
Mechanical Systems and Signal Processing 193 (2023) 110241

Available online 4 March 2023
0888-3270/© 2023 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

Improving generalisation and accuracy of on-line milling chatter 
detection via a novel hybrid deep convolutional neural network 

Pengfei Zhang a,b, Dong Gao a, Dongbo Hong b, Yong Lu a,*, Qian Wu a, 
Shusong Zan b, Zhirong Liao b,* 

a School of Mechatronics Engineering, Harbin Institute of Technology, Harbin, China 
b Faculty of Engineering, University of Nottingham, Nottingham, United Kingdom   

A R T I C L E  I N F O   

Keywords: 
Chatter detection 
Deep learning 
Inception network 
ResNet 
Squeeze-and-excitation network 

A B S T R A C T   

Unstable chatter seriously reduces the quality of machined workpiece and machining efficiency. 
In order to improve productivity, on-line chatter detection has attracted much interest in the past 
decades. Nevertheless, traditional methods are inevitably flawed due to the manually extracted 
features. Deep learning methods possess outstanding feature learning and classification capabil
ities, but the generalisation and accuracy are severely affected by the labelling and training of 
data. To address this, this paper proposed a novel hybrid deep convolutional neural network 
method combining an Inception module and a Squeeze-and-Excitation ResNet block (SR-block), 
namely ISR-CNN. The Inception module can automatically extract multi-scale features of cutting 
force signal to enrich the feature map. The SR-block can assign weights to different feature 
channels, thus suppressing useless feature maps and improving the model accuracy. Meanwhile, 
the introduction of SR-block also reduces the risk of gradient disappearance and speeds up the 
training of network. The generalisation and accuracy of the model is guaranteed by combining the 
two modules without training with transition state data. Milling tests were carried out on a 
wedge-shaped workpiece using different cutting parameters and tool overhang lengths to verify 
the accuracy and generalisability of the proposed method. The results showed that the proposed 
method outperforms other methods by achieving classification accuracy of on the validation and 
test sets 100% and 97.8%, respectively. In comparison to existing methods, the proposed method 
can correctly identify each machining state, including the transition states. Furthermore, the 
proposed method identifies the onset of chatter earlier than other methods, which is beneficial for 
chatter suppression.   

1. Introduction 

Chatter is a self-excited vibration between the workpiece and the cutting tool that occurs during milling processes. In addition to 
producing harmful noise, it causes machine tool damage, accelerated tool wear, decreased tool life, and poor workpiece surface quality 
[1–3]. Conservative cutting parameters are often chosen to eliminate chatter, which substantially reduce the productivity. To address 
this issue, off-line chatter prediction and on-line chatter detection are proposed. Chatter prediction is a method of selecting machining 
parameters prior to machining using stability lobe diagrams (SLD) [4,5]. However, the accurate acquisition of SLD is difficult because 
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Nomenclature 

SLD Stability lobe diagrams 
FRF Frequency response function 
WD Wavelet decomposition 
WPD Wavelet packet decomposition 
EMD Empirical mode decomposition 
EEMD Ensemble empirical mode decomposition 
HHT Hilbert–Huang transform 
VMD Variational mode decomposition 
ANN Artificial neural network 
SVM Support vector machine 
RF Random forest 
GTB Gradient tree boosting 
ASA Angular synchronous averaging 
MFDET Multi-feature distance evaluation technique 
RFE Recursive feature elimination 
LSTM Long short-term memory 
CNN Convolutional neural network 
SE Squeeze-and-Excitation 
ResNet Residual network 
xl

n Feature map of the n-th filter in the l-th layer 
xl− 1

m The m-th map of the l-1-th layer 
kl

mn Convolution kernel of the n-th filter in the l-th layer 
m Number of channels 
bl

n Bias of the n-th filter in the l-th layer 
∗ Convolution operation 
f(⋅) ReLU activation function 
x̂i Output of a neuron 
μβ Mean value of each batch β 
σ2

β Variance of each batch β 
ε Constant that guarantees the stability of the value 
N Size of each batch 
λ,α Parameters that can be learned by the network 
yi Output of a neuron after a BN layer 
j j-th moving step 
W Size of the pooling window 
pl

n Feature map output from the n-th filter in the l-th layer 
xl− 1

n (i) Value of the i-th neuron from the n-th filter in the l-1-th layer 
Wl+1,bl+1 Weight and bias of l + 1-th layer 
xl+1 Output of l + 1-th layer 
uc Feature map U with C channels 
H, W Height and width of the feature map U 
zc The cth element of output feature map z 
φ(⋅) Sigmoid activation functions 
W1, W2 Weights of the two fully connected layers 
s Weight coefficient of different channel feature maps 
x̃c Degree of importance of different channel feature 
Fex Two fully-connected operations 
Fscale Channel-wise multiplication between the feature map uc and the scalar Sc 
Ftr Normal convolution operation 
Fsq Global average pooling 
FFT Fast Fourier Transform 
STFT Short Time Fourier Transform 
y True label distribution 
ŷ Predicted label distribution 
i Index of training samples in a batch 
TPF Tooth passage frequency 
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it depends on the frequency response function (FRF) of the cutting tool, toolholder, machine tool and workpiece material combination. 
Nevertheless, the FRF is usually variable and difficult to be obtained accurately during machining, which leads to limitations in SLD 
[6]. On-line chatter detection relies on signals collected by various sensors to identify the machining state online. Once chatter is 
detected, corresponding measures will be taken, such as changing cutting parameters and shutting down the machine. Moreover, 
chatter detection is an essential part of active chatter suppression [7–9], which usually requires chatter to be detected in a timely 
manner. Therefore, the chatter detection in milling operations is an essential tool for efficient and high-quality machining. 

