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Abstract—Ensemble modeling of Neural Networks is a strategy
where multiple alternative models (ensemble members) are con-
structed and then their forecasts are ensembled using various
combination approaches. Ensemble of Neural Networks has
proved the concept behind this strategy. Deep neural network
is a type of neural network that offers potential opportunities to
overcome traditional ensemble of neural networks. This paper
proposes an ensemble of deep belief networks (DBN). The
ensemble members of DBN are constructed with different number
of epochs so that the generalization ability can be improved.
The outputs of these DBNs are aggregated by a Bayesian model
averaging method. The proposed Bayesian adopted ensemble of
DBNs is evaluated on two benchmark data sets. Comparison of
the proposed model is evaluated with simple averaging and single
DBN over a number of forecasting measuring that shows better
performance of the proposed model.

Index Terms—Ensemble modeling, deep belief network,
Bayesian model averaging, forecast combination.

I. INTRODUCTION

Demand forecasting is essential to control the increasing
variety and complexity of planning various operations man-
agement. Being an active research area, the selection of a
forecasting model is the focus of many researchers over the last
few decades. Numerous statistical and computational model
are utilized for forecasting demands. In general, the family of
Autoregressive moving average (ARMA) have been in practice
for forecasting using statistical methods. Their linear structure
provides the most effective linear modeling; however, is in-
adequate in real world problem which are mostly non-linear.
In order to overcome this limitation, advanced sophisticated
models have been proposed as an alternative for forecasting.
Among them artificial neural networks (ANN) has gained a lot
of attention in the field of forecasting [1].

TABLE I
MEANING OF SOME OF THE abbreviations USED IN PAPER.

abbreviation Meaning
AMAPE Average Mean Absolute Percentage Error
ANN Artificial Neural Networks
ARMA Autoregressive Moving Average
BMA Bayesian Model Averaging
DBN Deep Belief Networks
DNN Deep Neural Network
MLP Multilayer Perceptron
RBM Restricted Boltzmann Machine
RMSE Root Mean Square Error
SA Simple Averaging
SMAPE Symmetric Mean Absolute Percentage Error

Utilization of ANN can be seen extensively in literature

for a wide range of application areas. With an ever increasing
number of complex issues, the shallow network structure of
ANN is deficient for their effective solution. Their popularity
starts to decline with the advent of powerful Kernel based
approaches like support vector machines. Interest in the use
of ANN was revived by substantially better performance of
deep neural network that progressively reveal low dimensional
nonlinear structure [2]. Since then DNNs have completely
revolutionized some fields including demand forecasting [3],
[4]. Another approach that improves the forecasting accuracy
is the ensemble modeling. Ensemble modeling consists of
constructing multiple member models and then combining
their output using various aggregation algorithms for better
predictive performance. In statistics, forecast combination was
pioneered by Bates and Granger [5]. Due to the remarkable
performance of this approach, it was adopted by machine
learning communities. Ensemble of Neural network was origi-
nated [6] to illustrate that the generalization ability of a single
NN can be significantly improved through an ensemble of a
number of NNs. It has been investigated that a good ensemble
Model can make different errors with same dataset [7]. Various
application of NN ensemble can be seen in literature [8],
[9]. Characteristics of DNN offers potential opportunities to
overcome traditional NN ensembles. Ensemble modeling of
DNN has also been reported in recent years. An ensemble
of DBN was initially proposed for regression and time series
forecasting [10]. Another ensemble of DNN based of recon-
struction error was presented in [11].

