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Abstract 13 

 14 

This paper investigates the effects of air void topology on hydraulic conductivity in asphalt mixtures 15 

with porosity in the range 14%-31%. Virtual asphalt pore networks were generated using the Intersected 16 

Stacked Air voids (ISA) method, with its parameters being automatically adjusted by the means of a 17 

differential evolution optimisation algorithm, and then 3D printed using transparent resin. Permeability 18 

tests were conducted on the resin samples to understand the effects of pore topology on hydraulic 19 

conductivity. Moreover, the pore networks generated virtually were compared to real asphalt pore 20 

networks captured via X-ray Computed Tomography (CT) scans. The optimised ISA method was able 21 

to generate realistic 3D pore networks corresponding to those seen in asphalt mixtures in term of visual, 22 

topological, statistical and air void shape properties. It was found that, in the range of porous asphalt 23 

materials investigated in this research, the high dispersion in hydraulic conductivity at constant air void 24 

content is a function of the average air void diameter. Finally, the relationship between average void 25 

diameter and the maximum aggregate size and gradation in porous asphalt materials was investigated.  26 

 27 
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1  INTRODUCTION 1 

Asphalt pavements with porosity ranging between 15% and 26% have complex pore networks that can 2 

easily drain water [1]. Thus, porous asphalt is often used to reduce runoff water quantity and improve 3 

highway safety [2]. The internal pore structure of porous asphalt is exposed to water for long periods 4 

due to its high permeability [3], and moisture damage may happen and negatively affect the bond 5 

between the aggregate and binder surface. Typical effects of such phenomena include stripping, cracking 6 

and excessive permanent deformation [4]. Therefore, to build durable porous asphalt pavements, water 7 

flow and the associated topological factors need to be accurately investigated. 8 

 9 

Previous research [1, 5, 6] applied X-ray Computed Tomography (CT) scans to study the effect of the 10 

topological properties of the pore space on the hydraulic conductivity of porous materials. However, X-11 

ray CT scans are often expensive and time-consuming. To address the issues of cost and time required, 12 

computational methods were developed in the recent years that build pore networks similar to those seen 13 

in real porous materials [7]. A range of approaches are available to computationally study granular 14 

material pores, including the discrete elements methods (DEM) [8, 9], statistical [10] and mathematical 15 

methods [11, 12]. These methods are complex to implement without using commercial software [13] or 16 

having a deep background in mathematical modelling. 17 

 18 

The Intersected Stacked Air voids (ISA) method is a newly-developed approach to generate virtual pore 19 

networks in granular and asphalt materials [7, 14]. The technique was developed based only on 20 

geometrical, rather than on physical, principles. The ISA method was created by setting a number of ad-21 

hoc, geometrical, parameters to recreate a specific asphalt mixture, which are described in section 2.4. 22 

This typically requires a time consuming manual tuning of those parameters, which makes the use of 23 

ISA method to generate realistic pore network not completely efficient. Optimisation techniques [15] 24 

are required for ISA methods to obtain best result. Among other alternatives, one can employ a 25 

Differential evolution (DE) algorithm [16], which is an evolutionary-based optimisation technique 26 

capable of dealing with continuous optimisation. In this study, ISA approach is generalised by the means 27 

of DE algorithm that manipulate the ISA input parameters to generate virtual asphalt pores as required 28 

by the user, without a time consuming trial-and-error process.  29 

 30 

In addition, thanks to the ability to create complex geometric volumes [17-20], 3D printing has recently 31 

become an important technique in the fields of flow and transport in porous media. Particularly, Head 32 

and Vanorio [21] and Ishutov et al. [22] reported the use of 3D printing to reproduce the complex pore 33 

spaces seen in rocks. The use of 3D printing provided a unique opportunity to combine the ISA method 34 

– a computational approach – with physical testing on resin samples similar to real asphalt networks. 35 

 36 
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This study compares the results of physical tests on real and computationally-generated asphalt pore 1 

networks to further understand the effects of topological properties such as average void dimeter and 2 

Euler number on the hydraulic conductivity of porous asphalt mixture. 3 

 4 

2 MATERIALS AND METHODOLOGY 5 

2.1 Porous asphalt samples description 6 

A total of 15 cylindrical porous asphalt samples with 100 mm in diameter and 50 mm in height were 7 

manufactured with bitumen 60/40 penetration grade and crushed limestone aggregates. The specimens 8 

were prepared with different gradations and three different maximum aggregate sizes (6, 10 and 14 mm). 9 

These mixtures aimed to represent porous asphaltic materials commonly used in roads, with different 10 

maximum aggregate sizes and porosities (see Table 4 in appendix for the aggregate gradation and binder 11 

content used in the mixtures). Aggregates and bitumen were mixed at 160 °C and gyratory-compacted 12 

at 140 °C to reach the target porosity of 13%, 17%, 21%, 26% and 29%, following the standard BS EN 13 