To date, a variety of chatter detection methods have been presented. It is clear that most of them involve a process of signal 
acquisition, feature extraction and chatter indicators design [10,11] As chatter is an unstable cut, it occurs with changes in cutting 
load, vibration and sound. Base on this, a variety of signals have been utilised to detect chatter, including cutting force [12–15], 
vibration [16–19], sound [20], current [21,22], displacement [23] and instantaneous angular velocity [24]. After the acquisition of 
signals, the following feature extraction is an essential step for chatter detection. Currently, different signal processing methods have 
been utilised to obtain sensitive chatter indicators, such as time domain method, frequency domain method and time–frequency 
domain method. Time domain feature extraction is relatively simple and convenient. Some dimensionless features such as kurtosis, 
skewness, crest factor, impulse factor, shape factor and clearance factor are usually preferred as they are less influenced by the cutting 
parameters [25]. Nevertheless, besides a significant amplitude change of the signal, the dominant band of the signal also shifts when 
chatter is present. Therefore, the Fourier transform approach is used for chatter detection. Based on the method, the chatter indicators 
of gravity frequency, mean square frequency and frequency variance can be extracted [26]. However, the Fourier transform method 
conceals the time domain information, making it difficult to locate the onset of chatter and to describe the transition period during 
which a non-smooth chatter signal occurs. In contrast, time–frequency domain methods such as wavelet decomposition (WD) [27], 
wavelet packet decomposition (WPD) [28,29], empirical mode decomposition (EMD) [30], ensemble empirical mode decomposition 
(EEMD) [31], Hilbert–Huang transform (HHT) [32,33], variational mode decomposition (VMD) [34,35] and multi-synchrosqueezing 
transform (MSST) [26] have been widely used as they provide both time and frequency information. After decomposition by time
–frequency methods, chatter indicators of various energy ratio and entropy can be extracted. For example, Cao et al. [36] selected 
sensitive intrinsic mode functions (IMFs) based on EEMD, and extracted power spectral entropy as a chatter indicator; Zhang et al. [37] 
presented a fast iterative VMD to decompose the vibration signal and chose the chatter indicator of residual energy ratio; Hao et al. 
[38] determined the basis function and the number of layers of WPD based on the margin and the power indicator, and extracted 
maximum power entropy indicator of WPD. It should be noted that an explicit threshold of chatter indicator should have been designed 
in the above works. However, most of them either did not involve the setting of a threshold or drew a threshold by virtue of manual 
experience. Most chatter indicator threshold is only suitable for simple working conditions. Once the working conditions change, the 
threshold value may change accordingly, resulting in a non-unique threshold value. When complex operating conditions (e.g. beat 
frequency effects [39]) occur, the traditional threshold method may fail. 

Chatter detection can be considered as a classification problem and machine learning algorithms can be competent to solve it. 
Traditionally, time, frequency and time–frequency domain features are extracted and filtered, and then machine learning methods 
such as artificial neural network (ANN) [40], support vector machine (SVM) [41], random forest (RF) [42], gradient tree boosting 
(GTB) [43], and so on are used for classification. Li et al. [43] acquired the chatter components by means of angular synchronous 
averaging (ASA) technique, then extracted the multi-scale energy entropy and built a chatter detection model using GTB. Wang et al. 
[44] used VMD to decompose the vibration signal, then extracted the information entropy of the decomposed signal and fed into SVM 
to detect robotic milling chatter. Tran et al. [45] decomposed the sound and vibration signals by WPD, then solicited time–frequency 
domain features and performed feature selection based on recursive feature elimination (RFE), using ANN to build a milling chatter 
detection model. Yesilli et al. [46] decomposed acceleration signals using WPT and EEMD, respectively, obtained time, frequency and 
time–frequency domain features and performed feature selection based on RFE, and finally established chatter detection model using 
SVM, logistic regression, RF and gradient trees, respectively. However, the works mentioned above are all shallow machine learning, 
requiring manual feature extraction and filtering before classification. This approach is a time-consuming and labour-intensive pro
cess. Also, it is also difficult to extract features with high generalisability, which results in extracted and filtered features that may not 
be suitable for variable working conditions. As a result, models built by traditional chatter detection methods are somewhat limited in 
their generalisability. 

Deep learning, a branch of machine learning, has an extremely strong feature learning and classification capability [47,48]. 
Moreover, it has an end-to-end structure where all parameters can be trained together. These characteristics greatly reduce human 
intervention and have been widely used in the field of fault diagnosis [49,50]. Deep learning is a black box that can provide 
outstanding performance in representing complex non-linear physical systems, such as cutting processes that are difficult to describe 
with exact formulas. Several researchers have explored the use of deep learning for chatter detection. For example, Sun et al. [51] 
proposed a deep learning framework combining Inception module and long short-term memory (LSTM) for chatter detection 
considering beat frequency effects in turning process. Peng et al. [52] developed an on-line chatter detection system for milling op
erations using LSTM networks with the help of the motor current signal from the ball screw. Sener et al. [53] utilized the continuous 

CF Chatter frequency 
PCA Principal Component Analysis 
NER Normalised energy ratio 
FI-VMD Fast iterative VMD 
ERD Residual energy ratio  
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wavelet transform as a pre-processing technique and then the time–frequency images were fed into a convolutional neural network 
(CNN) for the identification of chatter states. Altintas et al. [54] presented a combination of a machine learning network and a physics- 
based model for milling chatter detection, where the model built by machine learning relied precisely on CNN. It is well known that 
models built by deep learning require high quality data with labels. At the same time, the process usually needs to be done manually. 
However, most developed models are dependent on the marking of full process experimental data, which is usually based on manual 
judgement of the surface of the part. This approach is not only time-consuming and labour-intensive, but the labelled data can easily 
lead to misjudgements especially in transition states such as stable to chatter. Therefore, data labelling should be paid great attention 
when the chatter detection methods are established by deep learning networks. Otherwise, the model built from the wrong labels may 
have adverse results for chatter detection accuracy [55]. 

In summary, various advanced signal processing methods and machine learning algorithms have been widely used for chatter 
detection. Among these, traditional chatter detection methods require advanced signal processing technologies and design of sensitive 
chatter indicators. Besides, this method is generally difficult to determine the threshold value to accommodate multiple cutting 
conditions. Even though manually extracted features can be fed into machine learning algorithms for classification, it not only is time- 
consuming and labour-intensive, but also has certain limitations in generalisation. Compared to those, deep learning has outstanding 
performance in terms of feature learning and classification capabilities, which is increasingly be applied for chatter detection. 
However, labelling data between transition states is difficult and prone to misclassification, which affects the chatter detection ac
curacy. To address them, a chatter detection approach in milling process is presented based on a novel hybrid deep CNN using 
Inception and SR-block. The main contributions of this paper are summarised as follows.  

(1) All transition state data is discarded so that the data used to construct the dataset can be easily and correctly labelled. The 
established deep learning model based on the pre-processing method is rare for milling chatter detection. Ultimately, it can 
predict milling machining states including transition states via the generalisation of the built model.  

(2) To avoid manual extraction of chatter indicators and design thresholds, a novel hybrid deep CNN has been proposed using 
Inception module and SR-block, named ISR-CNN. In the network, the Inception module can extract multi-scale features, in
crease the network width, and reduce parameters and computational complexity. A Squeeze-and-Excitation block (SE block) is 
embedded into a ResNet block to form an SR-block, the purpose of which is to assign weights to the different feature channels. In 
addition, ResNet block can further extract features, and help to reduce the risk of gradient disappearance during training 
network.  

(3) To verify the generalisation performance, the training and test sets are trained and tested with different cutting conditions data, 
respectively. The cutting conditions mentioned here are not only the differences in cutting parameters, but also the different 
lengths of the tool overhang.  