The design of member networks in an ensemble modeling
can be broadly categorized into two different approaches. In
the first approach, the diverse members can be obtained by
varying the architecture of the network models. This can be
achieved by selecting different weight functions, network type,
number of hidden neurons, learning algorithm and epoch [9],
[12]. In the second approach, diverse members of networks
are obtained by training them on different training set, such as
bagging [13], Boosting [14], cross validation [15]. Apart from
these two approaches, member models for an ensemble can
be selected from a large number of network models. A highly
diverse set of member networks were selected through genetic
algorithm [16], Pruning algorithm is utilized to eliminate
redundant networks [17]. Best network models are selected
based on their best forecasting measure [9]. Extreme forecasts
are discarded and the rest of the models are kept for ensemble
by trimming the tails symmetrically [9].
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As for as output combination is concerned, Bates and
Granger [5] in 1969 presented the idea that the performance
of combined forecast is better than the single model. This
idea has been supported by many researchers [9], [18]. From
classical statistical methods to sophisticated machine learning
algorithm, various methods have been proposed for combining
forecasts. Simple mean and weighted average are the mostly
used methods for combining the forecasts. Recently, a DNN
model is used to ensemble multi models for cancer prediction
[19]. [10] utilized a support vector machine to an ensemble of
DBN.

The objective of this paper is to propose a Bayesian adaptive
ensembling of DBN for regression. Many components of DBN
are generated and a Bayesian model averaging (BMA) is
utilized to ensemble them. Specifically the BMA combines the
forecasts output of many DBN. Several benchmark datasets are
used to demonstrate the performance of the proposed ensemble
model.

Rest of the paper is structured as follows. Section II presents
the methodology used in this research for forecasting. Section
III provides the empirical results and Section IV concludes
with some remarks and recommendations.

II. PROPOSED METHODOLOGY OF THE DEEP BELIEF
NETWORK ENSEMBLE MODEL

An ensemble of multiple DBNs proposed in this research
work can be seen in Fig. 1.

A. Data Preprocessing and Splitting

The available data preprocessed and is divided into training
and testing datasets. Training dataset is used to train the

Fig. 2. Schematic Diagram of a RBM.

ensemble members. Trained ensemble members are then used
to forecast with the testing dataset.

B. Ensemble construction and training of the Deep Belief
Network

DBNs are composed of Restricted Boltzmann Machines
(RBMS). RBM is a two layer connected ANN that can
learn the probability distribution over the given set of inputs.
Structure of an RBM with a visible layer vi, hidden layer
hj and weights connection matrix Wj×i can be seen in Fig
2. Where ai and bj are the bias weights for the visible and
hidden units respectively. Stacking RBM on top of each other
such that the output of the lowest RBM is used as input to the
subsequent RBM, a DBN is formed [2] Fig 3. Each RBM
is trained in unsupervised manner. For the proposed work
ensemble members of the DBN are constructed in this way.
For better generalization ability, the ensemble members are
diversified by varying the number of epochs of each DBN. The
DBNs are trained with training dataset. Each DBN is evaluated
with the testing dataset and forecasts ŷDT

are obtained.

C. Ensembling using Bayesian Model Averaging

The forecasts obtained from DBNs are ensembled using
Bayesian setting. Bayesian model averaging (BMA) is a
Bayesian approach of combining forecasts. It can be thought of
a weighted average model, where the weights of the forecasts
are computed based on posterior probabilities of the models.
Higher weights are assigned to the member model that fit to
the data well. In order to compute the weights of the forecasts
for ensembling, the approach used in [20] is followed. They
have compared the performance of various model averaging
techniques with an application to the growth empirics.

Reference [20] introduced two types of variables: explana-
tory variables (“focus regressors”) and additional variables
(“auxiliary regressors”) which are of less certain. The research
of this paper ignores the additional explanatory variables and
uses the focus regressors only. Similar to Bayesian approach,
this method combines prior beliefs on the unknown parameters



Fig. 3. Deep Belief Network.

of the model with some extra information coming from the
data. Some of the key elements of this method are the simple
likelihood function, the prior distributions on the regression
parameters of ensemble members EMn and the prior distribu-
tions on the model space.