12697-31[23]. 14 

 15 

2.2 X-ray Computed Tomography (CT) scans of asphalt mixture 16 

Asphalt cores were scanned under dry condition using a Phoenix v|tome|x L 300 micro CT scanner; the 17 

X-ray tube used is (MXR320HP/11, 3.0mm Be +2mm Al from GE Sensing and Inspection Technology) 18 

and was operated with an acceleration voltage of 290 kV and a current of 1300 µA. 19 

 20 

The X-ray CT scans were carried out in the micro computed tomography Hounsfield facility at the 21 

University of Nottingham. The reconstruction of scans was performed on GE Datos|x reconstruction 22 

software with 2x resolution to obtain a spatial resolution of 45.2 µm. The reconstructed X-ray CT scans 23 

were used to generate 3D asphalt pore models of different porosity using Avizo 8.1 and ImageJ software. 24 

A more detailed overview of the test setup and data interpretation can be found in reference [1]. 25 

 26 

2.3 3D Printing material and technology  27 

Stereolithography (SLA) printing was used to fabricate the samples due to the technology’s ability to 28 

produce fine channels and pores with high resolution (25 to 100 µm)[22]. Common materials used in 29 

SLA are acrylic clear or translucent resins that contain photo-initiators [24]. When the resin is irradiated 30 

with a laser of a wavelength that matches its photo-initiator, a rapid solidification occurs in the form of 31 

photo-polymerisation. The 3D printing process is carried out by scanning the surface of the resin with a 32 

laser beam to match the required shape layer by layer to form a complete 3D structure [18]. The printed 33 

structure was then submerged in isopropanol alcohol (IPA) for 10 minutes to make sure all resin within 34 

the pores had come out. Moreover, samples made with SLA printing materials can be considered as 35 
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hydrophobic as their mean wetting angle 68.7°±7.67 [25]. This shows that the printing materials used 1 

in SLA technology can reproduce asphalt mixture structures with close wetting properties to the real 2 

ones, as the mean wetting angle of bitumen 60/40 penetration grade is 93.04°[26]. The wetting angle of 3 

mastic is between these two values, which is in the range of SLA printing materials. 4 

 5 

2.4 Computational generation of the 3D air pore structures in asphalt material  6 

2.4.1 The porous media generator 7 

In this paper, we propose the use of the ISA method [7, 14, 27] to generate virtual porous networks 8 

similar to those seen in real asphalt samples for the purpose of 3D printing. Although the ISA method 9 

has been validated numerically in [27] against a limited sample of real asphalt cores, it has not been 10 

validated experimentally to date.  11 

 12 

The ISA method is a touch-and-stop packing algorithm where small 2D particles (circles or ellipses) are 13 

generated in random, non-overlapping positions within a specified subset of ℝ2 (e.g. a rectangle or a 14 

circle). Subsequently, the radius of said particles is increased until all touch either another particle of 15 

the edge of the chosen domain. After this first generation of particles has fully grown, new ones can 16 

follow, with the condition that their centres of growth are not within any other existing particle (i.e. a 17 

form of rejection sampling is employed).  18 

 19 

A chosen number of packed domains can be created, and the particles in each plane can be converted to 20 

solids, i.e. spheres or ellipsoids. Planes of 3D packed particles can then be layered at a chosen distance 21 

from one another, in such a way that particles from different planes are made to intersect. 22 

 23 

Finally, the “empty” space left between the layers of packed and intersecting 3D particles can be located 24 

by (i) creating a 3D grid of points with a chosen resolution and (ii) computationally checking which 25 

points in the grid are not inside any existing particle. The points in the location grid are used to create a 26 

3D Boolean matrix consisting of zeros in the void space and ones in the matter (aggregate/mastic) space. 27 

 28 

While the approach used by the ISA method is purely geometrical and, to some extent, arbitrary, its 29 

meaningfulness arises from the fact that the sampled void space has properties that are very similar to 30 

those of asphalt samples. A sample result of the ISA method can be seen in Figure 1, where the porous 31 

space corresponding to an AVC of 19.8 % is shown.  32 

 33 

For more details on the process and for a detailed analysis of its steps, we invite readers to consult [14, 34 

27]. 35 

 36 
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 1 

Figure 1: Sample layers result from the ISA methods reproducing an asphalt mixture with 19.8% 2 

air void content. 3 

 4 

2.4.2 Air voids properties considered 5 

The macropore characteristics considered in this study included macroporosity, average void diameter, 6 

Euler number and tortuosity. These properties are commonly used to analyze the topology of soils and 7 

porous media [5]. The macroporosity was calculated in MATLAB as the volume of macropores per unit 8 

of volume in the region of interest (ROI), while the average void diameter was calculated in MATLAB 9 

