspond to masses around
or less than 1 M⊙), while the more compact objects with
masses close to the maximum mass have the smallest value
of M̄2, which tends to 1. The plots show that for large M̄2

the models are not scalarized, while, as M̄2 decreases, at
some point stars are spontaneously scalarized and the scalar
monopole becomes nonzero. Eventually at small enough
values of M̄2, the models become unscalarized again. The
degree of scalarization of a neutron star is not independent
of the spin. More rapidly rotating neutron stars tend to be
more scalarized. To counter this effect to some degree we
have chosen to normalize the scalar monopole as
W̄0 ≡ −W0=ðjaMÞ, where the spin weight is a ¼ 0.3.
The spin normalization was introduced initially in the
hope of eliminating the spin dependence, but this has
not been possible for any value of a. In spite of this, we
have decided to keep this normalization for all the moments
in order to minimize their variation due to the spin. This
point will be further discussed when it arises again.
Figure 2 shows that, within the same theory, i.e., for the

same value of β, all models fall on the same surface
independent of the EOS, which means that the scalarized
monopole has a universal behavior. For different theories
(different βs), or for different asymptotic values of the
scalar field, the surfaces are different. Unfortunately, the
surfaces shown in Fig. 2 are not easy to fit with some
simple function. Spontaneous scalarization is a phase
transition that occurs at a threshold and finding some
empirical relation that would express this threshold in terms
of the moments is not straightforward. One last thing to
note is that in the case where the asymptotic value of the
scalar field is not zero, the models are scalarized even for
small compactnesses (or large M̄2) as we can see in the
bottom plot of Fig. 2.
We now turn our attention to the next scalar moment, the

scalar quadrupole. The behavior of the reduced scalar
quadrupole W̄2 ≡W2=ðjaM3Þ is similar to what we saw
for the scalar monopole and is presented in Fig. 3. As for
the monopole, we have assigned a spin weight to the
normalization of W2 which is a ¼ 5=3. One could assume
that the scalar quadrupole would be driven by the mass
quadrupole of the star and therefore the spin dependance
would be ∼j2, but as it turns out, the behavior is more
complicated than that. For this reason we have chosen to
normalize the multipole in this way in order to reduce the
variation due to the spin, as we did for the scalar
monopole,. Similarly to the monopole, different choices
of β and φ0 correspond to different surfaces in the

parameter space, while all EOSs for the same theory fall
on the same surface.
The last scalar moment that we have calculated from

the numerical models is the scalar hexadecapole W4.
The results for the reduced scalar hexadecapole W̄4≡
−W4=ðjaM5Þ, where a ¼ 3.6, are given in Fig. 4. Again
we observe a behavior similar to the previous two cases.
The bottom line of this analysis is that the scalar moments
in the Einstein frame demonstrate an EOS independent
behavior for the same parameters β and φ0 following the
same surfaces in the respective parameter spaces, while as
we change β the moments fall on clearly separate surfaces.
Therefore, while EOS uncertainties can be circumvented
just as in GR, as the scalar moments demonstrate universal
behavior, one can identify different theories (different βs)
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FIG. 3. Scalar quadrupole. The plots in this figure show the
scalar quadrupole W2 as a function of the spin parameter
j ¼ J=M2 and the reduced quadrupole M̄2 ¼ −M2=ðj2M3Þ.
Same as in the previous figure we observe universal behavior.
The quantity that is plotted is the reduced scalar charge
W̄2 ≡W2=ðjaM3Þ, where a ¼ 5=3.
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as they correspond to different surfaces for W̄0, W̄2,
and W̄4.