(4) The paper identifies three machining states: air cut, stable and chatter. To detect chatter early, the chatter states are divided into 
slight and severe chatter states based on small probability assumptions. 

2. Theoretical basis of model 

2.1. CNn 

LeCun [56] developed the CNN in 1998 with LeNet-5, a network that achieved high accuracy in handwriting recognition and 
became the pioneer of CNNs. Because of the shared traversal of convolutional kernels, the training parameters of CNNs are greatly 
reduced compared to fully connected neural networks. After more than two decades of development, CNNs are now widely used in 
speech recognition, image processing and other fields. The basic CNN mainly consists of convolutional layer, batch normalisation 
layer, pooling layer and fully connected layer [57]. 

2.1.1. Convolutional layer 
The convolutional layer, also called the feature extraction layer, is a convolution operation of the filter kernel with the local region 

of the input, followed by an activation unit to output the features. The operation of the convolution layer is described as follows. 

xl
n = f

(
∑

m
xl− 1

m ∗ kl
mn + bl

n

)

(1)  

where xl
n represents the obtained feature map of the n-th filter in the l-th layer; xl− 1

m represents the m-th map of the l-1-th layer; kl
mn 

represents the convolution kernel of the n-th filter in the l-th layer; m refers to the number of channels; bl
n represents the bias; ∗ refers to 

the convolution operation; f( ⋅ ) represents the ReLU activation function used in this paper. 

2.1.2. Batch normalisation layer (BN layer) 
Design of BN layer is to solve the problem of gradient disappearance and explosion and increases the speed of network training. 

Moreover, the BN layer is usually placed before the activation function and after the convolution layer. For each batchβ, the BN layer is 
described as follows. 
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x̂i =
xi − μβ
̅̅̅̅̅̅̅̅̅̅̅̅̅
σ2

β + ε
√ (2)  

μβ =
1
N

∑N

i=1
xi (3)  

σ2
β =

1
N
∑N

i=1
(xi − μβ)

2 (4)  

where x̂i represents the output of a neuron; μβ refers to the mean value of each batchβ; σ2
β refers to the variance of each batchβ; N 

represents the size of each batch; ε is an arbitrarily small constant to maintain numerical stability. To restore the expressive ability of 
the network, a transformation step is performed as follows. 

yi = λx̂i + α (5)  

where λ and α are parameters that can be learned by the network in the optimization process; yi is the output of a neuron after a BN 
layer. 

2.1.3. Pooling layer 
The pooling layer, also known as the down sampling layer of feature map, is usually placed after the convolution layer. The pooling 

commonly used is maximum or average pooling, which is defined as follows. 

pl
n = max(j− 1)W<i<jW{xl− 1

n (i)} (6) 

or 

pl
n = mean(j− 1)W<i<jW{xl− 1

n (i)} (7)  

where W refers to the size of the pooling window; j is the j-th moving step; pl
n represents the feature map output from the n-th filter in 

the l-th layer; xl− 1
n (i) represents the value of the i-th neuron from the n-th filter in the l-1-th layer. 

2.1.4. Fully connected layer (FC layer) 
After the network has extracted features through several convolutional and pooling layers, the obtained features are connected to a 

FC layer. The expression for FC layer is described below. 

xl+1 = f (Wl+1xl + bl+1) (8)  

where Wl+1 and bl+1 represent the weight and bias of l + 1-th layer respectively; xl+1 refers to the output of l + 1-th layer. 

2.2. Inception module 

Deep CNNs can improve their performance by relying on stacking the number of network layers, such as AlexNet [58] or VGGNet 
[59]. However, this behaviour not only leads to an increase in the number of network parameters, but also to a risk of overfitting. Also, 
the increase in network parameters requires a large amount of labelled data, which is one of the biggest bottlenecks in practice, as 
obtaining a large number of labels is time-consuming and expensive. Furthermore, the increase in network parameters leads to a 
dramatic increase in computational resources, which in turn results in expensive computational costs. Therefore, the Inception-V1 
module is proposed by Szegedy et al. [60]. Inside the Inception module, different scales of convolution kernels (1 × 1, 3 × 3, 5 ×
5) imply different perceptual fields, which enrich the extracted features. Moreover, these features are eventually fused in the channel 
dimension direction and used as input for the next module. In addition, the introduction of 1 × 1 convolution kernel reduces the feature 
dimensionality, decreasing the size of the network parameters and reducing the computational complexity. This Inception structure 
allows both the width of each layer to be widened and the depth of the network to be increased without increasing the computational 
effort, which is beneficial for improving the generalisation and accuracy of chatter detection. 

However, the standard Inception-V1 structure is suitable for processing two-dimensional data such as images. The cutting force 
data used in this paper is a one-dimensional time series, so the Inception-V1 structure needs to be modified and named Inception-IV1. 
Inspired by Inception-V3 [61], one-dimensional large convolution kernels of 5 × 1, 7 × 1 and 9 × 1 are adopted in the Inception-IV1 
module due to their greater non-linear expressiveness. 

2.3. SR-block 

Although the deep neural networks are capable of soliciting more specific and high-dimensional features, the detailed features of 
input signal may also be lost as the depth of the network increases. Moreover, blindly increasing the depth of the network may lead to 
larger training errors, i.e. network degradation. The reason for this is that the error in back propagation may become very small as the 
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network goes deeper, which leads to a phenomenon where the weights of the intermediate layers do not change, i.e. so-called gradient 
disappears. To address these issues, skip connection was introduced into the network by He et al. [62] to construct a residual unit with 
a constant mapping, as shown in Fig. 1(a). The skip connection allows the input and output to be directly connected, which results in 
the gradient being directly propagated to a shallow layer, avoiding network degradation and gradient disappearance in deep networks. 
Assuming that x and H(x) are the input and output of the residual unit respectively, and that the underlying mapping of the residual 
unit is: H(x) = F(x) + x, the network actually learns the residual function: F(x) =H(x)-x. Moreover, the learning of the residual function 
has been shown to be more efficient than the original function [63]. 

Once the input has been feature-extracted by the Inception module and ResNet block, different features for multiple channels can 
be obtained. However, the importance of features for chatter detection may vary from channel to channel. A Squeeze-and-Excitation 
network [64] is shown in Fig. 1(b) as a channel attention mechanism. It is also named SE block which is used to improve the accuracy 
of chatter prediction. The SE block can establish dependencies between channels, allowing the networks to selectively boost beneficial 
feature channels and suppress useless ones by using global information. These characteristics enable the feature channels to be 
adaptively calibrated, leading to an improvement of model classification accuracy. In this study, the SE block is embedded after the 
second convolutional operation in the ResNet block, thus forming the SR-block, as displayed in Fig. 1(c). 