[28] using a watershed segmentation algorithm to detect and separate pores. 10 

 11 

The connectivity of pore networks is commonly expressed based on the Euler number (χ). This was 12 

determined from 3D binary images using MATLAB [29]. The macropores tortuosity factor from 13 

tomographic X-ray data was calculated using an open source application written in MATLAB 14 

(TORT3D) [30]. 15 

 16 

2.4.3 Optimisation of the packing parameters via Differential Evolution (DE) methods  17 

The main inputs for the ISA algorithm are the number of starting 2D particles, target planar void ratio, 18 

starting radius, maximum radius and, distance between packed domains, see Table 1. When the 19 

investigator introduces these inputs into the ISA algorithm, the output is an air void structure, which 20 

properties can be quantified. The limitation of the ISA algorithm is that the number of input 21 

combinations to produce a certain air void structure is too big to be investigated by trial-and-error. For 22 
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that reason, a DE algorithm has been used to iterate and optimise the selection of inputs for the ISA 1 

method algorithm. DE has shown to perform well in a wide variety of optimisation problem [31], in 2 

which the values to be optimised are real values. Furthermore, to limit the computational time and 3 

prevent the generation of inconsistent solutions, ranges of the inputs were selected based on the 4 

investigators’ experience and, the parameters were also rounded to the factors defined in Table 1. 5 

 6 

To start the DE algorithm a population of several initial individuals (i.e. solutions to the problem) of 7 

input parameters are randomly selected from the allowed ranges [16]; this stage is called initialization. 8 

After this, a cycle of mutation and crossover of existing solutions is performed, in which new solutions 9 

are created, so that, a fitness value is minimised (or maximise). The first individual is selected and we 10 

call it target (red individual in Figure 2); in addition, a number of individuals (usually three) are 11 

randomly selected and combined by weighting the differences of two randomly selected individuals 12 

(blue vectors in Figure 2) using a scaling factor F and adding the weighted differences to the third one 13 

(yellow vector in Figure 2), to produce a mutant individual; this stage is called mutation. Then, a child 14 

individual (see Figure 2) is produced by mixing parameters of the mutant and target individuals and, the 15 

probability that the child individual inherits parameters from one or the other parent individual is fixed 16 

by a crossover constant, which is defined between 0 and 1; this process is called crossover [32]. 17 

 18 

Finally, we must check which of the child or target individuals will produce better results and select the 19 

best one for the next iteration. These stages are repeated in subsequent DE iterations, and a graphic of 20 

error versus number of iterations can be produced. In this paper, the error is the difference between the 21 

required air void structure and the air void structure generated by the ISA algorithm. The DE algorithm 22 

will keep iterating until the error reaches a minimum level or another termination criteria is reached 23 

[33], such as a maximum number of iterations. In the literature, this mutation strategy is known as 24 

“DE/Rand/1” [31, 34]. 25 

 26 
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  1 

 Figure 2: Working of Differential Evolution algorithm 2 

 3 

In this paper, the initial number of vectors selected is 10 and, the crossover probability is 0.7, the 4 

weighting scaling factor is 0.8 and the maximum number of iterations for the algorithm has been limited 5 

to 100. These values have been selected based on experience. The error (E) was defined as: 6 

 7 

𝑬 = (|𝑴𝑹 − 𝑴𝑶𝑼𝑻|) + (|𝑨𝒗𝒅𝑹 − 𝑨𝒗𝒅𝑶𝑼𝑻|) + (|𝝌𝑹 − 𝝌𝑶𝑼𝑻|) + (|𝑻𝑹 − 𝑻𝑶𝑼𝑻|)                                (1) 8 

 9 

Where 𝑀𝑅 is the required Macroporosity (%) and 𝑀𝑂𝑈𝑇 is the calcuated Macroporosity (%), 𝐴𝑣𝑑𝑅 is 10 

the average void diameter (mm), 𝐴𝑣𝑑𝑂𝑈𝑇 is the calculated air void diameter (mm), 𝜒𝑅 is the required 11 

Euler number, 𝜒𝑂𝑈𝑇 is the calculated Euler number, 𝑇𝑅 is the required tortuosity and 𝑇𝑂𝑈𝑇 is the 12 

calculated tortuosity. 13 

 14 

 15 

 16 
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Table 1: Parameters for the DE optimisation algorithm. 1 

Parameter Unit Range Rounding 

Number of starting 2D particles  - 70-120 5, e.g. 70, 75, etc. 

Target planar void ratio % 53-63 5, e.g. 58, 62, etc. 