V. RELATING MOMENTS TO OBSERVABLES
AND COMPARISON TO GR

In the previous section we saw how the moments in the
Einstein frame exhibit universal behavior with respect to the
different EOSs of nuclearmatter.We also saw that in the case
of mass and rotation moments the universal relations found
inGR also capture the behavior of themoments of scalarized
stars independently of the specific theory chosen. The latter
property does not hold for the scalar moments. While they
are EOS independent within a specific theory, they do
depend on the choice of a particular theory (reflected on
the choice for the value of β). But as we have already
mentioned, the Einstein frame moments are not directly

observable and if we want to connect our results to
astrophysical observationswewill have to calculate physical
quantities in the Jordan frame. The transformation to the
Jordan frame is a conformal transformation of the form,
g̃μν ¼ A2ðφÞgμν, and we have defined earlier in Sec. II the
coupling function kðφÞ ¼ d lnðAðφÞÞ=dφ.
It is common in the literature to use the Damour and

Esposito-Farése notation for the asymptotic expansion of
this quantity, i.e., kðφÞj∞ ¼ α, ðdk=dφÞ∞ ¼ β, ðd2k=
dφ2Þ∞ ¼ γ, and so on. In our case and for what follows,
due to the form of the coupling function that we have been
using, α, γ (in this notation) and all the higher derivatives
will be zero. Furthermore, since current constraints point
towards a zero asymptotic value of the scalar field we will
assume that at infinity we have φ0 ¼ 0. We stress that we
have instead used α, γ to denote metric functions above.
Returning to the question of observables, the natural

choice is to consider observables that are related to the
geodesics of the spacetime. Such observables and their
connection to the moments both in GR and in STTs are
discussed in what follows.

A. Observables and moments

It was shown by Ryan [52] that there are quantities
associated to the geodesics of a GR spacetime that can be
expressed in terms of expansions where the coefficients
depend on the multipole moments. The expansions of these
same quantities have also been calculated for STTs with a
massless scalar field [33]. These quantities are: (i) the
change of energy per unit mass of a test particle (Ẽ) per
logarithmic orbital frequency interval for equatorial circular
geodesics, denoted by ΔẼ; (ii) the ratio of the periastron
precession frequency (Ωr) of a slightly eccentric equatorial
orbit over the orbital frequency (Ω) of the corresponding
circular orbit, Ωr=Ω; (iii) the ratio of the nodal precession
frequency (Ωz) of a slightly off-equatorial orbit over the
orbital frequency of the corresponding circular equatorial
orbit, Ωz=Ω. The expansion parameter is U≡ ðM̄ΩÞ1=3,
which corresponds to the orbital velocity of the test particle.
The quantity M̄≡M − αW0 corresponds to the Keplerian
mass that one would measure from the motion of a
companion star, if the system was part of a binary.
Here, we briefly present these expansions in GR and in

scalar-tensor theory, as they were derived in [33,52], up to
the same corresponding order in U and taking into account
the constraints we have from the ansatz that we have used.
The energy change per logarithmic orbital frequency
change in GR up to OðU8Þ is given by the expression,

ΔẼ ¼ −
U
3

dẼ
dU

¼ U2

3
−
U4

2
þ 20S1U5

9M2
þ
�
M2

M3
−
27

8

�
U6

þ 28S1U7

3M2
þOðU8Þ; ð32Þ
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FIG. 4. Scalar hexadecapole. The plots in this figure show
the scalar hexadecapole W4 as a function of the spin parameter
j ¼ J=M2 and the reduced quadrupole M̄2 ¼ −M2=ðj2M3Þ.
Same as in the previous figures we observe universal behavior.
The quantity that is plotted is the reduced scalar charge
W̄4 ≡ −W4=ðjaM5Þ, where a ¼ 3.6.
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while the corresponding expression in scalar-tensor theory
is, after setting α ¼ γ ¼ 0 as discussed above,

ΔẼ ¼ U2

3
þ
�
2βW2

0

9M̄2
−
1

2

�
U4 þ 20S1U5

9M̄2

þ
��

M2

M̄3
−
27

8

�
þ 4W2

0M̄
2ð3β þ 2Þ þ 8β2W4

0

24M̄4

�
U6

þ 28S1U7ð9M̄2 þ 2βW2
0Þ

27M̄4
þOðU8Þ; ð33Þ

where we have M̄ ¼ M − αW0 ¼ M. Similarly, the ratio
Ωr=Ω in GR is,

Ωr

Ω
¼ 3U2 −

4S1U3

M2
þ
�
9

2
−
3M2

2M3

�
U4 −

10S1U5

M2
þOðU6Þ;

