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Abstract 39 

Chemical fractionation via sequential extraction (SEP) combined with isotopic analysis of Pb was used 40 

to investigate the origins and reactivity of Pb in 66 topsoil samples collected from 12 different locations 41 

in Egypt.  The total soil Pb concentrations (TPb) covered a wide range (~ 80 – 16,000 mg kg-1), but 42 

were only elevated in four industrial and urban locations within Cairo and Alexandria.  In all the other 43 

locations values of TPb were generally low and were close to the average crustal Pb concentration of 44 

14 mg kg-1.  The largest Pb fraction in all soils, with the exception of two industrial locations, was the 45 

‘residual’ fraction (38 – 63% of TPb) followed by Pb bound to ‘organic’ and ‘metal oxide’ phases.  The 46 

Pb isotopic signatures (206Pb/207Pb vs 208Pb/207Pb) of all samples in all SEP fractions were highly 47 

variable, suggesting a heterogeneous mix of Pb contamination sources; however, they aligned closely 48 

to a binary mixing line between geogenic and petrol Pb sources.  There were similar patterns across all 49 

of the non-residual fractions with measureable data (F2 – F4) suggesting that the non-residual 50 

anthropogenic-Pb and geogenic-Pb have been assimilated into common pools within the soil.  Binary 51 

and ternary source-apportionment models based on Pb isotopic ratios and abundances showed that 52 

the relative contribution of petrol-Pb and geogenic-Pb can be ascribed with reasonable certainty.  53 

However, the contribution of further sources can only be accounted for if the isotopic abundance of all 54 

end-members are known and are at the periphery of the soils dataset.  55 

 56 
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1. Introduction  69 

Lead (Pb) is listed by the WHO as a chemical of major public health concern because of its high toxicity 70 

to living organisms (WHO, 2010).  Long-term exposure of humans and animals to low levels of Pb 71 

through inhalation and/or ingestion may lead to a range of adverse clinical complications including 72 

neurological, cardiovascular and renal damage (Needleman and Bellinger, 1991). Geogenic Pb is 73 

composed of four stable isotopes: 208Pb (52%), 206Pb (24%), 207Pb (23%) and 204Pb (1%); the only 74 

primordial isotope is 204Pb, while the others are the fission products of uranium and thorium (Komárek 75 

et al., 2008).  Therefore, the isotopic composition of Pb varies between different geological sources and 76 

this can be used as a tool to identify sources of pollutant Pb and to study its environmental fate 77 

(Veysseyre et al., 2001).  78 

 79 

The large scale industrialization and urbanization of Egypt since the 1950’s, in addition to the common 80 

practice of open air incineration of agriculture and other waste (Mohamed et al., 2015), were associated 81 

with the emission of large amounts of pollutants (including Pb) to the atmosphere.  As a result, by the 82 

late 1980’s and early 1990’s Pb in the atmosphere of urban Egypt reached deleterious concentrations 83 

(Hassanien and Horvath, 1999, Nasralla and Ali, 1984, Shakour and El-Taieb, 1994). However, due to 84 

the introduction of the Environment Law in 1994 and the implementation of several environmental 85 

protection measures, such as relocating lead smelters and phasing out leaded petrol, the concentration 86 

of atmospheric Pb in urban Egypt reached safe levels by the end of the 1990’s (Hassan et al., 2013, 87 

Hassanien et al., 2001, Rizk and Khoder, 2001, Safar and Labib, 2010).  Nevertheless, most of the 88 

legacy anthropogenic-Pb which has been deposited on surface soils may not have been fully 89 

assimilated into the same soil fractions as geogenic-Pb.  The bioavailability and mobility of contaminant 90 

Pb is therefore difficult to predict and it may be transferred to food and fodder crops and surface or 91 

ground waters more readily than geogenic-Pb.   92 

 93 

Measuring total concentrations of heavy metals in soils may not always be a useful approach for risk 94 

assessment because, frequently, only a small proportion of soil metal is mobile under natural conditions 95 

(Tack and Verloo, 1995, Teutsch et al., 2001).  It is therefore useful to estimate the labile, and potentially 96 

bioavailable, metal pool alongside the total concentration (Meers et al., 2007, Young et al., 2000).  97 

Sequential extraction protocols (SEP) have been used to investigate the chemical fractionation and 98 



4 
 

potential availability of heavy metals in soils.  Possibly the most established SEP is the one developed 99 

by Tessier et al. (1979) which provides a guide to the likely chemical form of metals in soil or the 100 

adsorption phases with which the metals are associated.  In the Tessier SEP, five operational fractions 101 

are identified: (F1) Exchangeable (metal fractions desorbed due to changes in the ionic composition of 102 

soil solution), (F2) Bound to carbonates (metal fractions reactive to pH fluctuations), (F3) Bound to Fe 103 

and Mn oxides (fractions that can be released by reduction of oxides under low Eh conditions), (F4) 104 