As can be observed in Fig. 1(b), a feature input X of size Ć×Ẃ×H́ is transformed into a feature U of size C × W × H by the Ftr 
operation, where Ftr refers to the second convolution operation in the ResNet block. After the feature U is subjected to the operations of 
Fsq, Fex and Fscale, the feature X̃ can be obtained. 

The Fsq represents a global average pooling applied to each channel of the feature U, so that a feature map z of size 1 × 1 × C can be 
obtained. The mathematical expression for this Fsq operation is described as follows. 

zc = Fsq(uc) =
1

H × W
∑H

i=1

∑W

j=1
uc(i, j) 9  

where uc represents a feature map U with C channels; H and W are the height and width of the feature map U, respectively. zc refers to 
the cth element of output feature map z. 

The Fex refers to two fully-connected operations, which can feed z into a fully-connected layer with weight W. A feature map of size 

Fig. 1. Model of SR-block: (a) ResNet block; (b) SE block; (c) SR-block.  
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1 × 1 × C can be obtained as follows. 

s = Fex(z,W) = φ(f (z,W)) = φ(W2f (W1z)) 10  

where f(⋅) and φ(⋅) are the ReLU and Sigmoid activation functions, respectively; W1 and W2 represent the weights of the two fully 
connected layers, respectively. s is the weight coefficient of the different channel feature maps. ̃xc represents the degree of importance 
of the different channel feature maps, which can be obtained by the multiplication of the weight coefficient s and the feature map U as 
follows. 

x̃c = Fscale(uc, sc) = sc ⋅ uc 11  

where X̃ = [x̃1, x̃2,⋯x̃c] and Fscale represents the channel-wise multiplication between the feature map uc and the scalar Sc. 

3. The proposed chatter detection method 

3.1. Flow of milling chatter detection 

The proposed chatter detection method is illustrated in Fig. 2, which consists of three processes. 
(1) Data pre-processing: The 3D cutting force signal is first selected and labelled. The transition state data is discarded as it 

belongs to the transition phase that is difficult to mark the state correctly. After selecting the data, the cutting force data is framed to 
construct the dataset. Next, the Fast Fourier Transform (FFT) is applied to the original signal as the frequency domain distribution and 
energy changes are most intuitively represented by the presence of chatter. The z-score normalization is then utilized to transform the 
input data of different amplitudes to the same magnitude, thus increasing the convergence speed of the model. Datasets including 
training, validation and test are constructed. 

Fig. 2. Flow of proposed chatter detection method.  
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(2) Model construction: A chatter detection model is constructed, which consists of two Inception modules, a maximum pooling, 
two SR-blocks, an average pooling and three FC layers. Finally, softmax classifier is utilised to output the probability value of states. 

(3) Milling chatter detection: Model training, validation and test are carried out to verify the prediction accuracy and gener
alization ability of the model, respectively. Moreover, the test set differs from the validation set in terms of the cutting parameters and 
the tool overhang length during the milling process. The data containing the discarded signals for the entire cutting process is then pre- 
processed according to the pre-processing method described previously. Ultimately, the constructed dataset is fed into the established 
model for probabilistic output and states determination. 

3.2. Model of the proposed ISR-CNN 

Before building the ISR-CNN model, the construction process of individual datasets needs to be explained (showed in Fig. 3). In the 
milling experiment, 3D cutting force signals are acquired and then taken out for one frame of data. This paper uses a data size of 250 
per frame, which corresponds to a sampling time of 0.05 s. Relying on the FFT and z-score normalization, the 3D time-domain signal is 

Fig. 3. Dataset and model construction of the proposed ISR-CNN.  
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converted to the frequency domain and eventually forms a dataset of size 1 × 125 × 3. 
Next, the data of size 1 × 125 × 3 is fed into the ISR-CNN model including a series of operations such as Inception module, 

maximum pooling, SR-block, average pooling and FC layers, as displayed in Fig. 3. After these operations, three machining states are 
output, i.e., air cut, stable and chatter. Inception module is capable of providing multi-scale features and has great potential in dis
tinguishing between different machining states. In the proposed model, the Inception module is used to extract multi-scale spatial 
features through a series of convolutions with different kernel sizes, which is beneficial for model accuracy and generalisability. In the 
Inception-IV1_A module, convolution kernels of different scales (i.e., 5 × 1, 7 × 1 and 9 × 1) are used, which greatly enriches the 
features extracted. Ultimately, several different features are merged in the channel dimension direction. In addition, the use of 1 × 1 
convolution reduces the parameters of the model and thus the complexity of the model, which is beneficial for non-expensive com
putations. When the input data is requested from the Inception-IV1_A module, a feature map of size 64 × 125 × 3 can be obtained and 
used as input to the next module. Similarly, a feature map of 256 × 125 × 3 can be obtained depending on the Inception-IV1_B. A 
maximum pooling module is utilized to reduce the dimensionality of input map so that a feature map of size 256 × 62 × 3 is formed. 
The SR-block contains a ResNet block and a SE block. The ResNet block is able to extract further detailed features and avoid gradient 
disappearance during network training compared to a plain CNN, which has been proved in the literature [62,65]. The SE block, 
namely channel attention mechanism, assigns different weights to feature channels, enabling an adaptive calibration process for 
features, i.e. promoting useful feature channels and suppressing useless ones, which facilitates the improvement of chatter accuracy. 
With the help of SR-block_1 and SR-block_2, the extracted features continue to increase in the channel dimension, resulting in a feature 
map of size 512 × 31 × 2. It should be noted that SR-block_2 differs from SR-block_1 in that the former uses a 1 × 1 convolutional layer 
in the jump junction in order to transform the shape of the input features, while the latter does not. After two SR-blocks extract 
features, the feature channel is finally formed. Then a global average pooling is used to obtain features in the channel dimension. 
Ultimately, three fully connected layers are used for dimensionality reduction, so that features of size 512 × 1 × 1 are transformed into 
3 × 1 × 1, i.e. output the three machining states. In particular, the meanings of the model parameters in Fig. 3 represent the 
convolution kernel size, padding and stride size in that order. In addition, 1 × 1 represents the convolution kernel size and omits the 
padding and step size, which are 0 and 1, respectively. 

Fig. 4. Experimental setup.  

Table 1 
Machining parameters of milling experiments.  