ð34Þ

while the corresponding expression in scalar-tensor
theory is

Ωr

Ω
¼

�
3 −

βW2
0

2M̄2

�
U2 −

4S1U3

M̄2

þ
��

9

2
−
3M2

2M̄3

�
þ ðβ − 1ÞW

2
0

M̄2
−
13β2W4

0

24M̄4

�
U4

−
2U5S1ð15M̄2 þ 5βW2

0Þ
3M̄4

þOðU6Þ: ð35Þ

Finally, the ratio Ωz=Ω in GR is,

Ωz

Ω
¼ 2S1

M2
U3 þ 3M2

2M3
U4 þ ð3MM2 þ 7S21Þ

M4
U6 þOðU7Þ;

ð36Þ

while the corresponding expression in scalar-tensor
theory is

Ωz

Ω
¼ 2S1

M̄2
U3 þ 3M2

2M̄3
U4 þ 2S1βW2

0

M̄4
U5

þ U6

2M̄5
½M̄ð6M2M̄ þ 14S21Þ

− 3βM̄W0W2 þ 5βW2
0M2 þOðU7Þ: ð37Þ

ΔẼ is a quantity that is more immediately relevant to
gravitational waves and extreme mass ratio inspirals, while
the other two quantities can be also relevant to systems such
as x-ray binaries, where one observes quasiperiodic oscil-
lations (QPOs) of the x-ray spectrum of the accretion disc
around the compact object. If one were to assume, e.g.,
the relativistic precession model for QPOs, by Stella and
Vietri [53,54], then one could associate specific QPO

frequencies to Ωr, Ωz, and Ω.4 The relevant observations
could then be fitted to recover the coefficients of the
expansions.

B. Measuring the scalar charge and β

Inspecting the expansions in GR and the corresponding
expansions in STT reveals that it is possible to distin-
guish between the two theories, either by comparing
the coefficients of the same order between the two theories
or by comparing different order coefficients against each
other. As we saw in the previous subsection one could
expand Ωr=Ω and Ωz=Ω in terms of powers of Ω as,
ðΩr=ΩÞ ¼

P
CaΩa=3, and ðΩz=ΩÞ ¼

P
FaΩa=3, where

the coefficients Ca, for example, will be Ca ¼
M̄a=3faðM̄; β;W0; S1;M2;W2;…Þ. These coefficients
could be used to measure the various parameters. The
frequencies that are most commonly observed in low mass
x-ray binaries (LMXBs) are the two larger ones, i.e., Ω and
Ωr. These are observed as pairs of kHz QPOs, while
occasionally one also observes a third low frequency QPO,
which is assumed to be Ωz. Since the most common
occurrence is the former one, we will start assuming that
onlyΩr andΩ are known. Wewill then explore how far one
can go by using either additional information from Ωz or
the universal behavior we have described previously.

1. Setting up the problem and constraints

In GR one could independently measure the mass from
the lowest order term in Ωr=Ω, since we have that
CGR
2 ¼ 3M2=3. In scalar-tensor theories however that term

has additional contributions due to the scalar field and is of

the form CSTT
2 ¼ ð3 − βW2

0

2M̄2ÞM̄2=3. One could go around this
problem if an independent measurement of the mass M̄
were available. For example, since this sort of QPO
producing x-ray sources are LMXBs, the mass could be
estimated from the Keplerian motion of the companion and
the compact object (M̄ is the Keplerian mass after all). In
that case, the estimation of CSTT

2 would provide a meas-
urement of the combination βW2

0, but more importantly
would immediately tell us that we have a deviation from
GR. In GR the higher order coefficients would enable us to
measure the higher order moments, while along the way we
would find coefficients that would serve as consistency
checks, such as CGR

5 which is a consistency check on the
measurement of S1 from CGR

3 . In scalar-tensor theories
things are a little more complicated. The coefficients CSTT

2 ,
CSTT
3 and CSTT

5 could serve as a consistency check if one
knew the mass M̄ independently, but they could also be
used to determine the mass since if we combine them we
can arrive to the expression,