Starting radius  mm 0.01-0.1 0.05 

Maximum radius  mm 3.7-7.2 0.5 

Distance between packed domains - 0.8-0.95 0.05 

 2 

 3 

Figure 3: Error versus number of iterations.  4 

 5 

2.5 3D printed test samples generation 6 

Six sets of 3D printed samples were fabricated (see Table 2). First, set 1 consists of 8 samples that were 7 

generated by printing the real asphalt pore network which was captured using X-ray CT scans (see our 8 

previous paper [1] for more details). 9 

 10 

Secondly, two groups of computationally-generated samples were generated using the ISA method 11 

combined with DE optimisation. A first group (set 2) is a reference group, which consists of 8 samples 12 

that were generated to have equivalent air void content, average air void diameter, conductivity and 13 

tortuosity as the real asphalt samples (set 1). This set was built to physically validate the model described 14 

above as a tool to create asphalt porous materials for computational and physical testing.  15 

 16 

A second group of 24 samples (sets 3, 4, 5 and 6) was generated with similar properties to set 2 in terms 17 

of air void content, Euler number and tortuosity, but with lower or higher average air void contents than 18 

0

4

8

12

16

20

24

28

32

36

0 2 4 6 8 10 12 14 16 18 20

E
rr

o
r

No. iterations



9 

 

the reference set. This was done to study the effect of the air void diameter alone on the hydraulic 1 

conductivity of porous asphalt. 2 

 3 

2.6 3D printed samples fabrication 4 

Figure 4 shows the workflow for the design and manufacturing of samples corresponding to real and 5 

computationally-generated  pore networks:  6 

 7 

1. The pores and asphalt materials (aggregate and bitumen) were differentiated using X-ray CT 8 

scans. 3D models of the air voids in asphalt mixture were generated using Avizo 8.1 and ImageJ 9 

(more details on this approach can be found in [1]).  10 

2. Cropped volumes of 80 mm x 25 mm x 50 mm were taken from the centre of 3D models. 11 

3. Resin blocks with equivalent air voids to those of asphalt mixture were printed using a Formlabs 12 

Form 2 printer with 50 μm resolution, using the commercially-available Formlabs Clear 13 

FLGPCL02 proprietary resin [35].  14 

4. The support structure was cut manually from the model and then submerged in isopropanol 15 

alcohol for 10 minutes, to make sure that all the resin within the pores had been removed. 16 

5. The samples were polished using super fine 600-grit  sandpaper and finished with acrylic spray 17 

to enhance samples transparency [36].  18 

 19 

The approach taken for computationally-generated  samples is similar to the above, except from the fact 20 

that the ISA method was used to generate the air voids instead of CT scanning asphalt test samples (see 21 

Figure 4). 22 

 23 

  24 

Figure 4: Workflow for fabrication of the test samples for real and computationally-25 

generated  3D printed samples. 26 

 27 

2.7 Hydraulic conductivity experimental set up 28 

The hydraulic conductivity tests were carried out at room temperature (20 oC), following the Florida 29 

falling head method [37]. 30 

 31 
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Figure 5 shows the apparatus and experimental setup used to measure the hydraulic conductivity of 3D 1 

printed samples:  2 

 3 

1. Four acrylic plastic sides were used to build a graduated column with a 30-cm-high rectangular 4 

cross section around the asphalt sample or 3D printed resin block with equivalent air voids. 5 

Then, the column sides were tightly wrapped using tape and silicone sealant to prevent water 6 

leakage during the experiment.  7 

2. The graduated acrylic column was then attached to a plastic plate with a rectangle hole (7cm x 8 

2cm) in its centre to allow the water to flow through the sample. 9 

3. A rubber cylinder was placed in a hollow metal cylinder with a hole in the bottom to allow water 10 

movement.  11 

4. Finally, the graduated acrylic column was placed on top of a plastic tube, sealed with silicon 12 

and then placed inside the rubber cylinder.  13 

 14 

In order to measure the permeability coefficient (k), the time that 100 ml of water required to pass 15 

through the test samples was measured. The permeability coefficient (k) was calculated based on 16 

Darcy’s law [38], as it is explanied in [1]. 17 

 18 

  19 

Figure 5: Schematic representation of the hydraulic conductivity test setup  (Modified from 20 

[1]). 21 

 22 
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 1 

Table 2: Topological constants and hydraulic conductivity of all 3D printed samples studied in this 2 

research.  3 

 Sample 
number 

Macroporosity  
Average void 

diameter  
Euler 

number 
Percolation 

number 
Tortuosity 

Hydraulic conductivity  

(%) (mm) (cm/s) *10-5 

R
ea

l 
3

D
 p

ri
n

te
d

 

sa
m

p
le

s 
(S

et
 1

) 