No. Spindle speed ns (r/min) Feed per revolution fr (mm/r) Depth of cut ap (mm) Width of cut ar (mm) Overhang length L (mm) 

1 6000  0.05 0–4 2 80 
2 4800  0.05 0–4 2 80 
3 4200  0.05 0–4 2 80 
4 4200  0.05 0–4 1.5 90 
5 6000  0.05 0–4 1.5 90  
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4. Experiment and performance analysis 

4.1. Experiment up and data pre-processing 

To verify the effectiveness of the proposed method, milling experiments were carried out on a three- axis CNC milling machine, as 
shown in Fig. 4. In these milling experiments, cutting force data is used to train, validate and test the proposed model. A 10 mm 
diameter milling tool with 3 teeth was used in the milling process. Down milling and dry cutting are used in all cutting experiments. 
The cutting parameters are displayed in Table 1. It should be noted that different tool overhang lengths L are adopted in groups 1–3 and 
4–5, respectively. This leads to the differences in cutting tool stiffness, which in turn affects the dynamic characteristics parameters of 
the cutting system. Therefore, the different lengths of L imply differences in the dynamic characteristics of the cutting system, as has 
been demonstrated by Yesilli et al. [46]. The wedge-shaped workpiece is made of AL7075 with a cross-section dimension of 35 × 4 
mm2. It can be mounted on a Kistler 9257B dynamometer to measure the three-component dynamic forces. The cutting force signal is 
amplified using a Kistler 5070 multichannel charge amplifier, which converts the charge signal into a voltage signal. An acquisition 
board is then utilised and the cutting force signals are collected at a sampling frequency of 5 kHz. 

The collected cutting force data should be labelled before the proposed chatter detection model is built. Three machining states 
including air cut, stable and chatter are identified. They should be correctly classified, otherwise the training model may produce 
unfavourable results for the identification of machining states. However, at present, the labelling of data relies on manual empirical 
judgement of the workpiece surface and spectrum in the chatter detection algorithm, which can easily lead to misclassification, 

Fig. 5. Data selection and labelling.  

Fig. 6. Sliding time window approach.  
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especially in transition states such as air cut to stable, stable to chatter, chatter to stable and stable to air cut. As shown in Fig. 5, this 
study discards the data of transition states according to the Short Time Fourier Transform (STFT) spectrum so that the labels of the data 
can be correctly labelled. The practice avoids the difficulty of labelling the transition states. Although the trained model lacks data on 
transition states, the established model can still be applied for determination of them, which mainly relies on the deep learning al
gorithm to extract more high-level features with better generalisation. In addition, for the purpose of model training, validation and 
test, the data for the air cut, stable and chatter states are labelled as 0, 1 and 2 respectively in this paper. 

The cutting force are framed to construct the dataset after selecting and labelling. Here the sliding time window approach is used as 
shown in Fig. 6. Considering the real-time performance of on-line chatter identification, the length of each window is set at 250, which 
corresponds to a sampling time of 0.05 s. Between adjacent windows, the movement of the previous window with respect to the latter 
window is 50, corresponding to an overlap of 200, which represents an update of the results every 0.01 s for on-line chatter detection. 

Following the method above, the transition state data was discarded, and data from Nos. 1–5 was selected and labelled for the air 
cut, stable and chatter states, respectively. Based on the sliding time window method in Fig. 6, datasets for each experiment were 
constructed. After the FFT and z-score normalization were performed, the final datasets were formed as displayed in Fig. 7. Nos. 1–3 
constitute the model dataset for training and validating the prediction accuracy of the model while nos. 4 and 5 constitute the test set 
for testing the generalisation performance of the model. Moreover, the model dataset is randomly divided into a training set and a 
validation set in the ratio of 7:3. Therefore, the test set and training set is derived from different experiments, which leads to differences 
in cutting parameters and tool overhang lengths. The sizes of these datasets are depicted in Fig. 7. 

Fig. 7. Division of milling experimental dataset.  

Table 2 
Training and validation process of the proposed ISR-CNN for chatter detection.  

Input: Training set 
{

xi, yi
}s

i=1 and validation set 
{
xj
}t

j=1 

Output: Classification results for machining state 
{

yj

}t

j=1 

Initialize: Inception modual, SR-block, pooling layer and fully-connected layer parameters using random numbers 
Repeat: 

Forward Propagation: 
Extraction of multiscale features from the FFT spectrum of a signal using two Inception modual 
Max pooling network is applied to reduce the dimensionality of feature map 
SR-block is used to extract detailed features, assign different weights and handle the degradation problem 
Average pooling network is applied to obtain the extracted feature 
Fully connected and softmax layers are used for machining state classification 

Back Propagation: 
Compute the networks gradient ∇L(yi, ŷi) using Adam optimizer and update network parameter 

Learning rate scheduler 
Until the end of maximum iterations 
Use the trained model to identify chatter online  
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4.2. Model parameter setting and training 

The loss function and hyperparameters should be defined before the model can be trained. Using the cross-entropy loss as the loss 
function, the model can be trained in an end-to-end manner based on a backward propagation algorithm. Let us define y and ŷ to 
denote the true label distribution and the predicted label distribution, respectively. The goal of training is to minimise the cross- 
entropy loss between y and ŷ for all training samples. The mathematical expression for the cross-entropy loss is described as follows. 

L(y, ŷ) = −
∑s

i=1
yilog(ŷi) 12  

where s is the number of training samples; i is the index of training samples. 
The training and validation process is displayed in Table 2. During the training process the parameters of each layer of the network 

are initialised randomly, but meet a specific distribution to better update the weights and bias parameters. In this study, we utilise the 
pytorch package to build the deep learning network. As observed in Table 2, the Adam optimizer was applied to complete the back 
propagation of gradient descent and thus update the weight parameters. 

Table 3 gives the settings of the hyperparameters during the model training process. It can be seen from Table 3, each batch size was 
32 and the learning rate was set to 0.0001. This learning rate was updated every 10 steps using StepLR method until the model training 
stopped at 50 epochs. 

To better demonstrate the effectiveness of the proposed method, two popular machine learning methods were compared. Both 
methods have been widely used in the fields of chatter detection, tool wear detection and fault diagnosis [12,65–67]. One of them is a 
deep residual network (ResNet) consisting of a stack of three convolutional layers, a maximum pooling layer, two residual blocks, an 
average pooling and three fully connected layers. Its model structure and parameters are showed in Appendix A. This network uses the 
same dataset as the proposed method, with direct input of frequency domain data. The other is to use WPD to decompose all the time 
domain signal containing transition states and extract the energy entropy features of the sub-signal, which is then fed into the SVM for 
state classification. Therefore, both the ISR-CNN and ResNet models use the same dataset of discarded transition states, while the WPD- 
SVM model extracts all data whose features contain transition states. 