4There are other models as well, such as some of the models
derived from discoseismology, where oscillations of the disc can
be associated to the geodesic frequencies [55–59].
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45CSTT
3 M̄2=3 ¼ 10CSTT

2 CSTT
3 þ 6CSTT

5 ; ð38Þ

which relates the mass to these coefficients. Therefore, even
for a system where the mass is unknown, one can estimate it
as long as one can accurately estimate the coefficients up to
CSTT
5 . This then allows to estimate S1 as well from CSTT

3 .
Up to this point we have M̄, βW2

0, and S1. Turning to the
coefficient CSTT

4 that contains M2 we notice that we cannot
estimate it independently. We can only estimate it in

combination with W0, i.e., ½ð92 − 3M2

2M̄3Þ − W2
0

M̄2�. The problem
lies with our inability so far to separate β and W0. Aiming
to break the degeneracy between M2 and W0 by using
higher order terms seems a difficult task with uncertain
conclusion. For instance, while the next order term, CSTT

6 ,
includes all the relevant terms, it also includes the scalar
quadrupole W2 that first appears in the expansion at
that order.
The situation for measuring the multipole moments and

the parameters of the particular STT improves dramatically
when we have information for bothΩr=Ω andΩz=Ω from a
specific system. In that case, we can use the same analysis
presented for Ωr=Ω to estimate M̄, βW2

0, S1, and the

combination ½ð9
2
− 3M2

2M̄3Þ − W2
0

M̄2�, but then from Ωz=Ω and
the coefficient FSTT

4 one can estimate M2 and break the
degeneracy, while the coefficient FSTT

5 , not present in GR,
can serve as an independent verification of the deviation
from GR, as well as a consistency check up to that order.
Therefore additional information from more frequencies
allows for the breaking of degeneracies and performing
more tests on deviations from GR.

2. Using universal relations to overcome degeneracies

In the above discussion we showed that in order to break
the M2 −W0 degeneracy one would have to consider both
Ωr=Ω and Ωz=Ω, but to reach to that conclusion we did not
take into account the results of Sec. IV and the universal
behavior of W0=M̄. In fact, if we were to consider only
Ωr=Ω, the universal behavior of W0=M̄ and the fact that it
can be expressed as some function of j and M2, could be
used to break the M2 −W0 degeneracy even without
considering Ωz=Ω. In what follows we will describe the
algorithm that can be used to do this.
Let us assume that from observations of Ωr and Ω we

have estimated the first coefficients of the Ωr=Ω expansion,
i.e., CSTT

2 , CSTT
3 , CSTT

4 , and CSTT
5 . The combination of

CSTT
2 ; CSTT

3 , and CSTT
5 will provide the mass M̄ of the

neutron star, as we describe above. The additional infor-
mation that we have is that,

CSTT
2 ¼

�
3 −

β

2
ðW0=M̄Þ2

�
M̄2=3;⇒

⇒ ðW0=M̄Þ2 ¼ 2ð3 − CSTT
2 M̄−2=3Þ 1

β
; ð39Þ

CSTT
3 ¼ −4

S1
M̄2

M̄; ⇒ j ¼ −
CSTT
3

4M̄
; ð40Þ

CSTT
4 ¼

��
9

2
−
3M2

2M̄3

�
−
W2

0

M̄2

�
M̄4=3

þ
�
β
W2

0

M̄2
−
13β2W4

0

24M̄4

�
M̄4=3;⇒

⇒
��

9

2
−
3M2

2M̄3

�
−
W2

0

M̄2

�
¼ C̄4; ð41Þ

where,

C̄4 ¼ M̄−4=3CSTT
4 þ

�
27

2
− 11CSTT

2 M̄−2=3

þ 13

6
ðCSTT

2 Þ2M̄−4=3
�
: ð42Þ

Equation (40) straightforwardly gives the spin parameter of
the compact object, while Eq. (39) can be interpreted as a
bond between W0 and β and Eq. (41) relates W0 to M2.
Hence, one needs one more bond between these quantities in
order to be able to determine them uniquely. The universal
relation provide it as follows. First one expresses the
equation in terms of the variables of Sec. IV by using the
relations ðW0=M̄Þ2 ¼ j0.6W̄2

