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a b s t r a c t 

Laser speckle contrast imaging (LSCI) can be applied to non-invasive blood perfusion measurement with high 

resolution and fast speed. However, it is lack of measurement accuracy. The aim of this study is to enable quanti- 

tative measurement of LSCI by using Artificial Intelligence (AI), and this is achieved by using a set of experimental 

data obtained from a rotating diffuser (a tissue phantom mimicking blood flow under skins) within simulated 

flow velocity of 0.08–10.74 mm/s. These data were used to train a three-dimensional convolutional neural net- 

work (3D-CNN) to establish a LSCI velocities prediction model (CNN-LSCI) with behavioral feature learning. 

The trained model has 0.33 MSE (mean squared error) and 0.34 MAPE (mean absolute percentage error) and 

is verified by ten phantom velocities (0.2-4 mm/s, step is 0.445 mm/s) covering the typical blood flow velocity 

range of human body (0-2 mm/s) with the correlation of 0.98. The better performance of the proposed model 

is demonstrated by the results compared to traditional LSCI and multi-exposure laser speckle contrast imaging 

(MELSCI). This study shows the potential of LSCI to achieve quantitative blood perfusion measurement using 

machine learning. 
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. Introduction 

Blood perfusion of microcirculation on body surface is a significant

ndicator. It is widely used in various fields such as the microcircula-

ory imaging during surgery [1 , 2] , the functional imaging of human

etina [3 , 4] , the prevention of diabetic foot ulcer [5 , 6] , the assessment

f wound healing [7 , 8] , the animal model evaluation [9 , 10] and the

iological experiment [11] etc . Laser speckle contrast blood flow imag-

ng (LSCI) featured by noninvasive measurement, fast imaging speed

nd system simplicity is well developed and prevalently used to detect

he flow perfusion in both clinic and research. It is based on the dy-

amic light scattering principle to setup different approximate models

nder certain assumptions, calculating the autocorrelation function of

cattered light which is related to the blood flow velocity. However, be-

ause of the existence of static scatterers, mismatched speckle size, nar-

ow range of exposure times LSCI is lack of quantitative measurement,

estricting its clinical application. Consequently, it is of great interests

n making it be capable to measure blood flow quantitatively. 

Over the last few decades, improvements have mainly been achieved

y either developing more robust LSCI calculation models [12–17] or

pplying multiple exposure times [18–20] . The improved LSCI models

ake account the effects of static scattering [12 , 13] , mismatched speckle
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ize [14 , 15] , noise caused by non-ergodic light [16 , 17] . However, mea-

urement accuracy is still affected by the uncertainties introduced by the

ssumptions when setting up the speckle model, nonpredictable com-

lex light transmission path and imaging system noise. The multiple-

xposure laser speckle contrast imaging (MELSCI) alternatively obtains

he blood perfusion by fitting a series of contrast at different exposure

imes. As a result, linearity has been enhanced by eliminating the depen-

ence of exposure time. While the process of fitting calculation requires

onger time [18] , resulting in lower temporal resolution. In addition,

ELSCI is hard to perform real-time blood flow imaging because the fit-

ing process is typically operated offline. Consequently, the mainstream

ommercial LSCI instruments are still developed based on the single ex-

osure model. 

In recent years, Artificial Intelligence (AI) has been introduced to im-

rove LSCI measurement. K-means clustering [21] , as a typical machine

earning method, is applied to the calculation of LSCI contrast for deter-

ining the localization of blood vessels. It helps with locating blood ves-

els, but it is only applicable when the blood vessels and tissue regions

re well separated from each other. Cheng et al. applied a feed-forward

enoising convolutional neural network (DnCNN) to LSCI [22] . In op-

ration, the training was carried out in the log-transformed domain. As

 result, the inhomogeneous noise distribution is effectively removed.
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Fig. 1. Schematic diagram of rotating scattering plate phantom [26] . 

Fig. 2. Experiment setup of rotating scattering plate phantom [26] . 
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he superior performance of using DnCNN has been demonstrated by

.13 dB improvement of the peak signal-to-noise ratio (PSNR). Stebakov

t al. trained a feed-forward ANN to predict the flow rate in glass capil-

aries (0-2 mm/s) by classification recognition [23] . Although improve-

ent of prediction accuracy has been demonstrated, the classification

nly covered a few discrete flow rates. Kornaeva et al. combined LSCI

ith deep learning to propose a method for measuring viscosity of non-

ewtonian fluids [24] . A Resnet18 network model was trained using

SCI images of inertial flow in a torus-shaped capillary. This model could

redict the shear rate on the inner surface of the capillary and the flow

ate from speckle images of experimental fluids. A modified mathemat-

cal model was used to calculate the viscosity of non-Newtonian fluids.

his work demonstrated the outstanding performance of applying deep

earning to LSCI as the relative error is less than 2% for the tested non-

ewtonian fluid and less than 0.5% for the tested Newtonian fluid. This

akes it possible to use the viscometer as a testing device in medicine

uid, especially the rheology of blood. Fredrekson et al . demonstrated

hat multi-exposure LSCI can perform LDI-like measurement by utilizing

achine learning [25] . In that study, an ANN model was trained with

onte Carlo simulated data. The results showed high accuracy with cor-

elation coefficient R = 1.000 for noise-free data and R = 0.993 for noisy

ata. This ANN model was also evaluated in post congestion experiment

ith high accuracy of R = 0.995. This study demonstrates the feasibility

f using ANN to calibrate LSCI to LDI and illustrates the great flexibility

f machine learning applied to LSCI. However, as the LDI data is system

ependent, the accuracy of the ANN model will vary with the front-

nd bandwidth, system noise and optical settings. The above researches

emonstrate the high potential of utilizing machine learning in LSCI.

his is because the ‘black box’ eliminates the influence of uncertain fac-

ors in comparison to the traditional speckle-based methodologies. 