The proposed model and ResNet were trained separately, and the loss and accuracy of their training and validation process are 
respectively displayed in Fig. 8(a)-(b). It can be observed from Fig. 8 that as the number of epochs increases, both the training loss and 
the validation loss decrease rapidly in the first few steps and remain almost constant afterwards. Besides, the training accuracy and 
validation accuracy reaches 100 % during the training process, and the error is reduced to a minimum, which indicates that the ISR- 

Table 3 
Hyperparameters for training.  

Hyperparameters Values 

Batch size 32 
Learning rate 0.0001 
Weight decay 0.001 
Epoch 50 
Learning rate scheduler StepLR 
StepLR.step_size 10 
StepLR.gamma 0.8  

Fig. 8. Loss and accuracy during training and validation processes: (a) ISR-CNN;(b) ResNet.  

P. Zhang et al.                                                                                                                                                                                                          



Mechanical Systems and Signal Processing 193 (2023) 110241

13

CNN and the ResNet model used do not show gradient disappearance during the training process. At the same time, the training and 
validation accuracy reaches 100 % with minimal fluctuation afterwards, which also reflects the good robustness of the models built 
and the quality of the dataset is high after the transition state is discarded. 

4.3. Model performance evaluation 

After these models are trained, the confusion matrix for the validation and test sets can be obtained as shown in Fig. 9. From the 
validation set, it can be seen that the proposed ISR-CNN and ResNet achieve 100 % classification accuracy for each category while the 
classification accuracy of the other two states obtained by WPD-SVM is less than 100 % except for the stable state classification. These 
results demonstrate that the proposed ISR-CNN and ResNet have higher classification accuracy than WPD-SVM. The proposed ISR-CNN 
has a classification accuracy of 96 % in the chatter state and 100 % in the remaining two states from the test set, which are all higher 
than the classification accuracy of ResNet. Moreover, the recognition rate of stable state obtained by ResNet is only 70.8 %, which led 
to difficulties in distinguishing between the air cut and stable state. Even though WPD-SVM’s discrimination in the chatter state is 
slightly higher than ISR-CNN, the classification accuracy in the stable state is only 52.5 %. This classification accuracy is unacceptable, 
as it is much less than the accuracy of the proposed method. These analyses indicate that the proposed method has higher classification 

Fig. 9. Confusion matrices on validation and test set: (a) ISR-CNN; (b) ResNet; (c) WPD-SVM.  

Table 4 
Performance metrics of validation set.  

Methods Precision Recall F1 score Accuracy 

Air cut Stable Chatter Air cut Stable Chatter Air cut Stable Chatter 

ISR-CNN  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000 
ResNet  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000 
WPD-SVM  1.000  0.969  0.997  0.999  1.000  0.994  0.999  0.984  0.995  0.996  

Table 5 
Performance metrics of test set.  

Methods Precision Recall F1 score Accuracy 

Air cut Stable Chatter Air cut Stable Chatter Air cut Stable Chatter 

ISR-CNN  1.000  0.715  1.000  1.000  1.000  0.960  1.000  0.834  0.980  0.979 
ResNet  0.966  0.617  1.000  1.000  0.708  0.956  0.983  0.659  0.977  0.962 
WPD-SVM  1.000  0.953  0.913  0.955  0.525  0.999  0.976  0.677  0.954  0.953  
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accuracy on both the validation and test sets. Further, the classification accuracy of each model in the test set is less than that in the 
validation set due to the fact that the machining parameters in the test set are different from that in the training set while the machining 
parameters in the validation set are the same as that in the training set. 

Based on the confusion matrix in Fig. 9, the performance metrics including precision, recall, F1 score and accuracy for the vali
dation and test sets can be calculated as shown in Tables 4 and 5 respectively. The number of data for different machining states is 
inconsistent, and the stable state has the least number of data. Therefore, the F1 score is introduced to balance the precision and recall. 
It can be seen from Table 4 that the F1 scores obtained by the proposed ISR-CNN and ResNet are higher than those obtained by the 
WPD-SVM regardless of the machining state. The chatter detection accuracies in the validation set are 100 %, 100 % and 99.6 %, 
corresponding to those obtained with the ISR-CNN, ResNet and WPD-SVM, respectively. It can be observed from Table 5 that the F1 
scores obtained by ISR-CNN for each state are higher than those obtained by the other two methods. Moreover, the proposed ISR-CNN 
achieves the highest classification accuracy of 97.9 % on the test set. Both F1 score and accuracy demonstrate that the proposed 
method outperforms ResNet and WPD-SVM on the test set. 

To understand the features learned by these models, Principal Component Analysis (PCA) technique is used to visualise the dis
tribution of features in the last fully connected layer of the network. The results of PCA visualisation on the validation and test set are 
displayed in Fig. 10. On the validation set, there is no overlap between the clusters obtained by ISR-CNN and ResNet. The clusters are 
internally concentrated, and the distance between cluster centres is far apart. However, there is a partial overlap between the two 
clusters obtained by WPD-SVM for stable and chatter. These characteristics may lead to a lower classification accuracy in the validation 
set than that obtained by ISR-CNN and ResNet, which is validated by the classification accuracy of the model on the validation set in 
Fig. 9. On the test set, the individual clusters obtained by the proposed ISR-CNN do not overlap. Although the clusters obtained by 
ResNet also do not overlap, the distance between the air cut and stable clusters is very close. This feature leads to the difficulty in 
distinguishing between the air cut and stable, which is consistent with the results obtained by ResNet in the confusion matrix of the test 
set. There are some overlaps between the clusters (air cut and stable, stable and chatter) obtained by the WPD-SVM. The stable and 
chatter clusters fall into a severe overlap that makes them difficult to identify. This result is in line with the fact that the classification 
accuracy of the WPD-SVM in the test set for the stable state is only 52.5 %. In addition, the three clusters obtained by the individual 
models on the validation set are more concentrated and the cluster centres are more widely spaced than those obtained on the test set. 
These characteristics may have led to higher classification accuracies for the individual models on the validation set than on the test 
set. 

Although the built model has achieved excellent classification accuracy on the validation and test sets, the machining state 
determination on the whole milling experiment is yet to be validated. This is because the transition state data for milling experiments is 
discarded when building the dataset. The discrimination performance of the proposed ISR-CNN, ResNet and WPD-SVM are verified 
separately using No. 2 as an example. 

The milling experiment results for No. 2 are shown in Fig. 11. Fig. 11(a) represents the cutting forces collected throughout the 

Fig. 10. Feature visualization in the last FC layer of validation and test set: (a) ISR-CNN; (b) ResNet; (c) WPD-SVM.  
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experiment. According to the FFT spectrum, the cutting forces excluding the air cut state are taken out in Fig. 11(b). Then they are 
subjected to STFT into a time–frequency diagram in Fig. 11(c). The surface quality of machined workpiece is displayed in Fig. 11(d). 
Furthermore, a white light interferometer (Zygo New ViewTM8200) was used to photograph the surface of the workpiece to determine 
the moment of chatter. Based on the time–frequency diagram and the workpiece surface quality, the onset and end time of chatter were 
determined to be 7.2 s and 14.5 s respectively. 