Bound to organic matter (metal fractions released under strong oxidizing conditions), and (F5) Residual 105 

(metal fractions held within the crystal structure of soil minerals).        106 

 107 

The main aim of this work was to assess the current reactivity of Pb, and identify its origins, in Egyptian 108 

soils two decades after phasing out leaded petrol and implementing countermeasures to Pb pollution.  109 

This was achieved by studying the chemical fractionation and isotopic composition of Pb in some 110 

Egyptian surface soils and the soil properties likely to control them.  A total of 66 soil samples that had 111 

been exposed to different degrees of Pb contamination were collected and characterized. Soil metals 112 

were chemically fractionated based on the SEP procedure of Tessier et al. (1979). The isotopic 113 

abundances of the four stable Pb isotopes were also measured in the SEP extracts by inductively 114 

coupled plasma mass spectrometry (ICP-MS).  The objective was to assess the degree of assimilation 115 

of anthropogenic-Pb (mainly petrol-Pb) and geogenic Pb, into each soil Pb fraction (Shetaya et al., 116 

2018).  Moreover, multiple-sources models were used to try to identify the relative contribution of petrol, 117 

geogenic and industrial Pb sources, to different soil phases, based on their Pb isotopic signatures.          118 

 119 

 120 

 121 

 122 

 123 

 124 

 125 

 126 

 127 

 128 
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2. Materials and Methods 129 

2.1. Soil sampling  130 

Sixty six topsoil samples (0 – 20 cm) were collected, along a transect 0 - 100 m away from main roads,  131 

from 12 different locations in Egypt representing industrial, urban, agriculture and background sites 132 

(Table 1). Industrial locations included a cement factory (HE-I), inactive lead smelter (SH-I) and a major 133 

waste water treatment facility (CA-I). Urban soils were sampled around major motorways within the 134 

largest two urban conurbations in Egypt: Greater Cairo (CA-U and SH-U) and Alexandria (AX-U), in 135 

addition to Ismailia City (IS-U) and Assiut-Menya desert motorway (AM-U). Agriculture soils were 136 

collected from arable fields within Ismailia (IS-G) and Sharkia (SK-G) governorates. Reference 137 

(background) soils were sampled from 2 rural locations that were expected to have been exposed to 138 

minimal Pb deposition or discharge including sites in the Sinai Peninsula (SI-B) and Suez governorate 139 

(SZ-B).  Soils were collected with a clean stainless steel trowel and sealed in plastic bags for transport.  140 

Table 1. Sampling locations, codes and description. Letters I, U, G and B at the end of sample codes 141 
refer to the industrial, urban, agriculture and background nature of the sampling location, respectively.        142 

Site nature Location Code Number of 
Soil Samples 

Coordinates 

Industrial Cairo - Helwan HE-I (Cement Factory) 4 29.83N, 31.31E 

Cairo - Shubra SH-I (Lead Smelter) 4 30.11N,  31.27E 

Cairo - Khanka CA-I (Waste Water Treatment) 4 30.20N, 31.37E 

Urban and  
Motorways 

Cairo - Ring Road CA-U 10 30.17N, 31.35E 

Alexandria AX-U 5 31.15N, 29.97E 

Cairo - Shubra SH-U 8 30.14N, 31.25E 

Ismailia IS-U 8 30.59N, 32.27E 

Assiut - Minya AM-U 4 27.93N, 30.57E 

Agriculture Ismailia IS-G 4 30.68N, 32.05E 

Sharkia SK-G 4 30.64N, 31.70E 

Background Sinai SI-B 3 30.83N, 34.14E 

Suez SZ-B 8 30.10N, 32.57E 

 143 

2.2. Characterization of soil samples  144 

Soil samples were air dried at room temperature and then sieved to <2 mm particle size; a fraction of 145 

each sample was finely ground with an agate ball mill (Retsch PM400).  To measure soil pH, 5 g of the 146 

sieved soils, were suspended in 12.5 mL MQ water (18.2 MΩ cm) and shaken end-over-end for 30 min; 147 

pH was measured with a glass electrode allowing 5 min for equilibration.  The organic carbon content 148 

of the soils was determined with a CN analyzer (Elementar VarioMax) after carbonates were removed 149 

with 50% HCl. Available phosphorus was extracted with 0.5 M sodium bicarbonate (NaHCO3) solution 150 
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at pH 8.5 (Olsen et al., 1954) and assayed using a variation on the phosphomolybdate method 151 

