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Abstract— Industrial robots contribute to a considerable
amount of energy consumption in manufacturing. However,
modeling the energy consumption of industrial robots is a
complex problem as it requires considering components
such as the robot controller, fans for cooling, the motor,
the friction of the joints, and confidential parameters, and it
is difficult to consider them all in modeling. Many authors
investigated the effect of operating parameters on the en-
ergy consumption of industrial robots. However, there is
no prescriptive methodology to determine those parame-
ter values because of the challenges in the modeling of
industrial robots. This work investigates an industrial robot
and the manufacturing process together and proposes a
black-box model-based energy consumption optimization
approach. Our contribution to the research is the new
online and data-efficient methodology, prescriptive algo-
rithm, and the analysis of operating parameters’ effects
on industrial robots’ energy consumption. The proposed
methodology was tested using two real FANUC industrial
robots in three industrial settings.

Index Terms— robotic manufacturing, energy consump-
tion optimization, industrial robots, machine learning, man-
ufacturing, optimization

I. INTRODUCTION

Industrial robots (IR) consume a considerable amount of
energy in the manufacturing industry. They account for 8%
of the total energy consumption in production processes [1],
and the energy consumption of IRs contributes 60% of the
total follow-up costs after acquisition [2]. Sustainable man-
ufacturing is one of the key directions of manufacturing,
and the energy efficiency of IRs should be considered to
achieve this. Reducing the energy consumption of IRs will
automatically reduce operating costs and CO2 emissions. The
wide and increasing adoption of IRs makes it critical to
optimize their energy consumption to ensure environmentally
friendly characteristics [3].

In this work, we analyze the effect of operating parameters
such as velocity, acceleration, spindle speed, and feed rate
on the energy consumption of IRs and develop a prescriptive
methodology for finding better parameters. By prescriptive
methodology, we mean a methodology that suggests operating
parameters to minimize energy consumption.

All authors are affiliated with Institute for Advanced Manufacturing,
University of Nottingham, Nottingham, UK.
Agajan Torayev, agajan.torayev@nottingham.ac.uk;
Giovanna Martı́nez-Arellano,
giovanna.martinezarellano@nottingham.ac.uk;
Jack C Chaplin, jack.chaplin@nottingham.ac.uk;
David Sanderson, david.sanderson@nottingham.ac.uk;
Sevtan Ratchev, svetan.ratchev@nottingham.ac.uk

II. RELATED WORK

The energy consumption optimization (ECO) of IRs can
be divided into two approaches: hardware-based optimization
methods and software-based optimization methods [4].

The hardware-based approaches are mainly concerned with
the energy-efficient design of IRs, like using lightweight de-
sign [5], [6], adding energy recovery units [7], [8], or selecting
energy-efficient robots for a given task [9], [10].

The software-based ECO methods of IRs are concerned with
reducing the energy consumption without making hardware
modifications, generally involving parameter modification [2],
trajectory optimization [11], and operation scheduling [12].
Compared with the hardware approach, the software approach
has the advantages of low cost and practical applicability [4].

In this work, we focus on software-based ECO of IRs and
specifically on optimizing the operating parameters of IRs to
reduce energy consumption during a manufacturing operation
and analyze recent works in this direction.

In [1], the authors developed a modular approach to mod-
elling of an IR to analyze the power consumption and its
dynamic behavior. The main conclusion is that the energy
consumption of an IR can be reduced by reducing the weight
of tooling systems, smoothing the motion, and finding optimal
speed, which should be not too fast and not too slow. The
proposed approach relies on a mathematical model, which may
limit its applicability to other types of robots.

In [13], the authors discuss the effect of inertial and friction
parameters on the energy consumption of an IR. The authors
analyzed the relation between the robot’s speed and energy
consumption and came to a similar conclusion as [1]. The
developed solution is robot specific and difficult to generalize
to other types of robots.

In [14], the authors proposed the ECO method using an
IR model and simulation software to show that adjusting
acceleration and velocity parameters can reduce up to 19.8% of
energy consumption. However, the proposed method is model-
based, assuming that an IR can be accurately modeled.