In this paper, a velocity prediction model is established by using

achine learning. A state-of-art deep learning architecture, 3D-CNN

Three-Dimensional Convolutional Neural Network), is adopted to set

p the model mapping LSCI speckle images to flow velocity distribu-

ions. To achieve quantitative measurement, a set of well-controlled ex-

erimental data was generated by mimicking RBCs (Red Blood Cells)

owing under superficial tissues with known velocity distributions. This

ethod is evaluated by comparing with traditional LSCI and MELSCI

ith same data. 

This paper is organized as below. Following the introduction in

ection 1 , the used experimental data and the basic theory of spatio-

emporal speckle is elaborated in Section 2 . Section 3 details the setup

f the 3D-CNN model in terms of structures, training process and eval-

ations. In Section 4 , the results are displayed and compared to both

raditional LSCI and MELSCI. This paper is ended with the conclusion

nd discussion presented in Section 5 . 

. Material and methods 

.1. The database 

In this paper, the model is constructed by using the experimental

ata of rotating scattering plate (the phantom). The schematic diagram

f the rotating scattering plate is shown in Fig. 1 , which is composed of

 servo motor, a uniform diffuse reflection plate and a frosted glass re-

ector. During the experiment, the motor drives the animation reflector

o rotate behind the ground glass at a certain angular speed, simulating

he flow of red blood cells in human tissue under the epidermis. 

The experimental setup is shown in Fig. 2 . A green laser beam

OXXIUS S.A. 532 S-50-COL-PP, 532 nm, 50 mW) is expanded to a di-

meter of 18 mm by a diffuser (BE20, Thorlabs) and reflected onto the

tatic diffuser with a diameter of 20 mm. The white cardboard disc (di-

meter 30 nm) rotates at a controlled velocity. The lens (Sechneider,

 = 12 mm) is placed 72 mm away from the diffuser and forms an image

n the CMOS sensor with a magnification of 0.2. In addition, the f num-
2 
er of the lens’ aperture is adjusted to 13 to set the speckle diameter

wice the pixel width [26] . 

The LSCI system used in this experiment consists of imaging unit,

emory unit and processing unit. The imaging unit uses a megapixel

MOS image sensor (MT9M413) with controllable region of interest

ROI). It contains 1280 × 1024 integrating pixels, 1280 column-parallel

0-bit ADCs and ten 10-bit-wide digital output ports that provide fast

ata transmission. The memory unit uses DDR3 SDRAM (double data

ate type three synchronous dynamic random-access memory) featured

y high bandwidth and huge capacity. Depending on the clock rate, it

an transfer data at a rate of 800–2133 MT/s (megatransfers per sec-

nd), which can satisfy the large-memory required for high-resolution

mages and the bandwidth required for high frame rate. A FPGA plat-

orm (Virtex 6 XC6VLXC240T) is adopted to interface to the FPGA. The

aw data was transformed and pre-processed in this FPGA platform. 

In experiment, the imaging system is operated at fixed exposure time

f 10.4 ms. The motor controls diffuser rotating from 0.047 rad/s up to

.952 rad/s with a fixed incremental step of 0.106 rad/s, as shown in

able 1 . 1024 frames were captured around every 10 s at each measure-

ent, equivalenting to ∼100 FPS (frame per second). At each angular

elocity, 32 × 320 is intercepted as the size of each data, as shown in

ig. 3 (a). So, the size of the speckle dynamic map measured each time is

2 × 320 × 1024 (the image resolution is 32 × 320, with 1024 frames).

The advantage of using this experimental data is that it enables quan-

itative evaluations as all velocities are known and under control dur-

ng experiment. Besides, the speckle data obtained in the experiment

ontains the instrument noise and optical noise which are crucial for

raining the 3D-CNN model. 
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Table 1 

angular velocity. 

Number 1 2 3 4 5 6 7 8 9 10 

Angular speed (rad/s) 0.047 0.105 0.210 0.317 0.424 0.530 0.636 0.741 0.848 0.952 

Fig. 3. Speckle data and process. LSCI dynamic map of phantom of rotating scattering plate is shown in (a), the selection of a fixed pixel for feature analysis is shown 

in (b), radius selection method is shown in (c), the selection of test data is shown in (d). 

Fig. 4. Pixel value changes of two velocities at (16,100) point with 500 frames. 
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Fig. 5. pixel position distribution of speckle single frame image. 
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.2. Analysis of spatio-temporal features 

In the speckle dynamic map of LSCI, the pixel values of a single frame

peckle image contain rich spatial information, and the changing rule

f the pixel value at a fixed position with time is closely related to the

elocity. This means velocity prediction from speckle dynamic maps is

ot only related to the spatial pixel value of a single frame, but also

elated to the change of the pixel value at the fixed position between

rames. The larger the change of pixel value, the faster velocity, as show

n Fig. 4 , the higher velocity has greater amplitude and frequency. 

In the above data set, dynamic maps with speed of 0.18 mm/s and

.63 mm/s, a random pixel (such as the pixel at 16 columns and 100
3 
ows) is selected as fixed point, as shown in Fig. 3 (b). The waveform of

he pixel value at this point changing with the frame (1–500 frames) is

hown in Fig. 4 . 

Fig. 5 is a single frame speckle image with m rows and n columns.

he pixel position is represented by two-dimensional coordinates ( 𝑖, 𝑗) ,
here 𝑖 and 𝑗 represent the row number and column number of the pixel

osition. 