(Drummond and Maher, 1995) by measuring absorbance in a 1 cm cell at 880 nm (CE 1011 152 

spectrophotometer, Cecil Instruments). Amorphous (reactive) Fe, Al and Mn oxides were extracted from 153 

the finely ground soils by the citrate-bicarbonate-dithionite protocol developed by Kostka and Luther 154 

(1994); total Fe, Al and Mn concentrations in the filtered supernatants were  assayed by ICP-MS. Total 155 

soil Pb (TPb) and total phosphorus (P) content were assayed by ICP-MS following digestion of 0.2 g 156 

finely ground soil samples in an acid mixture composed of Primar Plus™ or Analytical grade HF (2.5 157 

mL; 40%), HNO3 (2 mL; 70%), HClO4 (1 mL; 70%) and H2O (2.5 mL).   158 

2.3. Sequential Extraction of Pb  159 

All soil samples were extracted, in duplicate, by a sequential extraction procedure (SEP) adapted from 160 

that of Li and Thornton (2001) which was originally developed by Tessier et al. (1979) as shown below.  161 

1- Exchangeable fraction (F1): 1 g soil samples (<2mm sieved) were extracted in polycarbonate 162 

centrifuge tubes for 20 min with 8 mL 0.5 M MgCl2. 163 

2- Bound to carbonate fraction (F2): the residues from F1 were extracted with 8 mL 1 M CH3COONa 164 

(adjusted to pH 5 with CH3COOH) for 5 hours. 165 

3- Bound to iron and manganese oxides (F3): the residues from F2 were extracted with 10 mL 0.04 166 

M hydroxylamine hydrochloride in 25% (v/v) CH3COONa at 96oC in a water bath for 6 h with 167 

occasional agitation.  168 

4- Bound to organic matter (F4): the residues from F3 were extracted with 3 mL 0.02 M HNO3 and 5 169 

mL 30% H2O2 (adjusted to pH 2 with HNO3) and tubes were heated to 85OC in a water bath and 170 

maintained for 2 h with occasional agitation. Three mL H2O2 (adjusted to pH 2 with HNO3) were 171 

then added and tubes were heated again for 3 h at 85OC with intermittent agitation. After cooling, 172 

5 mL 3.2 M CH3COONa in 20% (v/v) HNO3 were added and the tubes were agitated for 30 min. 173 

Sample tubes were centrifuged after each extraction step and the supernatant solutions were syringe 174 

filtered and retained for multi-element and Pb isotopic analysis by ICP-MS; the remaining soil was 175 

retained for the next extraction step.  Carry-over from the previous step was accounted for 176 

gravimetrically.   177 

The concentration of Pb (mg kg-1) in the residual phase (F5) was calculated by subtracting the 178 

summation of Pb concentrations (mg kg-1) in the first four steps (F1-F4) from total soil Pb (TPb) 179 
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measured in the HF-HClO4-HNO3 acid soil digestates.  For quality assurance, the recovery of the SEP 180 

procedure was tested on 11 samples in which the residual fraction was digested in a mixture of HF-181 

HClO4-HNO3 for 19 h (Atkinson et al., 2011); 95 – 110 % recovery was achieved for Pb.  182 

The individual isotopic concentrations of Pb in the residual fraction (F5) were obtained from the isotopic 183 

abundances (IA) of the total soil Pb and fractions F1 to F4. (Eq. 1).  184 

XPbF5 = TPb xIAT – (PbF1 xIAF1 + PbF2 xIAF2 + PbF3 xIAF3 + PbF4 xIAF4)            (1) 185 

where, xPbF5 is the concentration (mol kg-1) of a xPb isotope (204Pb, 206Pb,207Pb or 208Pb) in the residual 186 

fraction (F5); TPb and PbF1, F2, F3 or F4 are the total soil and non-residual fraction (F1, F2, F3 or F4) 187 

concentrations of Pb (mol kg-1), respectively; xIAT
 and xIAF1, F2, F3 or F4 are the total soil and non-residual 188 

(F1, F2, F3 or F4) isotopic abundances of xPb.  189 

No attempts were made to investigate artificial isotopic fractionation of Pb during the sequential 190 

extraction procedure. However, heavy atoms e.g. Pb isotopes with very small fractional differences in 191 

atomic mass would not support mass-dependent fractionation during chemical processes on any 192 

significant level (Bacon et al., 2006, Komárek et al., 2008, Lee and Yu, 2016, Monna et al., 1997). This 193 

was also found to be true for even much lighter elements e.g. Fe and Cu with relatively large fractional 194 

differences in atomic mass (Roebbert et al., 2018).     195 

2.4. Elemental and isotopic analyses by ICP-MS 196 

Concentrations of Pb, P, Fe, Al and Mn in soil digestates and extracts were determined using ICP-MS 197 