In [15], the authors use neural networks and genetic algo-
rithms for modeling and optimizing the energy consumption
of IRs. The dataset is very small: 729 samples (81x9), and it
is difficult for neural networks to generalize from such a small
dataset.

In [2], the authors investigated the effect of acceleration,
velocity, motion type, viscous friction, and delay time in
closing the IR’s mechanical brakes on the energy consumption
of IRs to show that it is possible to reduce energy consumption
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by 50% with appropriate parameters. Even though the authors
shared the methodology and the collected data, findings in this
research can not be generalized to other robots due to different
parameters and working conditions.

In [16], the authors proposed a transfer-learning method for
ECO of IRs. However, the authors noted the limitations of their
approach, such as the limited motion range for prediction and
the need for sufficient experiments to ensure the accuracy of
energy consumption.

In [17], the authors proposed a framework for industrial
robot energy and peak power optimization. The work has
investigated multi-robot scenarios, which is relevant in real
manufacturing scenario.

III. CHALLENGES AND CONTRIBUTIONS

The analyzed literature above clearly indicates that oper-
ating parameters such as acceleration, velocity, payload, and
motion type affect the energy consumption of an IR. The
majority of authors used simulation software tools to model
and predict the energy consumption of IRs. All authors agree
on the nonlinear relationship between the operating parameters
and energy consumption. However, finding the optimal oper-
ating parameters for energy consumption reduction is still a
difficult challenge that needs to be addressed. The challenges
of existing solutions are:

• Modeling of an IR. An accurate model of an IR is difficult
to achieve due to heterogeneous components contributing
to IR energy consumption and other parameters of IRs,
such as the trajectory formula, which is unknown and
often protected as a trade secret by the robot manufac-
turers. In general, modeling the energy consumption of
an IR is difficult, imprecise, and not generalizable to
other robots. Modeling and simulation-based approaches
usually address only a specific type of robot, and for
every different type of robot, a separate model should be
developed.

• Data efficiency. Data-driven methods solve the challenge
of explicit modeling, but they face data efficiency prob-
lems. Generally, data-driven approaches require a huge
amount of data to make reasonable predictions. Transfer
learning-based methods such as in [16] can be utilized
to overcome the data limitations, but as the authors of
the paper already mentioned, the prediction accuracy is
determined by the datasets gathered in experiments. A
new prediction task requires previous datasets to be repro-
cessed and new prediction models rebuilt from scratch.

Hence, this work has three main contributions:
1) A prescriptive methodology for modeling and optimiza-

tion of the energy consumption of industrial robots
2) An online and modular meta-algorithm for the energy

consumption optimization
3) Data analysis of the effect of operational parameters on

the energy consumption of industrial robots

IV. METHODOLOGY

Manufacturing requirements constantly change, and there is
a need to adapt quickly to new scenarios, making it flexible for

a wide range of manufacturing applications. Hence, the energy
consumption optimization methodology should be modular
and online to adapt to changing requirements.

The modularity of methodology is important to abstract the
complexities of the optimization algorithms. The abstraction
allows plugging application-specific optimization algorithms
in or out as appropriate. This way, whenever a better or more
suitable algorithm is developed, it can be directly plugged into
a meta-algorithm.

The ability to optimize process parameters online on a
real industrial robot without stopping production is required
because of business costs. This way, an operator has an option
to control adjusting process parameters at a certain percentage
of production cycles to avoid production disruptions.

In this section, considering the above requirements, we
present an online and modular methodology for optimizing
the energy consumption of IRs. The methodology consists of
three main steps, as shown in Fig. 1, and each step is discussed
in the following subsections.

Fig. 1: Online and modular optimization loop

A. Modeling
Instead of explicitly modeling an IR or using simulation-

based methods, we propose to use a black-box model. The
black-box model allows treating the whole system without
knowing its internal workings and gives flexibility to trans-
ferring it to different robots and manufacturing processes.
Consequently, we propose to model an IR and a manufacturing
process together using a black-box function, whose internal
workings are not known or hidden but returns different energy
consumption as output depending on input parameter values:

f : Rd → R (1)

The above black-box function f receives a d-dimensional
vector of parameter values x ∈ Rd. The input vector x
to the black-box function f is constrained using lower and
upper bound parameter values vectors l ∈ Rd, and u ∈ Rd

respectively. In a real robotic manufacturing scenario, x will
be the set of adjustable operating parameters such as velocity,
acceleration, and motion type. The lower and upper values,
l and u, will be minimum and maximum allowed parameter
values depending on the manufacturing process constraints.