In time domain, for a fixed position pixel, the pixel value is a typical

ne-dimensional sequence in the time series; In spatial domain, for any

umber of frames 𝑓 , the pixel value at ( 𝑖, 𝑗) position is 𝑝 ( 𝑖, 𝑗) 𝑓 , and the

ixel data of the whole pixel matrix can be described as matrix 𝑉 of
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Fig. 6. spatio-temporal pixel distribution of speckle image ( f = 1,2,3…). 
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⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

𝑝 (1 , 1) 𝑓 𝑝 (1 , 2) 𝑓 ... 𝑝 (1 , 𝑛 ) 𝑓 
𝑝 (2 . 1) 𝑓 𝑝 (2 , 2) 𝑓 ... 𝑝 (2 , 𝑛 ) 𝑓 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

𝑝 ( 𝑚, 1) 𝑓 𝑝 ( 𝑚, 2) 𝑓 ... 𝑝 ( 𝑚, 𝑛 ) 𝑓 

⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 
( 𝑓 = 1 , 2 , 3 ... ) 

The elements of this speckle 3D pixel value matrix contain rich

patio-temporal feature information at a certain velocity 𝑣 . The whole

patio-temporal sequence can be regarded as multiple frame movement,

s shown in Fig. 6 . Therefore, a spatio-temporal sequence consisting of

peckle dynamic map pixel values representing different velocities can

escribe the velocity through the variation characteristics of array pixel

alues. The sequence of pixel values composed of 𝑛 velocity speckle dy-

amic maps is {V1 , V2 , ..., Vn} . 
The pixel value matrix of each speckle dynamic map is a com-

lete three-dimensional matrix. Therefore, in order to mine the spatio-

emporal feature of the above matrix sequence on the premise of en-

uring the integrity of spatio-temporal information, 3D-CNN is used as

 prediction method in this paper to extract the overall features and

rganically complete the prediction. 

. The 3D-CNN model 

Based on the above analysis, to ensure the integrity of speckle pixel

nformation, this paper uses the speckle 3D pixel value matrix as the

odel input. At the same time, 3D-CNN is, for the first time, intro-

uced to flow velocity prediction for improving LSCI imaging accuracy.

n comparison to 2D-CNN, 3D-CNN adds time dimension information

27] , enabling to extract and identify features and correlation informa-

ion between consecutive frames. Therefore, the 3D convolution kernel

f the model can directly study the global features of the speckle pixel

alue matrix. 

The blood flow velocity prediction model based on this experimental

ata is mainly composed of the following parts, as shown in the upper

art of Fig. 7 . The prediction idea is divided into three parts: First, ac-

ording to the pixel values of the speckle dynamic maps which have

patial characteristics of a single frame and the temporal characteristics

etween multiple frames, the three-dimensional matrix of the speckle

ixel values is used as the input data; Second, the gradient images are ex-

racted and dimensionally changed through the 3D-CNN network com-

osed of convolution, pooling and full connection, and the predicted
4 
lood flow velocity represented by each speckle dynamic map is ob-

ained respectively; Finally, the predicted blood flow velocities of the

peckle dynamic maps is output. 

Since the speckle 3D pixel value matrixes are spatio-temporal-

imultaneous, in order to better mine the relationship between the char-

cteristics of these pixel values and the velocity, this paper extracted the

rimary and secondary gradients of the speckle 3D pixel value matrix,

btained the gradient image, then analyzed and processes it through

he 3D-CNN network. The gradient direction is the fastest changing di-

ection of the function, and it is easier to find the maximum value of

he function along the gradient vector direction; On the contrary, along

he opposite direction of the gradient vector, the gradient decreases the

astest, and it is easier to find the minimum value of the function, which

orresponds to finding the minimum value of the loss function in the

D-CNN model to make the prediction result as close to the real result

s possible. Taking the x direction as an example, the gradient extraction

rocess is as follows: 

 

′( 𝑥 ) = lim 

ℎ →0 
𝑓 ( 𝑥 + ℎ ) − 𝑓 ( 𝑥 − ℎ ) ∕ 2 ℎ (1)

Speckle 3D pixel value matrix is a three-dimensional image com-

osed of numerous discrete pixel values, that is, it needs to be discrete

ccording to pixels. Therefore, the minimum ℎ in the central difference

unction of Eq. (1) is 1 pixel. 

The first and second derivatives of the image in the 𝑥 direction are

hown in Eqs. (2) and (3) : 

𝑓 ∕ 𝜕𝑥 = 𝑓 ( 𝑥 + 1) − 𝑓 ( 𝑥 ) (2)

 

2 𝑓 ∕ 𝜕 𝑥 2 = 𝑓 ( 𝑥 + 1 , 𝑦 ) + 𝑓 ( 𝑥 − 1 , 𝑦 ) − 2 𝑓 ( 𝑥, 𝑦 ) (3)

In gradient extraction, the first-order and second-order derivatives

f a point in a certain direction are subtracted from the original image

o obtain the gradient image in the corresponding direction. 

In CNN, the area covered by the convolution kernel named the recep-

ive field, which is also the size of the area mapped on the input picture

y the pixels on the feature map output from each layer of the net-

ork. Therefore, there is a strong spatio-temporal correlation between

he pixel values located in the same receptive field. Starting from the

nput layer, 3D-CNN uses 3D convolution kernel to extract the spatio-

emporal information in the pixel matrix, after summarizing the fea-

ures, it forms a new feature map and transmits it to the next layer for

urther processing. 

As shown in the lower left part of Fig. 7 , assuming that the size of the

nput speckle image is 10 × 10 × 10 (the length and width of each speckle

mage are 10, which means 100 pixels included; the time dimension is
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Fig. 7. LSCI blood flow velocity prediction model. 
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0, means 10 frames), the convolution layer of 3D-CNN has 10 convo-

ution kernels, and the size of each convolution kernel is 5 × 5 × 5, then

he convolution will generate a feature map with the size of 6 × 6 × 6

10–5 + 1), and the number is 10. In such a decreasing way, 3D-CNN

ses convolution kernel to obtain spatio-temporal feature information in

peckle pixel values. The convolution process is shown in Eq. (4) [28] . 

 

𝑥𝑦𝑧 

𝑖𝑗 
= 𝑓 

( 

𝑏 𝑖𝑗 + 

∑ 𝑃 𝑖 −1 ∑
𝑝 =0 

𝑄 𝑖 −1 ∑
𝑞=0 

𝑅 𝑖 −1 ∑
𝑟 =0 

𝑊 

𝑝𝑞𝑟 

𝑖𝑗𝑘 
𝑈 

( 𝑥 + 𝑝 )( 𝑦 + 𝑞)( 𝑧 + 𝑟 ) 
( 𝑖 −1) 𝑘 

) 

(4)

Where the left side of the equal sign represents the output value of

he 𝑖 𝑡ℎ characteristic sequence of points ( 𝑥, 𝑦, 𝑧 ) of the 𝑖 𝑡ℎ layer; 𝑓 is the

ctivation function; 𝑏 𝑖𝑗 is the additional deviation; 𝑘 is the number of

haracteristic maps of layer ( 𝑖 − 1) ; 𝑃 , 𝑄 and 𝑅 respectively represent

he spatial digits of the three-dimensional convolution kernel; 𝑊 

p 𝑞𝑟 
𝑖𝑗𝑘 

is

he convolution kernel weight of the 𝑘 𝑡ℎ feature map of the previous

ayer. 