1 15.6 1.79 -132 0.96 1.48 2024.7 
2 17.9 1.72 -390 0.93 1.34 7866.0 

3 16.1 1.78 -142 0.94 1.37 5307.1 

4 17.8 1.98 -267 0.96 1.22 7883.5 
5 21.6 2.07 -332 0.99 1.18 28237.4 

6 22.6 2.43 -229 1.00 1.13 32654.8 

7 26.3 2.54 -375 1.00 1.11 41614.8 
8 29.8 2.52 -340 0.99 1.10 83348.0 

C
o

m
p
u

ta
ti

o
n

al
ly

-g
en

er
at

ed
 

3
D

 p
ri

n
te

d
 s

am
p

le
s 

(S
et

 2
) 9 15.3 1.69 -255 0.94 1.51 3947.6 

10 15.9 1.78 -141 0.92 1.32 5518.0 

11 18.3 1.94 -317 0.95 1.30 7638.1 

12 19.8 2.00 -248 0.96 1.23 15547.1 

13 21.0 2.20 -408 0.98 1.14 30834.0 

14 23.9 2.30 -457 0.98 1.16 32929.4 

15 25.8 2.53 -475 0.99 1.13 50529.3 

16 31.8 2.71 -576 1.00 1.09 92429.5 

C
o

m
p
u

ta
ti

o
n

al
ly

-

g
en

er
at

ed
 3

D
 p

ri
n

te
d
 

w
it

h
 l

o
w

 A
v
d

*
 (

S
et

 3
) 17 14.6 1.44 -294 0.93 2.02 1962.6 

18 15.9 1.54 -367 0.95 1.28 4000.0 

19 18.2 1.59 -343 0.94 1.53 6050.9 

20 19.8 1.74 -256 0.97 1.48 7597.5 

21 21.1 1.87 -416 0.98 1.33 15889.0 

22 24.0 1.94 -459 0.98 1.15 20364.7 

23 25.8 2.23 -488 0.99 1.19 46851.1 

24 30.3 2.43 -594 1.00 1.13 92231.1 

C
o

m
p
u

ta
ti

o
n

al
ly

-

g
en

er
at

ed
 3

D
 p

ri
n

te
d
 

w
it

h
 h

ig
h
 A

v
d

 *
 (

S
et

 4
) 25 15.0 1.99 -209 0.94 1.44 4243.2 

26 15.9 2.06 -161 0.94 1.29 8363.7 
27 18.9 2.23 -241 0.96 1.25 18312.6 

28 20.0 2.36 -215 0.98 1.23 33873.6 

29 21.4 2.56 -235 0.99 1.19 41809.0 
30 23.9 2.64 -301 0.99 1.08 50586.3 

31 26.2 2.85 -224 1.00 1.13 93298.3 

32 31.8 2.98 -284 0.99 1.11 171787.3 

C
o

m
p
u

ta
ti

o
n

al
ly

-

g
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er
at

ed
 3

D
 

p
ri

n
te

d
 w

it
h

 h
ig

h
 

A
v
d

 +
 (

S
et

 5
) 

33 15.8 2.21 -203 0.99 1.25 36135.5 

34 18.5 2.62 -125 0.98 1.45 33584.4 

35 21.5 2.90 -139 0.99 1.39 64083.9 

36 26.9 3.16 -247 0.99 1.09 129225.1 

C
o

m
p
u

ta
ti

o
n

al
ly

-

g
en

er
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ed
 3

D
 

p
ri

n
te

d
 w

it
h

 l
o

w
 

A
v
d

 +
  
(S

et
 6

) 

37 14.6 1.29 -239 0.88 1.59 784.3 

38 18.3 1.39 -414 0.96 1.48 3217.5 

39 20.5 1.43 -566 0.96 1.38 9232.5 

40 25.9 1.98 -378 0.98 1.36 21065.8 

P
o

ro
u

s 
as

p
h

al
t 

m
ix

tu
re

s 
 (

se
t 

7
) M

ax
 

ag
g

re
g

at
e 

si
ze

 (
6

 m
m

) 41 18.6 1.30 -1340 0.96 1.37 - 

42 16.6 1.33 -631 0.95 1.32 - 

43 23.5 1.43 -1648 0.99 1.19 - 

44 28.1 1.56 -2178 1.00 1.13 - 

45 29.7 1.61 -2674 1.00 1.08 - 

M
ax

 

ag
g

re
g

at
e 

si
ze

 (
1
0

 m
m

) 46 23.1 1.75 -1112 0.99 1.16 - 

47 21.7 1.86 -810 0.98 1.24 - 

48 21.8 1.88 -614 0.99 1.14 - 

49 22.7 1.80 -1133 0.99 1.13 - 

50 31.3 2.02 -1887 1.00 1.07 - 

M
ax

 

ag
g

re
g

at
e 

si
ze

 (
1
4

 m
m

) 51 13.6 1.95 -37 0.88 1.39 - 

52 15.8 2.21 -140 0.95 1.34 - 

53 20.9 2.59 -254 0.98 1.25 - 

54 21.7 2.68 -361 0.99 1.15 - 

55 28.6 3.03 -499 1.00 1.06 - 

* 15% low or high Avd from reference set 2. 4 
+ 30% low or high Avd from reference set 2.  5 
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3 RESULTS AND DISCUSSION 1 