0 and ðM2=M̄3Þ ¼ −j2M̄2. One
can then effectively consider all quantities as having being
uniquely determined, except of W̄0 and M̄2, that instead just
satisfy a bond. The additional bond is provided by the
universal relation between W̄0 and ðj; M̄2Þ shown in Fig. 2.
For the estimated value of j, the result is a cross section of
the surfaces shown in Fig. 2, which amounts to having for
different values of β different curves relating W̄0 to M̄2.
We can now plot all these constraints on a W̄0 − M̄2 plot,

an example of which is shown in Fig. 5. The plot shows the
W̄0 ¼ const. lines that result from the constraint (39) for the
different values of β ¼ −4;−4.5;−5, and −6. It also shows
the universal W̄0 ¼ fðM̄2Þ curves for the corresponding
values of β (we note that for the spin in this example, the
β ¼ −4 models are unscalarized). The last curve shown is
the constraint resulting from Eq. (41) which is independent
of β and is therefore a single curve (red dashed curve). In
order to have a consistent solution of all of the constraints,
the curves of Eq. (39) and Eq. W̄0 ¼ fðM̄2Þ that correspond
to the same β must intersect the curve for Eq. (41) at the
same point (or approximately the same point), just as the
example in Fig. 5 shows. From the intersection point one
can identify the value of β (¼ −5 in this example) as well as
the values of M̄2 (∼2) and W̄0 (¼ 0.4).
We have therefore presented an algorithm that makes use

of the universal relations for the scalar monopole, in order
to measure the parameters of a given scalarized neutron star
and the parameters of the corresponding STT from a set of
astrophysical observations (pairs of QPO frequencies in
this case) that otherwise would not be possible due to
degeneracies.
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VI. CONCLUSIONS

Universal or EOS independent relations between global
properties of neutron stars have proven to be a versatile tool
for inferring the properties of neutron stars. These relations
have been extensively studied in GR and particular flavours
of them, such as the I-Love-Q relations, have been studied
in a variety of modifications to GR. The 3-hair universal
relations found in GR have been a more difficult problem to
tackle, mainly due to the intricacies of defining multipole
moments in modifications to GR. STT of gravity with a
massless scalar field is a class of theories where a definition
of moments is already available [32].
In this work we have computed the multipole moments

for scalarized stars in these theories and have shown that
they continue to exhibit universal properties. Specifically,
we have found that the mass and angular momentum
moments follow the same universal 3-hair relations as
their GR counterparts [20–22], independent of the value of
the β parameter and of the asymptotic value φ0 of the scalar
field. Furthermore we have found that the scalar field
moments for every given combination of β and φ0 exhibit
universal behavior in terms of the spin parameter j and the
reduced quadrupole M̄2. That is, when each moment is
plotted in terms of j; M̄2 it falls on the same surface
independent of the EOS. In addition, different values of β
and φ0 result in different surfaces in the three dimensional
space formed by each scalar moment and the two param-
eters j; M̄2. This appears to be related with the known fact
that the degree of scalarizations depends on both the
asymptotic value of the scalar field and the value of β.
Our results demonstrate that the degree of scalarization

can be expressed in an EOS independent way, which is still
quite intriguing and potentially very useful. In particular,

we demonstrate how one can use the universal relations
presented here to infer the various properties (i.e., the
moments) of a scalarized neutron star, as well as the
parameters of the specific STT (i.e., the value of β), from
astrophysical observations.
The algorithm for doing so using LMXBs can be seen as a

proof of principle. A more thorough analysis is necessary in
order to determine how accurately the various parameters
can be measured and what sort of constraints can be set on
STTs from observations. Furthermore, it would be worth
exploring how the results presented here could be used in
other settings, such as the observation of gravitational waves
from the inspiral of NS-NS binaries or BH-NS binaries.
STTwith amassless scalar is only a first step in studying the