Referring to [20], k1 and k2 represent the number of focus
and auxiliary regressors respectively. Suppose nDBN = k1
are ensemble members of DBN and B is the weights calcu-
lated through BMA. As no auxiliary variables are considered
here therefore k2 = 0 Let EMn = {EM1, . . . , EMnDBN

}
indicates the model space of nDBN ensemble members for
forecasting y with training dataset DT and fn is the forecasts
from nth DBN. In the case y is to be forecast on the basis of
DT then according to the law of total probability the predictive
probability density can be given as [21], [22],

p(y | DT ) =

ntotal∑
n=1

wnp(y | EMn, DT ) (1)

Where p(y | EMn, DT ) represents the posterior distribu-
tions given by single DBN EMn and wn = p(EMn | DT )
is the posterior probabilities. The posterior mean of the BMA
forecast can be calculated as:

E [y | DT ]

=

nDBN∑
n=1

p(EMn | DT ).E [y | EMn, DT ]

=

nDBN∑
n=1

wnfn (2)

Following the assumption made by Magnus [20] and proposed
by Zellner and Fernandez [23] and [24] the prior variance Vn
excluding auxiliary variable can be given as:

V −1
n = giEM1 (3)

where g = 1/max(L, k22) is a constant scalar for each
ensemble member EMn. Since it is assumed that k2 =
0, then no model selection takes place [20] and M1 =
X1(X1TX1)−1X1T where X1 is L×k1 and L is the length
of testing data outputs. A vector of calculated weights (B) and
standard errors associated with these weights is generated from
these calculations. The forecasts ŷDT

obtained in section II-B
are combined with these weights to get the BMA combined
forecast as:

ŷBMA = ŷDT
×B (4)

D. Forecast Evaluation

Four evaluation indexes are chosen to evaluate the fore-
casting performance of the proposed model. These indexes
are AMAPE, RMSE, SMAPE and a normalized cost function
of error called J . The equations describing these evaluation
indexes are as follows.

AMAPE(%) =
1

n

n∑
t=1

∣∣∣∣ At − Ft
1
n

∑n
t=1At

∣∣∣∣× 100 (5)

SMAPE =
1

n

n∑
t=1

|At − Ft|
(|Ft|+ |At|)/2

(6)

RMSE =

√√√√ 1

n

n∑
t=1

(At − Ft)2 (7)

J =

√∑n
t=1(At − Ft)2∑n

t=1(At −mean(At))2
(8)

where At and Ft are the real and forecasted value at time t
and n is the total number of test samples.

III. RESULTS AND COMPARISONS

A. Data and Experimental Setup

Forecasting accuracy of the proposed structure is analyzed
and tested against prediction of Mackey Glass chaotic system
[25] and Friedman Artificial Domain [26]. A number of
comparisons are done to illustrate improvement obtained using
the proposed architecture.

The Mackey-Glass models the blood cell regulation and
because of its chaotic dynamic equations, it is widely investi-
gated in papers concerning prediction and identification. The
dynamic equation describing this system is as follows.

dx

dt
= β

x(t− τ)
1 + x10(t− τ)

− αx(t), α, β, τ > 0 (9)

The number of samples generated for this dataset is equal
to 9000 from which 75% is taken for training and 25% is used
for test data.

Friedman Artificial Domain is the second dataset used in
experiences. This dataset was generated in [26] for the first
time and later described in [13], [27].

For chaotic Mackey-Glass data set the input values are
selected as

(
x(t − 18), x(t − 12), x(t − 6), x(t)

)
that is

used to predict the single output as x(t + 6). On the other
hand, Friedman Artificial Domain is a static dataset that has



(
x1, x2, ..., x10

)
as input data and y as a single output. Train

and test data in both cases are normalized to the interval of
[0, 1] as follows.

xn =
x− xmin

xmax − xmin
(10)

where xn represents the normalized dataset.

B. Results and Discussions

In order to predict the Mackey-Glass time series, 2 hidden
layers for the DBN are selected. The number of nodes for the
input layer is equal to 4 nodes and 4 nodes are selected for
each of hidden layers. 30 DBNs are trained and their results
are combined using BMA. The number of epochs considered
for DBNs varies from 440 to 1600 with increments equal to
40. In order to illustrate the efficacy of adding BMA algorithm,
the results obtained are compared with that of the case when
simple averaging method is used (DBN-SA) and the best
results obtained from the single DBN used.