(Model iCAPQ; Thermo Fisher Scientific GmbH, Bremen, Germany) as described in Shetaya et al. 198 

(2018).  Briefly, samples and multi-element calibration standards (Certiprep/Fisher, UK) were diluted in 199 

2% Primar Plus™ grade HNO3 and measured in triplicate.  Internal standards, including Rh and Ir in 200 

2% HNO3 were introduced to the sample stream via a t-piece.  Limits of detection (LOD) were calculated 201 

from analysis of 16 blanks. Montana soil reference material (NIST 2711) was used for quality assurance 202 

and 96 ± 4% average recovery was achieved across all measured elements. 203 

The 204Pb, 206Pb, 207Pb and 208Pb isotopic abundances in all samples were measured with a short dwell 204 

time of 2.5 ms and a total of 10,000 sweeps were used to mitigate the effects of ‘plasma flicker’ and 205 

achieve a high level of precision.  For internal mass bias correction, a Tl solution (10 g L-1), was 206 

introduced directly to the internal standard line and the variations in the 203Tl/205Tl ratios were used to 207 
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correct shifts in Pb isotopic ratios (Blum and Bergquist, 2007, Shetaya et al., 2017). In addition, drift in 208 

mass bias was corrected externally by repeatedly assaying the certified Pb isotope standard NIST-981 209 

and using linear interpolation to correct CPS ratios to isotopic ratios for samples (Atkinson et al., 2011, 210 

Marzouk et al., 2013b). To reduce polyatomic interferences from 92Os-16O (208 mass), 193Ir-14N (207 211 

mass) and 205Tl-H (206 mass), the ICP-MS was used in the kinetic energy discrimination (KED) mode 212 

with helium as a collision gas. The isobaric interference to 204Pb from 204Hg was corrected by 213 

determining intensity at m/z = 202 (202Hg) and, from expected isotopic ratios, subtracting the intensity 214 

(CPS) attributed to 204Hg within the instrument software. However, in practice the overall contribution of 215 

204Hg to the intensity at m/z 204 was trivial and the average ratio of 204Hg/204Pb in the measured soil 216 

factions was estimated as 0.0033.  All solutions were diluted to ensure that the detector operated in 217 

‘pulse-counting’ mode; data were rejected and sample analysis repeated, after appropriate dilution, if 218 

the detector ‘tripped’ to an analogue measurement in response to large count rates, typically > 1.5 219 

million counts s-1 for the 208Pb isotope (Marzouk et al., 2013a). 220 

2.5. Binary and ternary source apportionment  221 

Frequently, two identifiable sources of Pb are apparently present in soil, arising from (i) the petrol 222 

additive tetra-methyl Pb (‘Petrol-Pb’) and (ii) the underlying parent material (‘Geogenic-Pb’). As a first 223 

approximation, we can then add a (single) third source, which is considered to originate from a range 224 

of industrial and power generation sources (‘Industrial’). This may be similar to the Geogenic-Pb if there 225 

is a local source of coal or Pb ore. 226 

The proportional contribution (%) of any two Pb sources (e.g. Petrol, Geogenic or Industrial), to total 227 

soil Pb (TPb) or total Pb concentration in any of the SEP fractions, was calculated from Eq. 2 (Lee and 228 

Yu, 2016, Mao et al., 2014).  229 

%PbA  = 
IRT - IRB

IRA - IRB
 x 100                      (2) 230 

where, %PbA is the proportion of TPb from source A; IRA and IRB are the Pb isotopic ratios (206Pb/207Pb 231 

or 208Pb/207Pb) of sources A and B, respectively; IRT  is the measured Pb isotopic ratio (206Pb/207Pb or 232 

208Pb/207Pb) of the whole soil or any individual SEP fraction (F1 – F5). 233 

The relative contribution of three different end-member (pure) sources was modeled using Eq. 3 and 234 

Eq. 4 adapted from Cheng and Hu (2010) and Luo et al. (2015).   235 
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%PbA + %PbB + %PbC = 100%                   (3)  236 

where, %PbA, %PbB and %PbC are the proportions of Pb from sources A, B and C to TPb or total Pb in 237 

any of the five SEP fractions.  238 

xIAT = %PbA
 xIAA  + %PbB

 xIAB + %PbC
 xIAC                 (4) 239 

where, xIAT is the isotopic abundance of a xPb isotope (204Pb, 206Pb,207Pb or 208Pb) in soil or individual 240 