Robotic manufacturing systems are complex, and different
factors can affect the energy consumption of an IR. Also, the
energy consumption measurements can be noisy depending
on the energy monitoring solutions. Thus, the developed
methodology should be robust to such noisy outputs. To deal
with the measurement noises directly inside the optimization
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loop, we extend the output of the black-box model with a
noise value, and the observed energy consumption of a black-
box model f(x) is measured as below:

E(x) = f(x) + ϵ (2)

where the noise parameter ϵ is normally distributed:

ϵ ∼ N (0, σ2) (3)

Considering the above model, the ECO of an IR performing
a manufacturing process is formulated as below:

min
x∈P

E(x) (4)

where
P = {x ∈ Rd | li ≤ xi ≤ ui ∀i = 1..d} (5)

is the feasible set of solutions.
Most real-world robot tasks require stops or a constant speed

at specific program points. The optimization problem can be
further broken down into smaller optimizations, which makes
the method scalable w.r.t. to the length of the robot program.

The black-box optimization reasoning can be applied to
multi-process robotic manufacturing by considering each pro-
cess separately and independently optimizing energy consump-
tion. The optimization problem becomes as below:

min
x1∈P1

E(x1) + . . .+ min
xN∈PN

E(xN ) (6)

where N is the number of separable and independent
processes.

B. Monitoring
The important step in ECO is monitoring the energy con-

sumption of an IR.
The different sources for monitoring are smart meters,

current and voltage clamps, or machine-integrated devices
that provide out-of-the-box instantaneous power consumption.
Some industrial robots can provide the power consumption for
each joint of the robot directly from a robot controller.

The sampling rate of energy data collection is important
and depends on the application. For example, analyzing the
motion profiles of IRs requires a relatively high sampling rate
of energy consumption. While a high sampling rate gives much
data that will be difficult to pre-process in real-time, a low
sampling rate might miss important information, such as the
start and end of the operation cycles. Therefore, a sampling
rate should be chosen carefully depending on the application
and computing power capabilities. Usually, a high acquisition
frequency is required to obtain good measurements, such as
in [2], [14]. However, the acquisition frequency is limited by
the monitoring hardware limitations.

Once the data is acquired, it needs to be resampled to
match timestamps and stored in local storage. The energy
data is usually recorded in regular timestamps, which results
in time-series data. There are special database solutions for
storing time-series data, such as InfluxDB. Also, relational
database methods are used in energy data for their reliability.
However, some monitoring solutions store the collected energy
in device memory using comma-separated values (CSV) files.

The choice of storage solutions greatly affects the application.
High-frequency big data files require special solutions such as
Hadoop and Spark that can deal with the high volume property
of Big Data [18].

C. Optimization

With the ECO problem mathematically formulated in sec-
tion IV-A, and with a monitoring approach detailed in section
IV-B, we can then apply the data to solve the problem using
suitable optimisation algorithms. However, the nature of the
black-box models prevents using first-order or second-order
methods such as gradient descent, Newton’s method, or quasi-
Newton methods. In such cases, derivative-free optimization
methods are commonly used. Many algorithms exist to solve
black-box optimization problems. Still, optimization of energy
consumption of robotic manufacturing systems should be data-
efficient because every experiment trial is time-consuming and
limits the amount of data that can be collected in a reasonable
time.

Another problem in optimization is “the no free lunch”
(NFL) theorem [19]. According to the NFL, “any two al-
gorithms are equivalent when their performance is averaged
across all possible problems,” i.e., there is no single best
algorithm that performs on all problems.