The middle part of Fig. 7 shows the process of 3D-CNN using 3D

onvolution kernel to extract spatio-temporal features related to flow

elocity from speckle pixel matrix, that is, each network layer continues

o extract features based on the feature map output from the previous

ayer, continuously capture feature information, and finally match the

orresponding flow velocity label after dimensionality reduction in the

ull connection layer to complete velocity prediction. 

.1. CNN-LSCI setup 

From the perspective of time series, the speckle dynamic map is

ulti-frame motion, that is, the intensity changes of a single pixel

trongly depend on the velocity of the dynamic map. From the perspec-

ive of spatial sequence, each speckle image contains a lot of speckle

ixel value information. Therefore, the accuracy of speed prediction de-

ends on obtaining abundant time-series information. At the same time,

t is also necessary to make full use of the pixel value information of a

ingle frame and combine the two kinds of information for velocity pre-

iction. The procedures of setting up the 3D-CNN model are divided into

wo steps: 

Step 1: Preprocess the experimental data of the rotating scattering

plate used to simulate blood flow. Intercept the appropriate im-
5 
age size and frame number, pack them as the input data, and use

the corresponding speed as the label, that is, the training target. 

Step 2: A 3D-CNN model was trained by using the experimental data

of the rotating scattering plate phantom. The model was applied

to predict the corresponding velocities of the speckle dynamic

maps of 10 rotating scattering plates speckle images, and com-

pared with the results of the single exposure LSCI and MELSIC to

verify the accuracy of CNN-LSCI model. 

.2. Data preprocessing 

In the training process, two factors need to be weighed when deter-

ining the input time series f, that is, the difficulty of model training

nd the integrity of prediction information. Too small f will lead to in-

ufficient information contained in the time series to support the model

raining. On the contrary, too large f will increase the difficulty of model

raining and affect the model convergence and parameter optimization.

herefore, this paper sets the time series with a length of 15 frames as

he most appropriate, and the square space size of 32 × 32 is more suit-

ble for feature extraction of convolution kernel, that is, the rectangular

arallelepiped speckle image with a size of 32 × 32 × 15 is used as the

odel input. 

In order to obtain the appropriate data volume, the radius is selected

y sliding window to enhance the data. A 32 × 32 square sliding win-

ow is used to slide from the 32nd pixel to the 320th pixel from top

o bottom to change the radius size in 32 steps, as show in Fig. 3 (c).

his method can obtain 9 radii, 1024 frames of data are collected for

ach radius, and 10 angular velocities are set in total. Therefore, 92,160

9 × 1024 × 10) data can be obtained for training. The radius length

epresented by each pixel is 0.037 mm, and the number of pixels cor-

esponding to the radius varies from 48 to 304. Therefore, the radius is

pproximately from 2 mm to 12 mm, corresponding to the angular ve-

ocity distribution from 0.05 rad/s to 1 rad/s. So that, the corresponding

elocity range is approximately 0.1 mm/s to 12 mm/s, which has a wide

ange and continuity, and is of significant for model training. 

The above 92,160 experimental data of the rotating scattering plate

s, then, divided as a data set. The division ratio of Training Set vs Ver-

fication Set vs Test Set is 7:1:2. 
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Table 2 

3D-CNN Parameter configuration. 

Layer Type Configuration 

— Input Size:32 × 32 × 15 

1 C1 Kernel size:3 × 3 × 5;Activation function:Relu;Output dimensions:32 

2 P2 Pooling size:2 × 2 × 2 

3 C3 Kernel size:3 × 3 × 5;Activation function:ReLU;Output dimensions:64 

4 P4 Pooling size:2 × 2 × 2 

5 C5 Kernel size:3 × 3 × 3;Activation function:ReLU;Output dimensions:128 

6 F6 Input dimensions:128;Output dimensions:1 

Table 3 

Parameters of 3D-CNN prediction process. 

Layer Input C1 P2 C3 P4 C5 F6 

Kernel size(F) — 3 × 3 × 5 2 × 2 × 2 3 × 3 × 5 2 × 2 × 2 3 × 3 × 3 —

Padding(P) — 1 × 1 × 1 1 × 1 × 1 1 × 1 × 1 1 × 1 × 1 1 × 1 × 1 —

Stride(S) — 1 2 1 2 1 —

Feature map size 32 ×32 ×15 32 ×32 ×13 17 ×17 ×7 17 ×17 ×5 9 × 9 × 3 9 × 9 × 3 1 

Fig. 8. 3D-CNN prediction process. 
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.3. CNN-LSCI model 

The 3D-CNN network based on Pytorch proposed in this paper has six

ayers, the first layer is convolution layer C1, which directly accepts the

nput speckle data and uses a convolution kernel of 3 × 3 × 5; The second

ayer is the maximum pool layer P2, and the pool core is 2 × 2 × 2; The

hird layer is the convolution layer C3, using a convolution kernel of

 × 3 × 5; The fourth layer is the maximum pooling layer P4, the pooling

ore is 2 × 2 × 2, and the fifth layer is the convolution layer C5, using a

onvolution core of 3 × 3 × 3; The sixth layer is the fully connected layer

6, which reconstructs the 3D characteristic map output from C5 into

 single velocity data, with an input dimension of 128 and an output

imension of 1. The convolution layer activation function of this model

s Relu function. The optimizer uses Adam to accelerate the convergence

peed. The batch size is 32, the initial learning rate is 0.001, and the

oss function is MSE function. It is used for model training and testing

f 1000 iterations. The parameter configuration of 3D-CNN is show in

able 2 and the lower right part of Fig. 7 . MSE and MAPE are used as

valuation indicators, and the formula is as follows: 