Table II reported that the proposed method (DBN-BMA)
outperforms other methods in all performance indexes. Fur-
thermore, as can be seen from Figs 4 and 5 in their zoomed
figures although all 30 individual DBNs are far from the real
data, by adding BMA the predictions made become very close
to real data.
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Fig. 4. Prediction performance for Mackey-Glass time series train data.

Figure 6 illustrates RMSE obtained from DBN-BMA,
DBN-SA and from all individual DBNs. It can be seen that
the best result is obtained with the proposed approach. The
minimum RMSE obtained with the single DBN is 0.0161 and
that with the DBN-BMA is 0.0091. DBN-SA gave RMSE of
0.0442%. That means that the individual DBN produces better
forecasting result than the DBN-SA.

Similar to Mackey-Glass case, in order to estimate Friedman
Artificial Domain dataset 2 hidden layers for the DBN are
selected. A total of 10 nodes for the input layer is taken and
10 nodes are selected for each of hidden layers. The number
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Fig. 5. Prediction performance for Mackey-Glass time series test data.

Fig. 6. RMSE obtained from models.

of individual DBN as well as the combination method and
the ranges of epochs are considered to be exactly the same as
Mackey-Glass case.

It can also be observed from Table III that better forecasting
results obtained belong to the proposed method namely DBN-
BMA. The zoomed figure in Fig. 7 further illustrates the
performance. The addition of BMA makes it possible to obtain
the closest results to the real data. The ”Best DBN” results
reported in these tables are the minimum forecasts obtained
among the individual 30 DBNs.

IV. CONCLUSIONS

An ensemble deep learning structure is proposed in this
paper. The proposed structure benefits from multiple DBNs
with different number of epochs. BMA is used to combine
the results obtained from 30 different DBNs. It is shown
that the addition of BMA highly improves the results. The
results obtained are compared with that of DBN-SA and the
best results obtained from individual DBN. The benchmark
functions used are Mackey-Glass chaotic time series and
Friedman Artificial Domain dataset. The comparisons are made
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Fig. 7. Prediction performance for Friedman Artificial Domain dataset test
data

TABLE II
TEST AND TRAIN RESULTS OBTAINED FOR MACKEY-GLASS CHAOTIC

TIME SERIES

DBN-BMA DBN-SA Best DBN
AMAPE test 1.28% 7.1714% 2.3932%
RMSE test 0.0091 0.0442 0.0161
SMAPE test 0.0316 0.1319 0.0529
J of test 0.0353 0.1715 0.063
AMAPE train 1.2734% 7.2218% 2.3813%
RMSE train 0.0091 0.0443 0.016
SMAPE train 0.0324 0.1327 0.0539
J of train 0.0351 0.1719 0.062

in terms of AMAPE, SMAPE, RMSE and a normalized cost
function of error. It is shown that addition of BMA improves
the results considerably. It is further shown that BMA works
better than finding the simple average of all DBNs.

One of the most challenging parts in the training of DBN is
finding appropriate value for its epoch number. The proposed
method is a solution to such challenge as the information
obtained during training using different number of epochs is
not lost and they are all used to predict the real output.

TABLE III
TEST AND TRAIN RESULTS OBTAINED FOR FREEDMAN ARTIFICIAL

DOMAIN

DBN-BMA DBN-SA Best DBN
AMAPE test 5.1789% 8.9061% 5.8379%
RMSE test 0.0319 0.0552 0.0362
SMAPE test 0.0599 0.1040 0.0677
J of test 0.2 0.3458 0.2269
AMAPE train 5.22% 8.7943% 5.8623%
RMSE train 0.0323 0.0547 0.0363
SMAPE train 0.0590 0.1002 0.0662
J of train 0.2076 0.3514 0.2334
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