We propose a modular meta-algorithm that can accept suit-
able application-dependent optimization algorithms to address
the challenges above. This meta-algorithm is called the Online
and Modular Energy Consumption Optimization (OMECO)
meta-algorithm, shown in Algorithm 1.

The OMECO algorithm starts with an initial guess of
input parameters. The initial guess can be chosen randomly
or using the previously gathered knowledge. For example,
initial velocity and acceleration values can be started from
50% values or selected based on input parameters of similar
manufacturing processes.

The OMECO meta-algorithm is designed to be able to run
online without stopping production. This feature is achieved by
running the optimization loop in the background because some
algorithms take a long time to finish the optimization step.
Whenever the new suggested parameters become available,
they are changed in IR. If the new parameters yield less
energy consumption, they are kept; otherwise, the previous
best parameters are reverted.

Another feature of the OMECO is exploration-and-
exploitation which helps run the optimization only at some
production cycles. This feature of the algorithm is controlled
using the α parameter. Setting α = 1 always tries to find an
optimal solution, while setting α < 1 will run optimization
stochastically. For example, α = 0.1 will run an optimization
algorithm on average every 10th iteration.

OMECO wraps around other optimization algorithms, Φ,
so they can be plugged into the meta-algorithm whenever the
better choices become available.

The OMECO algorithm accepts the following input param-
eters:

• x0: an initial parameters guess either chosen randomly or
using the human operator’s knowledge;
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Algorithm 1 OMECO algorithm

Require: An initial guess x0, the lower bound l, the upper
bound u, the total number of iterations n, the exploration
parameter α, an optimization algorithm Φ, a data-structure
for storing dataset D

1: y0 ← E(x0) ▷ Measure energy consumption
2: ybest ← y0 ▷ Best energy consumption
3: xbest ← x0

4: D ← {(x0, y0)} ▷ Set the initial dataset
5: i← 1
6: while i < n do
7: Sample p from uniform distribution U(0, 1)
8: if p ≤ α then
9: i← i+ 1

10: xi ← Φ(i, l,u,D) ▷ Call the optimization step
11: yi ← E(xi)
12: D ← D ∪ {(xi, yi)} ▷ Extend the dataset
13: if yi < ybest then
14: xbest ← xi

15: ybest ← yi
16: end if
17: end if
18: end while
19: return xbest, ybest,D

• l: the lower bound of x0;
• u: the upper bound of x0;
• n: the total number of optimization steps;
• α: the exploration parameter. This parameter controls how

often the optimization should be performed.
• Φ: an application-dependant optimization algorithm.
The output of the OMECO algorithm is the parameters that

yield the least energy consumption and the collected data for
use with similar processes.

In the next section, we experimentally validate the proposed
modeling methodology and OMECO algorithm on a represen-
tative manufacturing processes using a real IR.

V. USE-CASE

This section consists of three experimental validations of
the proposed approach.

The first experiment analyzes the application of the pro-
posed methodology and algorithm on a real industrial robot
using a representative pick-and-place manufacturing process.
The objectives of the first experiment are to find the optimum
parameters and use them to gather insights into how different
motions might have different optimum parameters.

The second experiment involves a more complex industrial
bin-picking application where the movements are not pre-
programmed and require online task adaptation. The objective
of the second experiment is to provide an illustrative example
for wider application scenarios.

In the third aerospace manufacturing experiment, a robotic
drilling system was utilized to optimize energy consumption
while drilling holes in aluminum and acrylic materials. The
experiment aims to identify the ideal spindle speed and feed
rate parameters that reduce energy consumption.

Fig. 2: Experiment setup representing a common pick-and-
place operation in a robotic manufacturing.

A. Experiment 1: Pick and place operation
1) Experimental setup: The experimental setup for the first

experiment is shown in Fig. 2 and includes a FANUC ER-4iA
IR and a pick-and-place process. The FANUC robot controllers
allow access to the energy data directly out of the box. It is
possible to change the resolution of data collected directly
inside the controller. This approach might differ for different
types of robots, but the overall methodology will be the same.