SE = 

𝑚 ∑
𝑖 =1 

(
𝑦 𝑖 − 𝑦 𝑖 

)2 ∕ 𝑚 (5) 
6 
APE = 100% ×
𝑛 ∑
𝑖 =1 

|||(𝑦 𝑖 − 𝑦 𝑖 
)
∕ 𝑦 𝑖 

|||∕ 𝑛 (6) 

.4. Model evaluation 

In order to test the prediction performance of this 3D-CNN model,

e used the speckle image when the sliding window moved to the posi-

ion 97–128 as the prediction data, as shown in Fig. 3 (d). This position

s basically in the middle of the whole speckle, and the corresponding

adius is about (97 + 16) × 0.037 = 4.2 mm. The linear velocity under

his radius varies moderately with the angular velocity and the overall

overage is wide, which is 4.2 × 0.047 ∼ 4.2 × 0.952 = 0.2 mm/s ∼
.0 mm/s, a total of 10 velocities, as shown in Table 4 . It covers the

ypical range of human blood flow velocity [29] . 

The prediction process of 3D-CNN model for each dynamic map is

hown in Fig. 8 . The size of each feature map can be obtained from

q. (7) , and the parameters are shown in Table 3 . 

 = ( 𝑊 − 𝐹 + 2 𝑃 )∕ 𝑆 + 1 (7)

Where N is the output size, W is the input size, F is the convolution

ernel size, P is the padding size, and S is the stride. 
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Fig. 9. 3D-CNN training monitoring curve, the enlarged window shows the convergence results of 3D-CNN after early stopping. 

Table 4 

Actual velocities and CNN prediction velocities of LSCI image. 

Num 1 2 3 4 5 6 7 8 9 10 

Actual velocity (mm/s) 0.20 0.44 0.88 1.33 1.78 2.22 2.67 3.11 3.56 4.00 

Predicted velocity (mm/s) 0.25 0.54 0.96 1.41 1.76 2.17 2.56 2.91 3.45 3.85 
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Fig. 10. Comparison curve between 3D-CNN predicted velocity and actual ve- 

locity. 
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2  
First, the speckle 3D pixel value matrix with a size of 32 × 32 × 15

re input into the 3D-CNN model and gradient extraction is performed;

econd, the convolution kernel of 3 × 3 × 5 is used for feature extraction,

nd the filling is set to 1 and the step size is set to 1 to obtain a feature

mage of 32 × 32 × 13; Third, the maximum value pooling is performed.

he pooled kernel size is 2 × 2 × 2, the step size is 2, and the filling is set

o 1 to obtain a characteristic image of 17 × 17 × 7; Forth, performing

he same convolution and pooling again; Fifth, the convolution kernel

f 3 × 3 × 3 is used for feature extraction, and the filling is set to 1 along

ith the step size 1 to obtain a feature image of 9 × 9 × 3. 

Finally, a one-dimensional data is obtained by reducing the dimen-

ion of the feature image through the full connection layer, that is, the

redicted value of the velocity. 

. Results 

The result of 3D-CNN trained with experimental data of rotating

cattering plate is: MSE = 0.33, MAPE = 0.34. The monitoring curve

f loss during training is shown in Fig. 9 . It can be seen that the model

as converged within 50 epochs. Therefore, the enlarged window in

ig. 9 shows the result after adding the early stop algorithm due to fast

onvergence, the epoch stays at 26, Loss still converges to 0.33. Each test

ata is a 15-frame speckle image with a fixed exposure time of 10.4 ms.

The prediction results of the 3D-CNN model for the ten velocities

0.2–4 mm/s, step is 0.445 mm/s) covering the typical blood flow ve-

ocity range of human body (0-2 mm/s) are shown in Table 4 . The com-

arison curve between the predicted velocities and the actual velocities

re shown in Fig. 10 . 

The correlation coefficient is used for evaluation, and the result is

 = 0.98, which is highly correlated. The formula is as follows: 

𝑋 𝑌 = 𝐶𝑜𝑣 ( 𝑋 , 𝑌 ) ∕ 
√
[ 𝐷( 𝑋 )][ 𝐷( 𝑌 )] (8)

It can be seen from Fig. 10 that there is a small error between the pre-

icted velocity and the actual velocity. The smallest error is presented
7 
hen the velocity is 1.78 mm/s and 2.22 mm/s. The correlation with

he actual speed reaches 0.98. 

In order to further measure the prediction performance of 3D-CNN,

e used the traditional single exposure LSCI and the MELSCI to calcu-

ate the velocities of the above 10 speckle dynamic maps and compared

ith the prediction results of CNN-LSCI. LSCI obtained the velocity by

alculating the contrast of a single frame image. MELSCI used the orig-

nal speckle image of 1024 frames to obtain the contrast of multiple

xposure times (0.064 ms, 0.128 ms, 0.256 ms, 0.512 ms, 1.024 ms,

.048 ms, 4.096 ms, 8.192 ms, 16.384 ms, 32.768 ms, 65.536 ms), and
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Fig. 11. Ten velocities of LSCI, MELSCI and CNN-LSCI. 
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hen fitted the velocities by the trust-region-reactive algorithm. It can

e seen that the results of traditional LSCI are greatly underestimated

nd seriously deviate from the actual velocity (as shown in Fig. 11 ).

ELSCI shows high measurement accuracy, and it is almost linear with

he actual velocity. However, the fitting process was performed offline.

NN-LSCI realizes a linear measurement within less time consumption

n comparison to MELSCI. 

. Conclusion and discussion 

This paper proposes a laser speckle-based velocity prediction method

sing machine learning. Three-dimensional convolutional neural net-

ork (3D-CNN) is, for the first time to our knowledge, applied to LSCI

or velocity prediction. The spatio-temporal features of 15-frame speckle

mages are extracted by 3D convolution kernel to setup the CNN-LSCI

odel. This model is trained and evaluated by using experimental data

f rotating diffuser. The accuracy of the CNN-LSCI is demonstrated at

en phantom velocities (0.2-4 mm/s) covering the typical blood flow

elocity range. 