The probabilities of each state output by the ISR-CNN, ResNet and WPD-SVM for No. 2 are depicted in Fig. 12. From Fig. 12(a), it 
can be observed that the probability of the proposed ISR-CNN output is close to 100 % when the machining states are located in the air 
cut, stable and chatter states. This characteristic leads to the three machining states being easily distinguished. When the transition 
state is at the transition from air cut to stable, the probability of the former state decreases continuously close to 0 and the probability of 
the latter state increases continuously close to 100 %. The characteristic is also true for the other transition states. As can be seen from 
Fig. 12(b), when the machining state is in air cut state, the probabilities of ResNet output fluctuate, i.e. inside the dashed box. 
Moreover, the probabilities of air cut and stable state overlap in amplitude, which makes them difficult to be distinguished. In contrast, 
in Fig. 12(c), when the machining state is in the chatter state, the probabilities of the WPD-SVM output fluctuate, i.e. inside the dashed 
box. It is difficult to distinguish between the stable and chatter when their probabilities overlap. Based on the above analysis, the 
proposed ISR-CNN is easier to distinguish the three states of air cut, stable and chatter than ResNet and WPD-SVM. 

The usual principle for determining the machining state with the help of Softmax output is that the machining state with maximum 
output probability is considered to be the read cutting state. This behaviour is feasible for harmless machining states, such as air cut 
and stable. This is because the delay caused by this practice is usually in the millisecond range, which has little effect on harmless 
machining states. However, early identification is necessary for harmful machining state, such as chatter. This practice is of 

Fig. 11. Milling experiment results for No. 2: (a) cutting force collection; (b) cutting force excluding air cut; (c) STFT diagram excluding air cut; (d) 
surface quality of machined workpieces. 
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Fig. 12. Probability of each state output for No. 2: (a) ISR-CNN; (b) ResNet; (c) WPD-SVM.  

Fig. 13. States determination for No. 2: (a) ISR-CNN; (b) ResNet; (c) WPD-SVM; (d) FFT validation.  
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considerable importance for subsequent chatter suppression measures. Therefore, small probability assumption approach presented in 
the literature [68] was applied when determining the transition from stable to chatter. The principle of this approach is as follows: the 
appropriate criterion for state identification is the 0.05–0.95 rule based on the small probability assumption. If the probability of 
chatter state remains increasing until it exceeds 0.05, the small probability hypothesis will be rejected and the identification will be 
determined by a shift in the machining state from stable to slight chatter. If the probability of chatter states remains increasing and 
becomes the majority, i.e. slight chatter develops into severe chatter. Based on the above principles, the machining state of No. 2 can be 
determined by ISR-CNN, ResNet and WPD-SVM, as shown in Fig. 13. 

It can be observed from Fig. 13(a) that the proposed ISR-CNN can detect each machining state well and the onset time to detect 
chatter is 7.21 s, which is in agreement with the chatter onset time determined in Fig. 11. The proposed method can identify the states 
from stable to chatter and from chatter to stable again. Also, the transition time from chatter to stable state is short from Fig. 12(a), but 
the proposed method can still identify them in Fig. 13(a), which shows the good identification ability of this method even when the 
transition state is ambiguous (i.e. the stable and chatter states switch repeatedly). As can be seen from Fig. 13(b), the air cut state that 
relies on the ResNet determination is misclassified as stable state. The time to detect the onset of chatter is 7.47 s, which is 0.26 s later 
than the proposed ISR-CNN detection. In contrast, in Fig. 13(c), the chatter state is misclassified as stable state based on WPD-SVM. In 
addition, the time to detect the onset of chatter is 7.32 s, which is 0.11 s later than that obtained by the proposed ISR-CNN. Since the 
ISR-CNN and ResNet methods use the same dataset of discarded transition states, the WPD-SVM method uses all the data. However, the 
three methods identify transition states at almost the same moment from the above analysis, which proves that the ISR-CNN and 
ResNet trained by discarded transition state data is credible. To verify the reasonableness of the classification of stable, slight and 
severe chatter, their spectra are depicted separately in Fig. 13(d). As can be observed from Fig. 13(d), when the cut is stable, the 

Fig. 14. Milling experiment results for No. 4: (a) cutting force collection; (b) cutting force excluding air cut; (c) STFT diagram excluding air cut; (d) 
surface quality of machined workpieces. 
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Fig. 15. Probability of each state output for No. 4: (a) ISR-CNN; (b) ResNet; (c) WPD-SVM.  

Fig. 16. States determination for No. 4: (a) ISR-CNN; (b) ResNet; (c) WPD-SVM; (d) FFT validation.  
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frequency of signal is the tooth passage frequency (TPF) and its multiplier frequency. When there is a slight chatter, the TPF is still 
dominant but the chatter frequency (CF) is already present with a small magnitude. When severe chatter occurs, the CF dominates with 
a large amplitude. In summary, the proposed ISR-CNN not only correctly identifies the individual machining states, but also detects the 
onset of chatter earlier than ResNet and WPD-SVM, which demonstrates the high discrimination accuracy of the proposed method. 

4.4. Verification of model generalization 

While the proposed method is able to accurately identify the individual machining states for No. 2, it remains to be validated for No. 
4 and No. 5. This is due to the fact that No. 4 and No. 5 are not involved in model training and are only used to verify the generalisation 
of the model. The following is an example of the verification for No. 4, which is shown in Fig. 14. Similar to Fig. 11, the time–frequency 
diagram is still used. The surface quality of the workpiece is used to determine the time of onset and end of chatter as 7.3 s and 17.1 s 
respectively. 

The obtained probabilities of each state for No. 4 relying on ISR-CNN, ResNet and WPD-SVM are presented in Fig. 15. From Fig. 15 
(a) and (b), the probabilities of the ISR-CNN and ResNet outputs are close to 100 % when the machining states are in the air cut, stable 
and chatter states. Moreover, there are fluctuations in the probabilities at the three transition states, but the magnitude is small, which 
does not affect the results of the machining state identification. Conversely, Fig. 15(c) shows wide fluctuations in the probability of air 
cut, stable and chatter states outputs throughout the process, which would seriously affect the machining state discrimination. 
Therefore, it can be concluded that the chatter detection obtained by the WPD-SVM has a relatively poorer generalisation capability 
than the proposed ISR-CNN and ResNet. 