A pick-and-place process is a very common process in
robotic manufacturing, and the whole process shown in Fig.
2 can be divided into the below operations:

• M1. Move to the “pick approach” pose.
• G1. Open the gripper.
• M2. Move to the “pick” pose.
• G3. Close the gripper.
• M3. Move to the “pick retract” pose.
• M4. Move to the “place approach” pose.
• M5. Move to the “place” pose.
• G3. Open the gripper.
• M6. Move to the “place retract” pose.
• M7. Move to the “home” pose.
The labels M and G refer to different types of actions, and

there are 7 motions labeled as M and 3 gripping actions labeled
as G. The parameters of the motions can be adjusted to affect
the energy consumption. In this experiment, the operating
parameters for each motion are velocity, acceleration, and
motion type. FANUC robot controllers allow setting only two
types of motions, J[Joint] and L[Linear]. Hence, we tune only
the velocity and acceleration values of 7 motions for the
minimum energy consumption objective.

While tuning the operating parameters of each motion,
careful attention should be given to holding constraints such
as maximum execution time and the safety of pick-and-place
operation. The maximum acceptable execution time usually
depends on the manufacturing operation requirements. In
this experiment, the maximum allowed execution time was
set to 20 seconds by a human operator for one pick and
place operation. In a real manufacturing scenario, there are
some challenging situations where the energy consumption
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is demanding, and the robot performing tasks requires a
given velocity and acceleration. Therefore, each parameter
was constrained separately besides a maximum execution time
constraint to meet such requirements.

For our experiment, the minimum and maximum values
were selected based on picking and placing relatively fragile
3D-printed parts. The human operator ensured the safe values
for velocity and acceleration, as shown in Table I. Table I also
shows the number of possible configurations for each motion
type. These values are fixed for this specific manufacturing
process, and the parameter values are displayed in percentages
of the robot’s maximum possible velocity and acceleration.

TABLE I: Minimum and maximum allowed velocity and
acceleration values for motions M1-M7.

Motion type Velocity range Acceleration range Configurations #

Motion 1 [50, 100] [50, 100] 50 ∗ 50 = 2500
Motion 2 [5, 40] [5, 40] 35 ∗ 35 = 1225
Motion 3 [5, 40] [5, 40] 35 ∗ 35 = 1225
Motion 4 [50, 100] [50, 100] 50 ∗ 50 = 2500
Motion 5 [5, 40] [5, 40] 35 ∗ 35 = 1225
Motion 6 [50, 100] [50, 100] 50 ∗ 50 = 2500
Motion 7 [50, 100] [50, 100] 50 ∗ 50 = 2500

To verify the modularity of the OMECO and its applicability
to an industrial setting, we experimented with three different
popular algorithms: Random Search (RS) [20], Generalized
Simulated Annealing (SA) [21], and Bayesian Optimization
(BO) [22]. The choice of the algorithms was task-dependent.
There are many different types of algorithms in the literature,
but not all of them are suitable for solving black-box opti-
mization problems. In this case, we do not have any deriva-
tive information, and the space of optimization algorithms is
limited only to derivative-free optimization algorithms.

We applied the proposed methodology and OMECO algo-
rithm to solve the above ECO problem as below:

1) In the first step, the energy data was obtained through a
FANUC robot controller. The instantaneous power data
was collected every 50 milliseconds because of the lim-
itations of the robot controller and network latency. The
energy data was resampled to match the timestamps and
make regular time intervals. It was stored in the SQLite
database for calculating the total power consumption,
which is then fed to the model.

2) In the second step, the optimization loop continuously
optimizes the parameters.

3) Finally, in the third step, new parameters are recom-
mended for the robot.

The whole optimization procedure continues until the ter-
mination criteria are met. Usually, the termination criterion
is when the cost function, i.e., energy consumption, stops
changing. However, for a fair comparison of the optimization
algorithms, the termination criterion, in this case, is the pre-
defined total number of iterations.

In the next sub-section, we present our experimental results
and analysis of algorithms and the effect of motion parameters
on the ECO of IRs.

B_min B_max RS SA BO
0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

kW
h

Algorithms comparison (100 iterations)

Fig. 3: Comparing algorithms.