This study compared the performance among CNN-LSCI, traditional

ingle exposure LSCI and MELSCI. The results show that CNN-LSCI

an predict phantom velocities in high accuracy that is comparable to

ELSCI. Nevertheless, fixed exposure time and less used frames make

t implemented easier as single exposure LSCI. 

In terms of data set, there is also a scheme to use Monte Carlo sim-

lation data for AI modelling. However, the simulation data rarely take

ccount the noise introduced by optics and imaging system. The data

sed in this study is captured by the target system in practice. There-

ore, both instrument noise and optical noise introduced during imaging

an be eliminated by the “black box ”. As a result, the model is more ro-

ust and accurate. 

In this study, 15 frames are selected as the best frame number for

eeding the model. This number is AI structure dependent and verifies

ith the configuration parameters, such as convolution kernel size, con-

olution layers, etc. In the rotating diffuser experiment, 1024 continues

rames at each spinning speed were captured. This forms a relatively

uge dataset (more than 10 million data), providing flexibility of ex-

loring different AI structures or configurations. 

Other models such as RNN (Recurrent Neural Network) and ANN

Artificial Neural Network) have demonstrated great advantages in ex-

racting features from time series [30 , 31] . However, these methods

an only extract the time features represented by a single pixel be-

ween speckle motion picture frames. In fact, the data bundle based
8 
n 15 frames contains both temporally interreacted pixels and spa-

ially interreacted pixels. In light of the 3D convolution, the 3D-CNN

mployed in this paper can extract both of the spatial and tempo-

al features of the input speckle dynamic map, making full use of

he pixel information. Consequently, more comprehensive relations be-

ween the speckle image and the corresponding velocities have been

ined. 

It can be seen from Fig. 10 , overestimations happened at low speed.

owever, the velocity is slightly underestimated when the speed is high.

his means the CNN-LSCI model is relatively less sensitive to small ve-

ocity and high velocity. To overcome this, the model can be trained

n wider velocity range and operated at narrower range. The sensitivity

ould also be increased by using the data with multiple exposure times

hich covers larger detectable velocities. Different configurations and

ther AI models are also worth to explore further to make any improve-

ents. 

It is worth noting that the CNN-LSCI model is only verified with

hantom data. A few steps are demanded to make it applicable to blood

ow imaging. 

1) Reconstructing the CNN-LSCI model with suitable laser source.

In this study, the wavelength of the laser is 532 nm which is not

suitable for blood flow measurement. Replacement of a red or

near infrared laser source (650 nm ∼ 850 nm) will be taken in

the future. 

2) Utilization of cross polarizers. For the rotating diffuser used in

this study, a large percentage of light that collected by the sys-

tem is scattered from the static diffuser. As a result, the spatial

variances include both dynamic scattering and the light scattered

from the stationary surface, resulting large bias (variations) when

constructing the CNN-LSCI model. For the human tissue where

smaller percentage of static scattering present, a cross polarizer

could be applied to reduce the surface reflections (light scattered

from static scattering). This could further improve the CNN-LSCI

model in terms of immunity to surface reflections (optical noise).

3) Performing transfer learning to finalize the CNN-LSCI model for

in vivo measurement. In consideration of the differences between

the phantom and human tissues in terms of optical paths and

light transfer properties, the performance of the CNN-LSCI model

may verify when applied to measure blood flow. This could be

eliminated by performing transfer training with golden standard

reference (e.g. laser Doppler blood flowmetry). 

Details will be presented in our future works and publications. 

uthor statement 

Xiaoqi Hao: Software, Data curation, Formal analysis, Visualization,

riting – Original Draft, Writing – Review & Editing 

Shuicai Wu: Supervision, Resources 

Lan Lin: Data analysis, Resources 

Yixiong Chen: Data analysis, Resources, Conceptualization, Method-

logy 

Stephen P. Morgan: Conceptualization, Methodology, Writing – Re-

iew & Editing 

Shen Sun: Conceptualization, Methodology, Resources, Writing – Re-

iew & Editing, Supervision, Project administration, Funding acquisition

ompliance with ethical standards 

All authors certify that they have no affiliations with or involvement

n any organization or entity with any financial interest or non-financial

nterest in the subject matter or materials discussed in this manuscript. 

eclaration of Competing Interest 

The authors declare that they have no conflict of interest. 



X. Hao, S. Wu, L. Lin et al. Optics and Lasers in Engineering 166 (2023) 107587 

D

A

 

C

R

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

[  

 

[  

 

[  

 

[  

[  

 

 

[  

 

[  

 

 

[  

 

[  

 

[  

 

[  

 

 

[  

 

[  

 

 

[  

 

[  

 

 

[  

 

[  

 

[  

 

[  

 

[  

 

[  

[  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ata availability 

Data will be made available on request. 

cknowledgments 

The authors acknowledge the the program of China Scholarship

ouncil ( CXXM20210004 ). 

eferences 

[1] Potapova EV, Seryogina ES, Dremin VV, Stavtsev DD, Kozlov IO, Zherebtsov EA,

Mamoshin AV, Ivanov YuV, Dunaev AV. Laser speckle contrast imaging of blood mi-

crocirculation in pancreatic tissues during laparoscopic interventions. Quant Electr

2020;50(1):33–40. doi: 10.1070/QEL17207 . 

[2] Sia W, Lee C, Wang T, Chen W, Chang F, Tsai M. Investigation of laser-indued ther-

mal effect with laser speckle contrast imaging. In: Proc. SPIE. 119251 M; 2021 . 

[3] Feng X, Yu Y, Zou D, Jin Z, Zhou C, Liu G, Fujimoto JG, Li C, Lu Y, Ren Q. Functional

imaging of human retina using integrated multispectral and laser speckle contrast

imaging. J Biophotonics 2021;15(2):e202100285. doi: 10.1002/jbio.202100285 . 

[4] Lu Y, Zhou H, Zhou X, Chen Y, Wang R. Correlation between laser speckle flowgra-

phy and oct-derived retinal and choroidal metrics in healthy human eye. Transl Vis

Sci Technol 2022;11(6):15. doi: 10.1167/tvst.11.6.15 . 