3.1 Comparison between computationally-generated and real 3D printed topological properties of 2 

air voids 3 

The topological constants and hydraulic conductivity of the real and computationally-generated 3D 4 

printed samples are listed in Table 2 and the Pearson’s correlation coefficient for the properties studied 5 

are shown in Table 3. In addition, Figure 6 shows the relationship between the hydraulic conductivity 6 

of real and computationally-generated  3D printed samples. Table 3 shows that the computationally-7 

generated  and real CT scanned samples have a high degree of similarity in the macroporosity, air void 8 

diameter, conductivity and tortuosity values, as the Pearson’s correlations (r) are 0.93, 0.97, 0.94 and 9 

0.98, respectively. In addition, Figure 6 shows close values of hydraulic conductivity between real and 10 

computationally-generated printed samples (R2=0.84), indicating that they have similar pore space 11 

properties. However, it can be seen that computationally-generated samples have slightly higher 12 

hydraulic conductivity values. This could be due to higher Euler numbers in the computationally-13 

generated samples, which leads to more paths connecting the top and bottom surfaces of the samples. 14 

 15 

Overall, the results show that the ISA method combined with DE can effectively create realistic 3D pore 16 

networks similar to those seen in porous asphalt. Moreover, Figure 7 shows that, visually, the 17 

computationally-generated  and real pore networks appear similar, too.  18 

 19 

Table 3: Pearson’s correlation between real and computationally-generated sample 20 

parameters studied. 21 

Macroporosity (M), Average void diameter (Avd), Euler number (χ), Tortuosity (T). 22 

 Pearson's r 

M  0.93 

Avd 0.97 

χ 0.94 

T  0.98 

 23 

 24 
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   1 

Figure 6: Hydraulic conductivity of real samples versus hydraulic conductivity of 2 

computationally-generated  samples. 3 

 4 

Figure 7: (a) Pore space of the real sample #7, (b) Pore space of the computationally-5 

generated sample #15, (c) 3D printed real sample #7, and (d) 3D printed computationally-6 

generated sample #15. 7 

 8 

0

20000

40000

60000

80000

100000

0 20000 40000 60000 80000 100000

H
y
d

ra
u

li
c 

co
n

d
u

ct
iv

it
y
 

o
f 

re
a
l 

sa
m

p
le

s 
(c

m
/s

) 
x
1
0

-5

Hydraulic conductivity of computationally-generated 

samples (cm/s) x10-5

R2=0.84



14 

 

3.2 Comparison of the pore network structure and shape parameters  1 

Figure 8 shows the pore size distribution for the 3D printed real samples #1, # 4, #7 and the equivalent 2 

computationally-generated samples #9, #11, #15. In this paper, we considered pore size instead of 3 

average void diameter, as the former parameter captures better the local features of the 3D pore network 4 

[39]. It can be seen that the computationally generated samples have a more homogeneous pore size 5 

distribution than the real samples. This reflects the fact that the ISA method uses spheres to generate an 6 

approximation of the pore space, while real aggregates have more irregular shapes. This difference in 7 

pore size distribution can be the reason that computationally-generated samples have higher Euler 8 

numbers and hence slightly higher hydraulic conductivity as shown in the section above. However, the 9 

differences between real and computationally-generated samples is limited, and the pore size 10 

distributions are comparable.  11 

 12 

Figure 9 shows the pore circularity, aspect ratio and roundness for the real sample #7 and the 13 

computationally-generated sample #15. In Figure 9 (a), it can be observed that the real sample #7 has a 14 

slightly higher pore circularity than the computationally-generated sample # 15. Overall, Figure 9 shows 15 

that the computationally-generated sample #15 is a close match to the real sample #7 in terms of pore 16 

shape size, aspect ratio and roundness of the air voids. This is an indication that the model proposed in 17 

this research can successfully create asphalt pore structures with realistic features in terms of the air void 18 

shape parameters.  19 

 20 

   21 

Figure 8: Pore size diameter distributions for the real samples #1, # 4, #7 and the 22 

computationally-generated samples #9, #11, #15. 23 
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  1 

Figure 9: Pore shape parameters of the real samples #7 and computationally-generated 2 

sample # 15 (a) Pore shape factor, (b) Aspect ratio and (c) Roundness.  3 

 4 

In order to measure the accuracy of the computationally-generated samples, we calculated the 5 

autocorrelation function (ACF) [40] using the Radially Averaged Autocorrelation macro, in ImageJ. The 6 

ACF characterises the probability of finding two voxels in the 3D space separated with distance (r) that 7 

belong to the same phase. These two voxels represent a morphological indicator of an air void structure. 8 

Figure 10 shows a comparison between the ACFs for real samples #1, #4, #5, #7 and computationally-9 

generated samples #9, #11, #13, #15. The high similarity between the real and computationally-10 

generated samples curves indicates that the ISA method optimised via DE is a suitable approach to 11 

generate asphalt pore macrostructures with realistic features. 12 

 13 

   14 

Figure 10: Comparison of the ACF curves of real samples #1, #4, #5, #7 against the 15 

computationally-generated  sample #9, #11, #13, #15. 16 
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3.3 Comparison of the average void diameter for real porous asphalt samples made with different 1 

maximum aggregate size and gradation and 3D printed computationally-generated samples.  2 