2) Experiment results: To benchmark with the proposed
ECO methodology, as a baseline, we measured the energy con-
sumption of the robot with minimum and maximum allowed
parameters configuration for the above-described pick-and-
place process. For simplicity, we call the minimum allowed
parameters configuration Bmin and the maximum allowed
parameters configuration Bmax. Since the energy consumption
measurement is noisy, we performed the same pick-and-place
process 10 times for each configuration.

Random Search, Simulated Annealing, and Bayesian Op-
timization are non-deterministic algorithms, meaning their
output will differ in every run even with the same set of
input parameters. Therefore, each algorithm was run for 100
iterations 10 times for a fair comparison. The box plots and
corresponding statistics are shown in Fig. 3 and Table II,
respectively.

From Fig. 3, we can observe that the maximum allowed
parameters configuration yields less energy consumption than
the minimum allowed parameters configuration. However, in
general, the relationship is non-linear, and the maximum
allowed parameters configuration does not yield the optimal
energy consumption, as shown by many authors [2], [14]–[16],
and validated by our results below.

TABLE II: Experiment statistics. Values are in kWh.

Method Min. Max. Median Mean Std.

Bmin 0.736 0.754 0.741 0.743 0.006
Bmax 0.486 0.495 0.493 0.491 0.003

Simulated Annealing 0.507 0.606 0.575 0.559 0.033
Random Search 0.526 0.637 0.580 0.579 0.033

Bayesian Optimization 0.415 0.486 0.450 0.446 0.020

From Fig. 3 and Table II, we can see that all optimization
algorithms outperform the Bmin baseline. However, only the
Bayesian Optimization outperforms the Bmax. The Bayesian
Optimization outperforms Bmax on average by 9%, and the
worst case of Bayesian Optimization is similar to the best
case of Bmax, which proves that the fastest possible option is
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not the most energy optimal motion.
We ran the OMECO algorithm with three previously cho-

sen optimization algorithms starting from the same initial
parameters configuration for 200 iterations more to check
the possibility of further improvement. Fig. 4 shows energy
savings achieved by the optimization algorithms compared
with baseline results.

B_min B_max Random
Search

Simulated
Annealing

Bayesian
Optim.

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

kW
h

Algorithms comparison (200 iterations)

0.74 kWh
0.49 kWh
0.53 kWh
0.52 kWh
0.41 kWh

Fig. 4: The ECO results for pick-and-place process.

We can observe from Fig. 4 that Random Search, Simulated
Annealing, and Bayesian Optimization outperform the Bmin

by 28.38%, 29.73%, and 44.59%, respectively. However, Ran-
dom Search and Simulated Annealing methods do not outper-
form the Bmax because usually, Random Search and Simulated
Annealing methods require thousands of iterations to find the
optimal solution. The Bayesian Optimization outperforms the
Bmax by 16.32% in as few as 40 iterations.

The parameter values found by three optimization algo-
rithms are shown in Table III. As shown in Table III, the
discovered velocity and acceleration values are not the fastest
or slowest motion yielding values. These results are consistent
with the literature’s related work and show the non-linear
relationship between operating parameters and energy con-
sumption.

TABLE III: Optimized velocity and acceleration values. This
table shows velocity (v.) and acceleration (a.) values found
by three optimization algorithms: Random Search (RS), Sim-
ulated Annealing (SA), Bayesian Optimization (BO).

RS SA BO
Motion type v. a. v a. v. a.

Motion 1 100 52 96 50 98 64
Motion 2 13 30 19 31 19 40
Motion 3 6 32 29 30 19 39
Motion 4 46 68 88 92 50 100
Motion 5 26 34 13 31 12 40
Motion 6 57 91 96 88 75 85
Motion 7 95 63 66 63 71 72

25 50 75 100 125 150 175 200
Iteration
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0.60

0.65
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h

i=166
0.53 kWh

i=21
0.52 kWh

i=190
0.41 kWh

Cumulative minimums

Random
Search
Simulated
Annealing
Bayesian
Optimization

Fig. 5: The cumulative minimum values for three different
optimization results.