Based on the small probability assumption principle, the machining states of No. 4 were decided as shown in Fig. 16. From Fig. 16 
(a) and (b), the proposed ISR-CNN and ResNet can detect each machining state very well. The former detects the onset of chatter at 
7.26 s, which is essentially the same as the moment determined in Fig. 14. The latter identifies the onset of chatter at 7.85 s, which is 
0.59 s later than the proposed method. Therefore, the proposed method can identify the onset of chatter earlier, which allows more 
time for chatter suppression and thus avoids damage to the workpiece. From Fig. 16(c), it is observed that the detection results are 

Fig. 17. Identification results of machining states for No. 5: (a) cutting force collection; (b) STFT diagram; (c) out probability; (d) states 
determination. 
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misidentified when the machining state is in the air cut, stable and chatter states. It is inferred that the established WPD-SVM model is 
unable to identify the machining state of No. 4, which leads to the limitations of the model. Additionally, Fig. 16(d) shows similar 
results to Fig. 13(d) in terms of the distinction between stable, slight chatter and severe chatter, which justifies these states being 
classified. In conclusion, the proposed ISR-CNN can correctly identify the machining state of No. 4, and detects the onset of chatter 
earlier than ResNet, which demonstrates the excellent generalization capability of the proposed method. 

4.5. Comparison with other threshold methods 

Over the past decade, threshold-based chatter detection methods have been emerging. As methods for time–frequency adaptive 
decomposition, EEMD and VMD are typical representatives and are commonly used for the decomposition of non-smooth signals. 
Therefore, they are often used in the field of chatter detection. Also, the energy ratio is a frequently extracted feature for the chatter 
detection. Therefore, EEMD and VMD combined with energy ratio are more typical methods, as has been shown in the introduction 
section. So literature [33] and [37] are chosen to compare with the proposed method using No. 5 as an example. Here, the former uses 
EEMD combined with normalised energy ratio (NER) to detect chatter. Meanwhile, the latter uses fast iterative VMD (FI-VMD) to 
decompose the signal and then extract the residual energy ratio (ERD) of the sub-signals. The identification results of machining states 
obtained with the proposed ISR-CNN for No. 5 are shown in Fig. 17. It can be observed from Fig. 17 that the proposed method can 
identify the air cut, stable and chatter states very well, which is intuitively consistent with the identification results of the time
–frequency diagram. Moreover, based on the principle of small probability assumption, we can not only determine the time of chatter 
onset, but also classify the two phases of slight and severe chatter. Based on the EEMD-NER and FI-VMD-ERD methods, the identi
fication results of machining states for No. 5 are described in Fig. 18. From Fig. 18(a) it can be observed that the distribution of NER is 
more scattered, which may cause the threshold value to be difficult to determine. Worse still, the NERs for the air cut and chatter states 
are at the same level, which would make it difficult to distinguish between these two states. In contrast, in Fig. 18(b), the ERDs of the 
air cut and stable states are at the same level, which makes it impossible to delineate a threshold value to distinguish between the two 
states. In conclusion, the proposed ISR-CNN in this paper can better identify each machining state of No. 5 while the thresholding 
method involved in literature [33] and [37] has difficulty in distinguishing between these machining states. 

**. 

5. Conclusions 

Most conventional chatter detection methods require setting thresholds for chatter indicators, which is difficult to determine. Even 
though the extracted chatter indicators can be combined with machine learning algorithms for classification, the accuracy and 
generalisation of this behavioural recognition of chatter needs to be improved. Deep learning with its outstanding feature self-learning 
and classification capabilities can solve these problems. However, chatter detection based on deep learning relies on data labelling 
throughout the process, which is quite difficult for transition states. Therefore, this paper first discards the transition state data and 

Fig. 18. Identification results of machining states for No. 5: (a) EEMD-NER; (b) FI-VMD-ERD. (Division of machining states derived from Fig. 17).  
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uses easily labelled data to construct the dataset. A novel ISR-CNN model is then constructed, trained and validated based on the 
Inception module and SR-block. Finally, the developed model is validated and tested throughout the milling experiments in order to 
identify machining states including transition states. The following conclusions can be drawn. 

(1) The classification accuracy of the proposed ISR-CNN is 100 % and 97.9 % on the validation and test sets, respectively, which is 
higher than the classification accuracies obtained based on ResNet and WPD-SVM. In addition, the FI score of each machining state 
obtained by the proposed ISR-CNN is also the highest in both the validation and test sets, which also demonstrates the high classi
fication accuracy of the proposed method. 

(2) The clusters of individual states obtained by the proposed ISR-CNN on the validation and test sets do not overlap. Moreover, the 
distance between the individual clusters is further than that of ResNet and WPD-SVM, reflecting the ease of the proposed method when 
distinguishing between the individual states. 

(3) The proposed ISR-CNN can not only correctly identify the individual machining states of milling experiments, but also detect 
the onset of chatter earlier than ResNet and WPD-SVM, which demonstrates the high discrimination accuracy and excellent gener
alization capability of the proposed method. 

(4) Comparing the two thresholding methods for chatter detection (EEMD-NER and FI-SVM-ERD), the proposed ISR-CNN can better 
identify each machining state of milling experiment while both thresholding methods have difficulty in delineating a threshold to 
distinguish each machining state. 

(5) The establishment of an on-line chatter detection system will go a long way towards improving productivity, ensuring 
machining quality and suppressing chatter. Our future work focuses on the implementation of the proposed ISR-CNN method. This 
refers to building an on-line chatter detection system in a factory based on the proposed method, which involves the arrangement of 
sensors, the integration of system and economic costs. Additional work is that we will consider a mechanistic model of chatter 
combined with a data-driven model to improve detection accuracy and robustness. 
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Appendix A. . 

Table 6. Model architecture and parameters of ResNet. 

Table 6 
Model architecture and parameters of ResNet.  

Model architecture Model Parameter Output shape 

Conv_1 7 × 1, 16, 2 × 1 (16, 125, 3) 
Conv_2 7 × 1, 32, 2 × 1 (32, 63, 3) 
Conv_3 7 × 1, 64, 2 × 1 (64, 32, 3) 
Max pooling 2 × 1, 2 × 1 (64, 16, 3) 
Residual block_1 

⎡

⎣
1 × 1, 64
3 × 3, 64
1 × 1,256

⎤

⎦
(256, 16, 3) 

Residual block_2 
⎡

⎣
1 × 1,128
3 × 3,128
1 × 1,512

⎤

⎦
(512, 8, 2) 

Average pooling – (512, 1, 1) 
FC layers 512–32-16–3 (3) 

*(Parameter_1, Parameter_2, Parameter_3)→(Kernel size, Channel number, Stride).  
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Appendix B. Supplementary data 

Supplementary data to this article can be found online at https://doi.org/10.1016/j.ymssp.2023.110241. 
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