SEP fractions;  xIAA, xIAB and xIAC are the isotopic abundances of the same isotope in the pure sources 241 

A, B and C.  242 

The ‘Solver’ function in the software package Excel 2017 was used to minimize the residual standard 243 

deviation (RSD) between the modelled and measured isotopic abundances of all soils simultaneously. 244 

The operation was performed independently for total soil Pb (TPb) and for Pb in all of the five SEP 245 

fractions (F1 – F5).  246 

The anthropogenic-Pb isotopic distribution, in any soil phase (total or F1 – F5), was calculated by 247 

subtracting geogenic-Pb from total Pb (TPb) assuming uniform distribution of geogenic-Pb across the 248 

studied terrains (Eq. 5).  249 

 xPbAT = PbT xIAT –  PbG xIAG           (5) 250 

where, xPbAT is the anthropogenic concentration (mol kg-1) of an isotope (204Pb, 206Pb,207Pb or 208Pb), in 251 

any soil phase (total or F1 – F5); PbT and PbG are the total soil Pb and geogenic-Pb concentrations (mol 252 

kg-1), respectively (in the respective soil fraction); xIAT
 and xIAG are the isotopic abundances in total and 253 

geogenic Pb, respectively.  254 

These approaches only present a simplified image of a complex geochemical system where soil Pb is 255 

a mixture of numerous sources.  However, potentially they provide a means of quantifying the relative 256 

contribution of the two or three major Pb sources to each soil SEP fraction.   257 

  258 

 259 

 260 
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3. Results and Discussion 261 

3.1. Soil Properties  262 

Key soil parameters are shown in Table 2. Total soil Pb concentrations (TPb) in the studied locations 263 

are discussed in detail by Shetaya et al. (2018). Briefly, TPb was greatest at the lead smelter site (SH-264 

I), peaking at ~ 31,000 mg kg-1 with an average of ~ 16,200 mg kg-1. This was followed by the industrial 265 

location CA-I (waste water treatment) and the urban locations CA-U and AX-U within Cairo and 266 

Alexandria with average TPb values of 171, 160, and 82.6 mg kg-1, respectively. However, significant 267 

difference (p<0.05; 2 sample t-test; Minitab 17) were only found between CA-I and AX-U locations. All 268 

other non-background locations showed relatively low TPb levels with an average of 17 mg kg-1 which 269 

is slightly above the Pb average crustal abundance of 14 mg kg-1 (Emsley, 2011) indicating generally 270 

low levels of Pb contamination in the soils of Egypt.  All soils, with the exception of a few individual 271 

samples, were alkaline and organic-poor (pH 8 and 1% SOC on average) likely due to the calcareous 272 

and sandy marine origins of Egyptian soils (Shaheen, 2009).  273 

 274 

 275 

 276 

 277 

 278 

 279 

 280 

 281 
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Table 2. Soil parameters including total soil Pb (TPb), soil pH, organic content (%SOC), available P (Olsen) and total P, and reactive Al, Mn and Fe 282 
oxides; n = number of samples in each location and NA = not available (not measured). Letters I, U, G and B at the end of sample codes refer to 283 
the industrial, urban, agriculture and background nature of the sampling location, respectively.        284 

 285 

 286 

 287 

Location 
 

n Total Pb (TPb) 
(mg kg-1) 

pH SOC 
 (%) 

Available P 
(mg kg-1) 

Total P  
(g kg-1) 

Al2O3 
(g kg-1) 

MnO2 
(g kg-1) 

Fe2O3 
(g kg-1) 

Mean SD Max. Min. Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD 

Industrial                    

HE-I 4 19.5 2.83 23.5 16.9 9.7 1.3 0.95 0.19 27.9 7.47 0.24 0.06 1.08 0.77 0.02 0 3.21 1.01 

SH-I 4 16201 15788 30808 2494 8 0.2 2.31 2.52 85.3 20.5 1.06 1.17 2.8 2.47 0.08 0.01 5.62 1.98 

CA-I 4 171 14.2 184 157 8.3 0 3.48 0.61 215 23.1 0.14 0.11 2.5 1.35 0.23 0.33 4.6 5.68 

Urban                    

CA-U 10 160 185 459 8.04 8.2 0.2 0.90 0.35 13.4 12.3 0.63 0.24 2.29 0.81 0.6 0.32 7.61 3.32 

AX-U 5 82.6 94.6 247 18.3 7.8 0.7 3.20 1.92 NA NA 0.4 0.05 30.5 8.68 0.59 0.12 30.3 9.84 

SH-U 8 25.4 10.3 37.6 11.9 7.8 0.2 0.96 0.79 39.6 43.1 1.13 0.46 2.53 0.18 0.6 0.08 13.1 4.92 

IS-U 8 18.7 11.1 40.5 6.47 7.9 0.2 0.52 0.50 13.2 10.7 0.28 0.15 1.31 0.32 0.09 0.05 2.67 0.79 

AM-U 4 10.3 2.56 12 5.81 8.5 0.5 0.11 0.06 1.8 0.34 0.33 0.05 1.15 0.5 0.01 0.02 2.26 0.62 

All data 35 68.5 119 459 5.81 8 0.4 1.33 1.49 18.6 25.5 0.57 0.39 9.09 13.3 0.44 0.3 12.9 12.1 