3) Data efficiency analysis: Here, we analyze the data effi-
ciency of the proposed approach.

Fig. 5 displays the cumulative minimum curves for each
optimization algorithm for 200 iterations. The cumulative
minimum curves are useful for visualizing the speed of finding
solutions. As shown in Fig. 5, the Simulated Annealing algo-
rithm finds its solution in 21 iterations. However, the algorithm
fails to improve at all after that. The Random Search algorithm
finds its best solution in 166 iterations. However, the found
solution is not better than the solution found by the Simulated
Annealing algorithm. The Bayesian Optimization finds its best
solution in 190 iterations. However, after 30 iterations, it
outperforms the Simulated Annealing algorithm, and after 40
iterations, it outperforms all the baselines. Consequently, it
can be concluded that Bayesian Optimization is a relatively
data-efficient algorithm.

The most efficient methods for energy consumption of
IRs in the literature are work by [15] which required 729
samples, and work by [16], which required 900 samples.
Our optimization methodology starts improving the energy
consumption after only 40 samples. The other strength of the
proposed methodology is that data can be added sequentially
without collecting in advance. Hence, this method can be used
in an already running production system that can dynamically
change operating parameters that affect energy consumption.

4) Analysis of motion parameters: Figure 6 shows the energy
consumption outcome as a function of velocity and accelera-
tion parameters. The left figure shows the energy consumption
when all parameters are fixed except the velocity parameter of
motion M7. One can observe that the relationship between ve-
locity and energy consumption is non-linear, i.e., the minimum
energy consumption is achieved when the velocity is around
70%. Similarly, the right sub-figure shows the energy con-
sumption as a function of the acceleration parameter of motion
M7. The non-linearity property also holds for this parameter.
Figure 7 shows the contour plot of energy consumption as a
function of velocity and acceleration parameters together. This
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Fig. 6: Slice plot for motion 7. (Left) Velocity varies, other
parameters are fixed. (Right) Acceleration varies, others are
fixed.

Fig. 7: Contour plot for motion M7 as a function of velocity
and acceleration. Other parameters are fixed.

plot also reveals how the Bayesian Optimization reaches the
optimal point. Initially, parameters are sampled from different
regions. However, as the optimization progresses, more and
more parameters are sampled in the neighbourhood of the
optimal parameters.

B. Experiment 2: Optimization of bin-picking

In this experiment, we optimized the bin-picking process,
which involves picking randomly positioned objects from a
bin containing three different parts (as shown in Figure 8).
The objective of the process is to pick the parts and place
them in their corresponding containers.

The picking of each object involves 7 different motions, but
the parameters for these motions differ for each object, with
different lower and upper bounds. Additionally, the robot must
stop and select the next object to pick after each pick-and-

Fig. 8: The bin consists of three different parts with variable
shapes and weights. The task is to sort the parts in their
respective containers.

place operation. This results in a total of 21 parameters to be
optimized.

However, as the number of parameters increases, the effi-
ciency of black-box optimization algorithms such as Bayesian
optimization decreases. To address this issue, we performed
two scenarios for optimizing energy consumption. In the first
scenario, we optimized all 21 parameters together. In the
second scenario, we measured and optimized the parameters
for each part separately while the bin-picking process was
running, allowing for more efficient optimization.

In the present experimental setup, the optimization for
each of the scenarios was run for a total of 200 iterations,
which is similar to the number of iterations used in previous
experiments. The results of each optimization scenario were
compared to Bmin and Bmax baselines, as shown in Figure 9.

In the bin-picking experiment, the learning curves presented
in Figure 9 reveal that the combined optimization approach did
not yield better results than the Bmax baseline. The increased
number of parameters, which totaled 21 in this scenario, likely
contributed to this outcome. With more dimensions, the search
space expands, requiring the optimization algorithm to perform
a larger number of search iterations before discovering optimal
values.

In contrast, the scenario where each part was optimized
individually resulted in better parameter values than those
achieved with the Bmax baseline. Once satisfactory motion
parameters are identified, the optimization process can be
halted, and the discovered parameter values can be applied
to subsequent iterations. In this particular experiment, the
individual optimization approach led to an average energy
savings of 25%.