The topological constant for real porous asphalt samples analyzed using x-ray computed tomography 3 

have been represent in Table 2. In addition, Figure 11 shows the effect of maximum aggregate size and 4 

aggregate gradation on average void diameter for all real porous asphalt and for computationally-5 

generated asphalt samples. It can be seen that porous asphalt samples with high maximum aggregate 6 

size and coarse gradation tend to have a higher average void diameter, while the asphalt samples with 7 

lower maximum aggregate size and fine gradation tend to have a lower average void diameter.  8 

 9 

Moreover, computationally-generated samples of set 6, i.e. samples generated with low Avd, are visually 10 

equivalent to real samples made with 6 mm maximum aggregate size. Furhermore, computationally-11 

generated samples in Set 5, i.e. computationally-generated samples with high Avd, are visually close to 12 

porous asphalt sample made with maximum aggregate size of 14 mm. Furthermore, in Figure 11, a 13 

whole range of computationally-generated test specimens, from Sets 3 and 4, with intermediate air void 14 

diameters, has been represented to demonstrate that most of the samples studied fell in the range between 15 

6mm and 14mm of maximum aggregate size. In the future, by creating an extensive database of X-ray 16 

CT data of asphalt with a range of maximum aggregate sizes and aggregate gradations, it will be possible 17 

to re-create exactly the air void structure of every test specimen possible.   18 

 19 

 20 

 21 

Figure 11: Effect of maximum aggregate size and aggregate gradation on the average void 22 

diameter for all real asphalt samples and data for computationally-generated asphalt samples.    23 
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3.4 Effect of average void diameter on hydraulic conductivity  1 

The topological constants and hydraulic conductivity for the real and computationally-generated 3D 2 

printed samples are represented in Table 2. In addition, Figure 12 shows the effect of the average air 3 

void diameter (Avd) on the hydraulic conductivity of computationally-generated 3D printed samples. It 4 

can be seen that the hydraulic conductivity increases with the average air void diameter, ranging from 5 

784x10-5 cm/s at 1.29 mm Avd to 1.71 cm/s at 3 mm Avd.   6 

 7 

Furthermore, Figure 12 shows the effect of changing the average air void diameter on the hydraulic 8 

conductivity of asphalt mixture when the air void content remains constant. It can be observed that: 9 

 10 

 The hydraulic conductivity of samples with air void content from 14.6% to 15.8% ranges 11 

between 784x10-5 cm/s and 0.18 cm/s, when the average void diameter increases from 1.29 mm 12 

to 2.21 mm. 13 

 14 

 The hydraulic conductivity of samples with air void content from 25.8% to 26.9% ranges 15 

between 0.32 cm/s and 1.29 cm/s when the average void diameter increases from 1.98 mm to 16 

3.16 mm. 17 

 18 

This suggests that increasing or decreasing the average void diameter significantly affects hydraulic 19 

conductivity when the air void content remains constant. Furthermore, it shows that samples with a 20 

lower air void content are more sensitive to changes in the average void diameter in terms of their 21 

hydraulic conductivity. This is likely to be caused by a smaller connected air pore network. As for 22 

example, sample # 33 has percolation number, which represent the volume of the biggest connected air 23 

void to the total volume of air void, of 0.99 when Avd is 2.21 mm, while the sample # 37 have percolation 24 

number of 0.88 when Avd is 1.29 mm (see Table 2). 25 

 26 

Furthermore, in Figure 12, it can be observed that sample #33 with 15.2% air void content can have the 27 

same hydraulic conductivity as sample #11 with 18.3% air void content when the average void diameter 28 

increases from 1.943 mm to 2.211 mm.  29 
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     1 

 2 

Figure 12: Effect of average void diameter on the hydraulic conductivity for computationally-3 

generated asphalt samples. 4 

 5 

3.5 Effect of air void properties on hydraulic conductivity  6 

Figure 13 shows the hydraulic conductivity for all computationally-generated printed samples against 7 

several hydraulic conductivities of asphalt mixture, obtained from data in the literature [41-54]. It can 8 

be seen that the printed samples built using different average air void diameters, have a range of 9 

hydraulic conductivities which matches existing data from the literature.  10 

 11 

Moreover, Figure 13 shows that most of the hydraulic conductivity data points from the literature fall 12 

between the experimental curves obtained in this study. For example, test samples from Set 6 are 13 

equivalent to materials built with maximum aggregate size 6 mm and, test samples from Set 5 are 14 

equivalent to materials built with maximum aggregate size 14 mm. This may mean that the dispersion 15 

in hydraulic conductivity at constant air void content arises from variations in the average air void 16 

diameter, which in the field can happen due to the changing aggregate gradation and maximum 17 

aggregate size as shown in section 3.3. Based on this, we could predict the hydraulic conductivity of an 18 

asphalt mixture by knowing its air void content [1] and maximum aggregate size. 19 