Agriculture                    

IS-G 4 6.66 0.26 6.97 6.35 8.5 0.2 0.15 0.07 5.14 6.83 0.27 0.17 0.73 0.17 0.03 0.01 1.09 0.72 

SK-G 4 11 0.73 11.6 10.2 7.8 0 0.29 0.04 9.24 5.95 0.59 0.04 2.03 0.03 0.21 0 3.51 0.05 

All data 8 8.78 2.31 11.6 6.35 8.1 0.4 0.22 0.09 7.19 5.74 0.43 0.21 1.38 0.76 0.12 0.11 2.30 1.46 

Background                    

SI-B 3 9.87 4.63 15.1 6.34 7.9 0.2 2.21 3.36 NA NA 0.52 0.34 17.1 4.65 0.24 0.13 10.4 5.36 

SZ-B 8 3.37 1.60 5.84 1.90 7.8 0.1 0.05 0.04 NA NA 1.19 1.39 1.5 0.43 0.03 0.05 1.31 0.44 

All data 11 4.96 3.21 15.1 1.90 8 0.2 1.07 1.53 NA NA 0.68 0.75 15.5 12.8 0.15 0.11 7.38 5.38 
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3.2. Geochemical fractions of Pb determined by sequential extraction (SEP)   288 

The proportion (%) of residual (non-reactive) Pb fraction (F5-Pb) was highest in the background sites 289 

followed by agriculture, urban and industrial locations, respectively (Figure 1 and Table A.1); on average, 290 

F5-Pb was inversely proportional to TPb (R2 = 0.97; power relationship) (Figure A.1).  Since the residual 291 

fraction (F5) represents Pb in primary and secondary minerals, e.g. galena (PbS) and pyromorphite 292 

(Pb5(PO4)3Cl), that hold Pb within their crystal structure (Cotter-Howells and Thornton, 1991, Tessier et al., 293 

1979), the exchange of F5-Pb with other soil phases is likely to be extremely slow and limited.  This means 294 

that any anthropogenic inputs of Pb will be almost exclusively distributed among the non-residual phases 295 

(F1-F4) and that F5-Pb is mostly geogenic in origin.  As the anthropogenic input of Pb increased (higher 296 

TPb), Pb in F5-Pb proportionally decreased resulting in the inverse relationship between TPb and F5-Pb. 297 

This is also supported by the fact that F5-Pb was the largest fraction in the background, agriculture, urban 298 

and cement factory locations (relatively low TPb) as opposed to the lead smelter (SH-I) and waste water 299 

treatment (CA-I) sites (highest TPb) where the percentages of F5-Pb were only 10% and 25% of TPb, on 300 

average, respectively.   301 

The second and third largest fractions in all soils, with the exception of SH-I and CA-I, were, respectively, 302 

F3 (bound to metal oxides) and F4 (bound to organic). In alkaline soils, these two phases are likely to be 303 

the most important non-residual phases for retention of heavy metals (Atkinson et al., 2011, Li and 304 

Thornton, 2001, Tipping et al., 1986) 305 

Location CA-I (waste water treatment) was dominated by F4-Pb (61%) possibly due to its markedly elevated 306 

organic content (3.5% SOC) in comparison to all other locations (P<<0.005; paired t-test) (Table 1).  The 307 

largest fraction (44%) in location SH-I (lead smelter) was F2 (bound to carbonates).  Li and Thornton (2001) 308 

also reported high F2-Pb levels (24 – 55%) in mining and smelting sites with substantially elevated TPb 309 

concentrations.  Although, in mining locations, the high concentration of F2-Pb was attributed to the sheer 310 

abundance of the thermodynamically favored cerussite (PbCO3) (Brookins, 2012), the large F2-Pb fraction 311 

in smelting sites may be due to the ability of CH3COONa to dissolve PbO (Clevenger et al., 1991) which is 312 

a primary emission product of lead smelters (Foster and Lott, 1980).  Moreover, Murphy (1992) found that 313 