[5] Mennes OA, Netten JJ, Baal JG, Steenbergen W. Assessment of microcircula-

tion in the diabetic foot with laser speckle contrast imaging. Physiol Meas

2019;40(1):065002. doi: 10.1088/1361-6579/ab2058 . 

[6] Mennes OA, Netten JJ, Baal JG, Slart RHJA, Steenbergen W. The associa-

tion between foot and ulcer microcirculation measured with laser speckle con-

trast imaging and healing of diabetic foot ulcers. J Clin Med 2021;10(17):3844.

doi: 10.3390/jcm10173844 . 

[7] Couturier A, Bouvet R, Cracowski J, Roustit M. Reproducibility of high-resolution

laser speckle contrast imaging approaches to assess cutaneous microcircula-

tion for wound healing monitoring in mice. Microvasc Res 2022;141:104319.

doi: 10.1016/j.mvr.2022.104319 . 

[8] Philimon SP, Huong AKC. Laser speckle Integrated Multispectral Imaging System

for In-Vivo assessment of diabetic foot ucler healing: a clinical study. IEEE Access

2021;9:23726–36. doi: 10.1109/ACCESS.2021.3055221 . 

[9] Dyachenkotimoshina PA, Bashkatov AN, Alexandrov DA, Kochubey VI,

Tuchin VV. Laser speckle contrast imaging for monitoring of acute pancreati-

tis at ischemia-reperfusion injury of thepancreas in rats. J Innov Optical Health Sci

2022;15:2242002. doi: 10.1142/S1793545822420020 . 

10] Im J, Kong TH, Choi JS, Seo YJ, Choi EC, Jung B, Kim J. Non-invasive postoperative

monitoring of pedicled rat skin flap using laser speckle contrast imaging. Microvasc

Res 2020;132:10405. doi: 10.1016/j.mvr.2020.104050 . 

11] Tamoiunas M, Vaitkien S, Miktait N, Galalyt D, Daugelaviius R. Assessment of Can-

dida albicans biofilm growth by laser speckle contrast imaging. Third International

Conference Biophotonics. 11585, 1158509; 2020. doi: 101117/122582216 . 

12] Liu C, Kilic K, Erdenerr SE, Boas DA, Postnov DD. Choosing a model for

laser speckle contrast imaging. Biomedical Optics Express 2021;12(6):3571–83.

doi: 10.1364/BOE.426521 . 

13] Kondász B, Hopp B, Smausz T. Mixed scattering as a problem in laser speckle contrast

analysis. Appl Opt 2021;60(22):6593–9. doi: 10.1364/AO.428785 . 

14] Sang X, Li D, Chen B. A new simulation method for laser speckle imag-

ing to investigate hemodynamics. In: 12th International Conference on

Computational Heat, Mass and Momentum Transfer, 128; 2019. p. 02001.

doi: 10.1051/e3sconf/201912802001 . 

15] Hu XB, Dong MX, Zhu ZH, Gao W, Rosales-Guzman C. Does the structure of light

influence the speckle size? Sci Rep 2019;10:199. doi: 10.1038/s41598-019-56964-0 .

16] Perez-Corona CE, Peregrina-Barreto H, Ramirez-San-Juan J. Space-directional

approach to improve blood vessel visualization and temporal resolu-

tion in laser speckle contrast imaging. J Biomed Opt 2019;25(3):032009.

doi: 10.1117/1.JBO.25.3.032009 . 

17] Guilbert J, Desjardins M. Movement correction method for laser speckle contrast

imaging of cerebral blood flow in cranial windows in rodents. J Biophotonics

2022;15(1):e202100218. doi: 10.1002/jbio.202100218 . 

18] Parthasarathy AB, Tom WJ, Gopal A, Zhang X, Dunn AK. Robust flow mea-

surement with multi-exposure speckle imaging. Opt Express 2008;16(3):1975–89.

doi: 10.1364/oe.16.001975 . 

19] Hultman M, Fredriksson I, Larsson M, Alvandpour A, Stromberg T. A 15.6 frames

per second 1-megapixel multiple exposure laser speckle contrast imaging setup. J

Biophotonics 2018;11(2):e201700069. doi: 10.1002/jbio.201700069 . 

20] Y. Shimada, K. Takada, H.S. Nam, K. Miyazaki, K. Yasutomi, S. Kawahito, C. Crouzet,

B. Choi, G.T. Kennedy, A.J. Durkin, K. Kagawa, 2022. A 2x2-aperture 4-tap multi-

modal tissue imager for multi-band SFDI and MELSCI. SPIE BiOS. 11951, 1195107.

doi: 10.1117/12.2608397 . 

21] F. Lopez-Tiro, H. Peregrina-Barreto, J. Rangle-Magdaleno, J.C. Ramirez-San-Juan,

2021. Localization of blood vessels in in-vitro LSCI images with K-means. I2MTC.

20780194. doi: 10.13140/RG.2.2.10286.02881/1 . 

22] Cheng W, Lu J, Zhu X, Hong J, Liu X, Li M, Li P. Dilated residual learning

with skip connections for real-time denoising of laser speckle imaging of blood

flow in a log-transformed domain. IEEE Trans Med Imaging 2020;39(5):1582–93.

doi: 10.1109/TMI.2019.2953626 . 
9 
23] I. Stebakov, E. Kornaeve, D. Stavtsev, E. Potapova, V. Dremin, Laser speckle contrast

imaging and machine learning in application to physiological fluids flow rate recog-

nition. Vibroengnieering Procedia. 38(2021)50–55. doi: 10.21595/vp.2021.22013 . 

24] Kornaeva EP, Stebakov IN, Kornaev AV, Dremin VV, Popov SG, Vinokurov AY.

A method to measure non-Newtonian fluids viscosity using inertial viscome-

ter with a computer vision system. Int J Mech Sci 2022;242(15):107967.

doi: 10.1016/j.ijmecsci.2022.107967 . 

25] Fredriksson I, Hultman M, Strmberg T, Larsson M. Machine learning in multiexpo-

sure laser speckle contrast imaging can replace conventional lasre Doppler flowme-

try. J Biomed Opt 2019;24(1):016001. doi: 10.1117/1.JBO.24.1.016001 . 