3-hair relations in these theories. The next would be to
consider STTs with a massive scalar field. This is more
challenging, as the multipole moments cannot be defined in
the samewayas in themassless case.Nevertheless somecases
can be easier to handle than others. For instance, if the scalar
field were to be fully confined inside the neutron star on
account of its large mass, then in the exterior for all practical
purposes onewould only have to deal with the spacetime, and
the moments would be calculated in the same way as in GR.
This is something that we will explore in future work.
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APPENDIX: CALCULATION OF THE
MULTIPOLE MOMENTS

The calculation of the equilibrium neutron star sol-
utions is done using a modification of the RNS code (see

[34] for the original GR version of the RNS code while
the STT extension can be found in [16]) and that is why
we will follow the formalism and notations that are
standard for the KEH method [35,36]. The coefficients
B2l, ν2n;0, ω2n−1;0 and Φ2n are calculated numerically
using integrals of the source functions of the field
equations (3)–(5), (8). In the present paper we consider
the case of a zero mass scalar field and thus these
integrals are the same in pure GR and in STTs (when the
Einstein frame is employed).5

First we describe the calculation of the coefficients B2l.
The function B in the metric ansatz (12) is connected to the
metric function γ used by the RNS code (2) via the relation
B ¼ eγ . Using the integral representation of γ [35,36],
we have

γðs; μÞ ¼ −
2e−γ=2

π

X∞
n¼1

sin½ð2n − 1Þθ�
ð2n − 1Þ sin θ

��
1 − s
s

�
2n
Z

s

0

ds0s02n−1

ð1 − s0Þ2nþ1

Z
1

0

dμ0 sin½ð2n − 1Þθ0�S̃γðs0; μ0Þ

þ
�

s
1 − s

�
2n−2 Z 1

s

ds0ð1 − s0Þ2n−3
s02n−1

Z
1

0

dμ0 sin½ð2n − 1Þθ0�S̃γðs0; μ0Þ
�
; ðA1Þ

with the asymptotic expansion at infinity being

γðs; μÞ ¼ −
2e−γ=2

π

X∞
n¼1

sin½ð2n − 1Þθ�
ð2n − 1Þ sin θ

��
1 − s
s

�
2n
Z

1

0

ds0s02n−1

ð1 − s0Þ2nþ1

Z
1

0

dμ0 sin½ð2n − 1Þθ0�S̃γðs0; μ0Þ
�
; ðA2Þ

where s is the compacted radial coordinate ð1 − sÞ=s ¼
req=r with req being a characteristic length scale that gives
the coordinate equatorial radius of the star, and μ ¼ cos θ.
The source term S̃γðs0; μ0Þ is connected to the right-hand
side of Eq. (3) and is given by

S̃γ ¼ r2eγ=2
�
16πe2αpþ γ

2
½16πe2αp

−
1

2
ð∂rγÞ2 −

1

2r2
ð1 − μ2Þð∂μγÞ2�

�
: ðA3Þ

For simplicity, the expression (A2) can be written as

γðr; μÞ ¼ −
2e−γ=2

π

X∞
n¼1

sin½ð2n − 1Þθ�
ð2n − 1Þ sin θ

Γ2n

r2n
ðA4Þ

where

Γ2n ¼ r2ne

Z
1

0

ds0s02n−1

ð1 − s0Þ2nþ1

Z
1

0

dμ0 sin½ð2n − 1Þθ0�S̃γðs0; μ0Þ:

ðA5Þ

We should also note at this point that,

sin½ð2n − 1Þθ�
sin θ

¼
ffiffiffi
π

2

r
T1=2
2ðn−1ÞðμÞ; for cos θ → μ: ðA6Þ

With these expressions at hand we can express again the
function γ in a more convenient way as,

γðr; μÞ ¼ −e−γ=2
�
2

π

�
1=2 X∞

n¼1

T1=2
2ðn−1ÞðμÞ
ð2n − 1Þ

Γ2n

r2n
; ðA7Þ

where we have it in terms of the Gegenbauer polynomials.
This representation is useful since it can be easily related to
the asymptotic expansion of the function B

5An alternative approach would be to calculate these coef-
ficient from the asymptotic behavior of the metric functions, but
numerically this is much more imprecise especially if we want to
calculate higher order multipole moments.
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B ¼ 1þ
X∞
l¼0