PbCO3 is one of the major weathering products in the soils around old smelting facilities.     314 
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The exchangeable fraction (F1) was only detectable in locations SH-I (1%) and CA-U (0.3%) (Figure 1 and 315 

Table A.1). In alkaline soils Pb ions are strongly adsorbed and exchangeable Pb (F1-Pb) is likely to be a 316 

very minor fraction (McBride, 1994, Sparks, 2003). However, when Pb levels are largely elevated, such as 317 

is location SH-I (lead smelter), Pb ions will occupy progressively weaker sorption sites and so the proportion 318 

of exchangeable Pb increases (Degryse et al., 2009, Sastre et al., 2006, Tongtavee et al., 2005).  In 319 

addition, PbSO4, which is an important component of Pb smelter emissions (Clevenger et al., 1991, Foster 320 

and Lott, 1980), may be initially incorporated into the exchangeable phase (F1) (Harrison et al., 1981).  321 

 322 

Figure 1. Proportion (%) of Pb estimated in each of the five SEP fractions: F1 (exchangeable), Fe (bound 323 
to carbonates), F3 (bound to metal oxides), F4 (bound to organic matter) and F5 (residual).  Industrial 324 
locations (Pb smelter, waste water treatment, and cement factory) are displayed independently due to their 325 
different nature, agriculture and background sites are grouped together by site type.  Numbers inside the 326 
boxes represent the proportion (%) of each fraction to total soil Pb (TPb). Detailed data is displayed in Table 327 
A.1. 328 

 329 
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3.3. Isotopic fractionation of Pb in soil phases   330 

The isotopic ratios (IR) 206Pb/207Pb and 208Pb/207Pb measured or calculated in all SEP fractions (F1 – F5) 331 

are shown in Table 3 for all sampling locations.  Note that F1-Pb was below detection limit in most samples 332 

and the calculation of F5-Pb IR (Eq. 1) produced reliable results only in soils where F5-Pb concentrations 333 

were ≥ 40% of TPb (c. > 50% of the samples) due to compounded errors in Eq. 1 where F5 was a minor 334 

constituent of TPb.  Shetaya et al. (2018) reported that petrol-Pb (IR of 1.11 ± 0.002 for 206Pb/207Pb and 335 

2.385 ± 0.002 for 208Pb/207Pb) and geogenic-Pb (IR values of 1.212 ± 0.004 for 206Pb/207Pb and 2.482 ± 336 

0.006 for 208Pb/207Pb) are likely to be the two major sources of Pb in the soils of Egypt. Figure 2 clearly 337 

shows that the IRs 206Pb/207Pb and 208Pb/207Pb for all soils in all five SEP fractions are aligned closely to a 338 

binary mixing line between the isotopic signatures of the two end members (nominally ‘petrol’ and 339 

‘geogenic’). This suggests that these are the two major contributors to both non-residual and residual Pb 340 

fractions in the studied soils with only minor contributions from other potential sources contributing to 341 

scattering of the data around the binary line.  This agrees with the findings of other studies that adopted the 342 

binary plot approach to resolve the likely major sources of Pb using the isotopic signatures of two ‘pure’ 343 

end members.  For example, Monna et al. (1997) found that the Pb isotopic signatures of various 344 

environmental samples from UK and France were aligned around a mixing line between geogenic-Pb 345 

(206Pb/207Pb  1.17 – 1.19) and petrol-Pb (206Pb/207Pb  1.05 – 1.08). Chenery et al. (2012), Izquierdo et al. 346 

(2012) and Mao et al. (2014) also found that the Pb isotopic signatures of their investigated UK samples 347 

(soils, plants and aerosols) indicated an almost exclusive mixing between petrol-Pb (206Pb/207Pb  1.06 – 348 

1.09) and Pb from indigenously mined coal (206Pb/207Pb  1.16 – 1.21). This seems to be a universal pattern 349 

at least in the European environments where the Pb signatures of environmental samples align around a 350 

binary line between geogenic-Pb (206Pb/207Pb  1.22 – 1.24) and petrol-Pb (206Pb/207Pb  1.12 – 1.14) 351 

(Komárek et al., 2008).  352 

To investigate the isotopic distribution of Pb in relation to their SEP phase, the 206Pb/207Pb IR of all soils 353 

were plotted against total soil Pb (TPb) (Figure 3).  In all five SEP fractions (F1- F5), Pb isotopic signatures 354 

formed discrete clusters according to their origins.  Soils from the background location (SZ-B) were grouped 355 

very close to the geogenic-Pb isotopic ratio while soils from urban (TPb < 100 mg kg-1), agriculture and 356 

cement factory locations were distributed between geogenic-Pb and petrol-Pb indicating broadly similar 357 
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contributions from both sources.  Waste treatment locations and urban soils with TPb > 100 mg kg-1 were 358 

more inclined toward the petrol-Pb isotopic signature. In all soil fractions, locations with higher values of 359 