Further emphasizing the effectiveness of the individual opti-
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Fig. 9: The plot shows the optimization results of bin-picking
for three different parts separately and the combined optimiza-
tion.

mization approach, Table IV presents a comparison of energy
savings for the individual scenario against the Bmin, Bmax,
and combined scenarios. With energy savings of 45.88%,
25%, and 27.37% respectively, these results demonstrate the
superior efficiency of optimizing the parameters for each part
individually in the bin-picking experiment.

C. Experiment 3: Optimization of drilling
In this aerospace manufacturing experiment, a FANUC

M800iA robot controller and a drilling end effector controlled
by a CNC machine were utilized to optimize the energy-

Comparison Energy Savings

Individual vs. Bmin 45.88%
Individual vs. Bmax 25.00%
Individual vs. Combined 26.20%

TABLE IV: Energy savings comparison for bin picking exper-
iment

Fig. 10: Optimization of drilling. The aim is to energy
efficiently drill holes through 6mm thick aluminium and 6mm
thick cast acrylic layers.

efficient drilling of holes through 6mm thick aluminium and
6mm thick cast acrylic layers. The experimental setup is
illustrated in Figure 10. The robotic arm’s approach and retract
positions were fixed, and the total drilling time was constrained
to be within 20 seconds. The maximum allowed spindle speed
was set to vary between 1500 and 2500 rpm, while the feed
rate ranged from 150 to 180 mm/min as shown in Table V.

Parameter Range

Spindle speed 1500 - 2500 rpm
Feed rate 150 - 180 mm/min

TABLE V: Parameter ranges for the drilling experiment

The primary objective of this experiment was to determine
the optimal spindle speed and feed rate parameters to minimize
energy consumption during the drilling process. Bayesian op-
timization was employed in real time on the actual equipment
to achieve this goal. The total energy consumption, which
encompassed the spindle and servo motors, was measured
and subsequently fed back into the OMECO algorithm. This
algorithm suggested new parameter values, and the optimiza-
tion loop continued until convergence was reached, which was
determined when no further improvements were made, and the
algorithm began suggesting the same parameters repeatedly.

After only 25 iterations of the optimization process, energy
consumption savings of 17.64% were achieved. The cumula-
tive minimum plot for the Bayesian optimization results is
displayed in Figure 11, while Figure 12 presents the slice
plots of energy consumption in relation to spindle speed and
feed rate parameters. These results are consistent with previous
experiments, demonstrating the nonlinear relationship between
process parameters and energy consumption and emphasizing
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the importance of optimization for energy-efficient manufac-
turing processes.
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Fig. 11: The cumulative minimum values for drilling opti-
mization results.
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Fig. 12: Slice plot for drilling. (Left) Spindle speed varies,
and the feed rate is fixed. (Right) The feed rate varies, spindle
speed is fixed.

The drilling experiment showcased the effectiveness of
Bayesian optimization in identifying optimal parameter values
for energy efficiency. As evidenced by Figure 11, substantial
energy savings were obtained, reinforcing the value of opti-
mization techniques in manufacturing processes.

VI. CONCLUSIONS

In this work, we examined software-based energy consump-
tion optimization for industrial robots and introduced a novel,
modular, and prescriptive optimization methodology. This
methodology treats the industrial robot and manufacturing
process as a black-box model and is resilient to measurement
noise. Our analysis corroborates the non-linear relationship
between energy consumption and industrial robot operation,
as previously demonstrated by other researchers. However, our
approach uniquely enables online optimization of operating
parameters without requiring extensive data.

Our experiments illustrate the applicability of this proposed
method for optimizing robotic manufacturing processes using
black-box optimization algorithms. Furthermore, the results
from the second scenario indicate that optimization can be
divided into sub-problems when feasible.

As energy consumption is a critical aspect of sustainable
manufacturing, exploring the application of this methodology
to other manufacturing equipment presents an intriguing re-
search opportunity. Future research directions include exam-
ining various black-box optimization algorithms, their limita-
tions, and their advantages across manufacturing equipment
and processes.
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