 20 

Finally, in Figure 13, it can also be observed that some samples from the literature fell outside the range 21 

measured, especially at air void content  lower than approximately 15%. This may be caused by a very 22 

low average void diameter, which indicates that these samples have pore networks with few connections, 23 

positive Euler number and low percolation number and, posible, small maximum aggregate size (such 24 

as a mastic type mixture). Furthermore, the data represented in Figure 13 show that sets 5 and 6, i.e 25 

computationally-generated samples equivalent to materials with maximum aggregate size 14mm and 26 
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6mm, respectively, correspond to the approximate upper and lower percentile curves of hydraulic 1 

conductivity. 2 

 3 

  4 

Figure 13: Hydraulic conductivity versus air void content for all samples studied and data 5 

from literature [41-54].  6 
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4 CONCLUSIONS 1 

In this study, a range of pore space of porous asphalt samples were generated using a virtual air pore 2 

generator optimized by differential evolution (DE) algorithm and 3D printed in resin blocks. Moreover, 3 

the permeability test was conducted on the 3D samples to understand the effect of pore topology such 4 

as average void diameter on the hydraulic conductivity. Based on the research discussed in this paper, 5 

the following conclusions can be drawn: 6 

 7 

1- The Stacked Intersected Air voids (ISA) method, described in [7, 14, 27],  can generate 3D pore 8 

networks equivalent to those in asphalt mixtures, in terms of visual, topological, statistical and 9 

air void shape properties. This makes possible to precisely investigate water permeability using 10 

3D printing technology rather than using test samples and X-ray CT scans.  11 

 12 

2- Differential evolution (DE) algorithms can be used to optimise the ISA method, as the approach 13 

uses a set of five input parameters that can be combined to generate a target pore space.  14 

 15 

3- When the average air void diameter decreases for the samples with constant air void content, 16 

(1) the percolation number decreases, which means that samples have a less connected pore 17 

networks; and (2) the hydraulic conductivity decreases. 18 

 19 

4- The average air void diameter has significant influence on the hydraulic conductivity of asphalt 20 

mixture with equivalent air void content range. Increasing the average void diameter tends to 21 

decrease the hydraulic conductivity of the sample, as the number of paths from the sample 22 

surface to its bottom decreases.  However, the few paths have a higher diameter which reflects 23 

the higher hydraulic conductivity. 24 

 25 

5- Based on all the information presented in this paper, we can predict the range of average void 26 

diameter, and so we can find the aggregate gradation and maximum aggregate size based on 27 

hydraulic conductivity and air void content for porous asphalt materials in the range of porosity 28 

studied in this study. 29 

 30 

6- Future research should focus on the effects of topological properties such as connectivity and 31 

tortuosity on hydraulic conductivity of porous asphalt materials. Furthermore, the effects of 32 

aggregate gradation, binder content, compaction level, type of aggregate and maximum 33 

aggregate size on the topological parameters and hydraulic conductivity remains to be 34 

investigated. 35 

 36 

 37 
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Appendix: 3 

Table 4: Aggregate grading and binder content used to produce porous asphalt mixtures. 4 

Max aggregate 

size 
6 mm                                      10 mm 14 mm 

Target porosity 13% 17% 21% 26% 29% 13% 17% 21% 26% 29% 13% 17% 21% 26% 29% 

sieve size (mm) Cumulative aggregate weight % passing 

63.000 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 

40.000 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 

31.500 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 

20.000 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 

16.000 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 

14.000 100 100 100 100 100 100 100 100 100 100 97 96 96 95 95 

10.000 100 100 100 100 100 94 94 94 93 93 55 51 44 38 34 

8.000 100 100 100 100 100 72 70 67 65 64 37 33 25 19 14 

6.300 97 97 97 96 96 42 39 34 30 27 29 25 19 16 11 

4.000 49 45 41 36 31 22 19 15 12 8 22 19 14 12 7 

2.800 35 29 24 19 12 18 15 12 10 6 20 17 12 11 6 

2.000 29 24 20 15 9 16 13 11 8 5 17 15 11 9 5 

1.000 21 18 14 11 7 12 10 8 6 4 13 11 8 7 4 

0.500 16 13 11 8 5 8 7 6 5 3 9 8 6 5 3 

0.250 12 10 8 7 4 7 6 5 4 2 7 6 5 4 3 

0.125 9 8 7 5 4 5 4 4 3 2 6 5 4 3 2 

0.063 7 6 5 4 3 4 4 3 2 2 4 4 3 3 2 

Binder content (%) 6 5.7 5.5 5.3 5 5.5 5.2 4.8 4.3 4.2 5 4.7 4.5 4.3 4 

 5 