26] Sun S. Laser doppler imaging and laser speckle contrast imaging for blood

flow measurement. University of Nottingham; 2013 https://ethos.bl.uk/

OrderDetails.do?uin = uk.bl.ethos.604304 . 

27] Zhao X, Wei H, Wei H, Wang H, Zhu T, Zhang K. 3D-CNN-based feature extrac-

tion of ground-based cloud images for direct normal irradiance prediction. Sol Ergy

2019;181:510–18. doi: 10.1016/j.solener.2019.01.096 . 

28] Ji S, Xu W, Yang M, Yu K. 3D Convolutional Neural Networks for human

action recognition. IEEE Trans Pattern Anal Mach Intell 2013;35(1):221–31.

doi: 10.1109/TPAMI.2012.59 . 

29] Sun S, Hayes-Gill BR, He D, Zhu Y, Huynh NT, Morgan SP. Comparision of laser

Doppler and laser speckle contrast imaging using a concurrent processing system.

Opt Laser Eng 2016;83:1–9. doi: 10.1016/j.optlaseng.2016.02.021 . 

30] Hochreiter S, Schmidhuber J. Long short-term memory. Neural Comput

1997;9(8):1735–80. doi: 10.1162/neco.1997.9.8.1735 . 

31] Zhang Y, Pan G, Chen B, Han J. Short-term wind speed predic-tion model

based on GA-ANN improved by VMD. Renew Energy 2020;156:1373e88.

doi: 10.1016/j.renene.2019.12.047 . 

Xiaoqi Hao was born in Datong, Shanxi, China, in 1998. She

received the B.S. degree in biomedical engineering from North

University of China. She is now pursuing a master’s degree

in biomedical engineering from Biomedical Electronic Lab-

oratory, Faculty of Environment and Life Science of Beijing

University of Technology. Her research interests are in laser

speckle contrast blood flow imaging. 

Shuicai Wu is duty professor of biomedical engineering at

Beijing University of Technology. He received PhD from

Huazhong University of Science and Technology in 2000. He

visited University of Warwick and University of Pittsburgh as

academic visitor in 2008 and 2010 respectively. His-research

interest is in biomedical electronics, biomedical signal pro-

cessing and biomedical imaging processing. 

Lan Lin was born in Wuhan, Hubei, China, in 1974. He

received the B.S. degree in computer science from Wuhan

University, the M.S. degree in biomedical engineering from

Huazhong University of Science and Technology, and the

Ph.D. degree in bioengineering from Arizona State University,

USA, in 1996, 1999, and 2006, respectively. From 2006–2011,

he visited the Department of Psychology in University of Ari-

zona (USA) as a Postdoctoral Research Fellow. Since 2012, he

works as an Associate Professor at Beijing University of Tech-

nology, China. His-professional research interest is in biomed-

ical imaging. 

Yixiong Chen is a project manager in Beijing Science and

Technology Project Manager Management Corporation Ltd.

Prior to that, He was a senior data scientist in IBM CIC China.

He obtained his PhD in Applied Mathematics from King’s

College London in 2015. His-research interests include deep

learning and quantum computing. 

https://doi.org/10.1070/QEL17207
https://doi.org/10.1002/jbio.202100285
https://doi.org/10.1167/tvst.11.6.15
https://doi.org/10.1088/1361-6579/ab2058
https://doi.org/10.3390/jcm10173844
https://doi.org/10.1016/j.mvr.2022.104319
https://doi.org/10.1109/ACCESS.2021.3055221
https://doi.org/10.1142/S1793545822420020
https://doi.org/10.1016/j.mvr.2020.104050
https://doi.org/101117/122582216
https://doi.org/10.1364/BOE.426521
https://doi.org/10.1364/AO.428785
https://doi.org/10.1051/e3sconf/201912802001
https://doi.org/10.1038/s41598-019-56964-0
https://doi.org/10.1117/1.JBO.25.3.032009
https://doi.org/10.1002/jbio.202100218
https://doi.org/10.1364/oe.16.001975
https://doi.org/10.1002/jbio.201700069
https://doi.org/10.1117/12.2608397
https://doi.org/10.13140/RG.2.2.10286.02881/1
https://doi.org/10.1109/TMI.2019.2953626
https://doi.org/10.21595/vp.2021.22013
https://doi.org/10.1016/j.ijmecsci.2022.107967
https://doi.org/10.1117/1.JBO.24.1.016001
https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.604304
https://doi.org/10.1016/j.solener.2019.01.096
https://doi.org/10.1109/TPAMI.2012.59
https://doi.org/10.1016/j.optlaseng.2016.02.021
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1016/j.renene.2019.12.047


X. Hao, S. Wu, L. Lin et al. Optics and Lasers in Engineering 166 (2023) 107587 

 

 

 

 

 

 

 

 

 

 

 

Stephen P. Morgan is Professor of Biomedical Engineering.

Since 1992 he has investigated novel optical techniques for

imaging and spectroscopy of tissue including laser Doppler

blood flowmetry and ultrasound modulated optical tomogra-

phy. Recently he has been developing novel medical devices

based on optical fibre sensors. 
10 
Shen Sun is an assistant professor of Biomedical Engineer-

ing at Beijing University of Technology. He received his MSc

and PhD degrees in Electronic Engineering from the University

of Nottingham in 2009 and 2013 respectively. His-research

focuses on full-field laser Doppler and laser speckle contrast

blood flow imaging systems and development of medical de-

vices and healthcare instruments. 


	A quantitative laser speckle-based velocity prediction approach using machine learning
	1 Introduction
	2 Material and methods
	2.1 The database
	2.2 Analysis of spatio-temporal features

	3 The 3D-CNN model
	3.1 CNN-LSCI setup
	3.2 Data preprocessing
	3.3 CNN-LSCI model
	3.4 Model evaluation

	4 Results
	5 Conclusion and discussion
	Author statement
	Compliance with ethical standards
	Declaration of Competing Interest
	Acknowledgments
	References