B2l

r2lþ2
T1=2
2l ðμÞ ⇒

B ¼ 1þ
�
π

2

�
1=2

�
B0

r2
T1=2
0 ðμÞ þ B2

r4
T1=2
2 ðμÞ

þ B4

r6
T1=2
4 ðμÞ þ � � �

�
: ðA8Þ

Using the orthogonality conditions of the Gegenbauer
polynomialsZ

1

−1
dμð1 − μ2Þ1=2T1=2

l ðμÞT1=2
m ðμÞ ¼ δlm; ðA9Þ

to relate the Γ2n coefficients to the B2l coefficients, we have
that the B2n coefficients are given as

B2n ¼ lim
r→þ∞

�
2

π

�
1=2

r2nþ2

×
Z

1

−1
dμð1 − μ2Þ1=2T1=2

2n ðeγðr;μÞ − 1Þ: ðA10Þ

If we take its asymptotic expansion in terms of r we can
easily obtain

B2n ¼ lim
r→þ∞

�
2

π

�
r2nþ2

Z
1

−1
dμð1 − μ2Þ1=2T1=2

2n

×

�
−
X∞
k¼1

T1=2
2ðk−1ÞðμÞ
ð2k − 1Þ

Γ2k

r2k
þ � � �

�
: ðA11Þ

The only term that will survive the integration is the
k − 1 ¼ n term that will give the result,

B2n ¼ −
�
2

π

�
Γ2ðnþ1Þ
ð2nþ 1Þ ; ðA12Þ

with the Γ2l coefficients given by (A5).
The calculation of the rest of the expansion coefficients

ν2n;0, ω2n−1;0 and Φ2n is more straightforward. Thus, in
terms of the source functions in the field equations (3)–(5)
used by the RNS code, these coefficients are given by

ν2l;0 ¼ −
r2lþ1
eq

2

Z
1

0

ds0s02l

ð1 − s0Þ2lþ2

Z
1

0

dμ0P2lðμ0ÞS̃σ̃ðs0; μ0Þ;

ðA13Þ

ω2l−1;0 ¼
r2leq

2lð2l − 1Þ
Z

1

0

ds0s02l

ð1 − s0Þ2lþ2

Z
1

0

dμ0ð1 − μ02Þ

×
dP2l−1ðμ0Þ

dμ0
S̃ω̂ðs0; μ0Þ; ðA14Þ

Φ2n ¼ −r2nþ1
eq

Z
1

0

ds0s02n

ð1 − s0Þ2nþ2

Z
1

0

dμ0P2nðμ0ÞS̃ϕðs0; μ0Þ;

ðA15Þ
In the first integral l ≥ 0 while in the second integral
l ≥ 1. The source functions that appear in these integrals
are of course connected to the left hand side of the field
equations (4), (5), and (8) respectively, i.e.,

S̃σ̃
r2

ðr; μÞ ¼ eγ=2
�
8πe2αðεþ pÞ 1þ v2

1 − v2
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1

2
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���
; ðA16Þ
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ðr; μÞ ¼ eðγ−2σ̃Þ=2
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−16πe2α
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1 − v2

þ ω
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�
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4
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4r2
ð1 − μ2Þð4ð∂μσ̃Þ2 − ð∂μγÞ2Þ

− r2ð1 − μ2Þe−2σ̃
�
ð∂rωÞ2 þ

1

r2
ð1 − μ2Þð∂μωÞ2

���
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S̃ϕðs; μÞ ¼ −s2ðs − 1Þ2∂sγ∂sϕ − ð1 − μ2Þ∂μγ∂μϕþ 4πkðϕÞ r2eqs2

ð1 − sÞ2 e
2αðε − 3pÞ; ðA18Þ

where

v ¼ ðΩ − ωÞr sin θe−σ̃; ðA19Þ

is the proper velocity with respect to the zero angular momentum observers.
The calculated coefficients can then be used in the expressions given in Sec. III to calculate the mass, angular momentum

and scalar moments of the scalarized neutron star.
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