TPb were inclined toward the petrol signature of 206Pb/207Pb.  360 

Lead smelter (SH-I) soils also formed clusters with 206Pb/207Pb IRs that fell between those of geogenic-Pb 361 

and petrol-Pb in all four non-residual Pb fractions (Figure 3 A – D); however, given the much greater Pb 362 

concentrations in these soils, it is likely that the smelter would generate a unique 206Pb/207Pb signature and 363 

the contribution of geogenic-Pb and petrol-Pb at this location was probably trivial in comparison.  This is 364 

supported by the fact that the Pb smelting facility that was located in this site was recycling scrap lead from 365 

various industries and sources e.g. old batteries, and most of this recycled Pb was originally imported rather 366 

than indigenously mined (Labib et al., 2003, Safar et al., 2014).  The measured 206Pb/207Pb ratios (1.151 – 367 

1.155) in SH-I site, in all non-residual phases, agreed well with the average ‘industrial’ 206Pb/207Pb ratios 368 

(1.147 - 1.160) reported by Monna et al. (1997).   369 

Most samples showed almost identical patterns across the non-residual (F2, F3 and F4) phases (Figure 3 370 

B – D).  Bacon et al. (2006) and Lee and Yu (2016) also reported homogenous distributions of Pb IRs 371 

among non-residual soil phases in spite of distinct Pb isotopic signatures between Pb sources, soil depths 372 

and sampling locations. In our work, the apparent consistency of Pb isotopic signatures among non-residual 373 

phases is also statistically supported (paired t-test; Minitab 17) by insignificant differences between 374 

206Pb/207Pb or 208Pb/207Pb ratios of the non-residual fractions, with the single exception of 206Pb/207Pb when 375 

comparing F3 and F4 (Table A.2). Comparison with F1-Pb and F5-Pb isotopic signatures could not be 376 

discussed with confidence due to the limited number of valid results; however, the few available data points 377 

(Figure 3 A and E) appear to resemble those of F2, F3 and F4 (Figure 3 B - D).  378 

The similarity of isotopic signatures across the fractions (F1 - F5) may indicate that Pb from anthropogenic 379 

sources (petrol and other) may have no preferential affinity for specific non-residual or residual soil phases 380 

and has been sufficiently labile to be assimilated into common pools with geogenic-Pb due to prolonged 381 

contact with the soil.  However, isotopic homogeneity between fractions should be interpreted carefully 382 

because differences in the Pb isotopic abundances between SEP fractions may only be measurable if a 383 

given Pb source, with a distinct isotopic signature, had a high chemical affinity for specific soil phases 384 
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resulting in limited mixing between fractions. This would depend on both the Pb source speciation and the 385 

soil chemical properties.  Our collection of soils fell within a relatively narrow range of properties (Table 2) 386 

thus potentially contributing to the apparent Pb isotopic homogeneity between the non-residual (and 387 

possibly residual) fractions. Furthermore, sequential extraction procedures are prone to re-adsorption 388 

effects which may have contributed to the similarity in the Pb isotopic patterns between the non-residual 389 

fractions. Mass-dependent fractionation of Pb between different soil phases is likely to be very small due 390 

to the high mass of the Pb isotopes and would not be detectable by a quadrupole ICP.   391 

 392 
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Table 3. Isotopic ratios (206Pb/207Pb and 208Pb/207Pb) measured in the four SEP fractions: F1= exchangeable, F2=bound to carbonates, F3=bound 393 
to Fe/Mn reactive oxides, F4=bound to organic matter, F5=Resdiual. n = number of samples in each location, SD= standard deviation between soils 394 
sampled form the same site, ND = not detectable (below detection limit), NM= not measured and NA = not applicable. 395 

 396 

 397 

 398 

Sampling 
 Locations 

n F1  F2 F3 F4 F5 

206Pb/207Pb 208Pb/207Pb 206Pb/207Pb 208Pb/207Pb 206Pb/207Pb 208Pb/207Pb 206Pb/207Pb 208Pb/207Pb 206Pb/207Pb 208Pb/207Pb 

Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD 

Industrial                                       

HE-I 4 ND NA ND NA 1.159 0.011 2.441 0.008 1.161 0.012 2.437 0.013 1.161 0.014 2.437 0.014 1.149 0.013 2.431 0.011 

SH-I 4 1.151 0.008 2.425 0.009 1.155 0.016 2.435 0.013 1.152 0.006 2.421 0.007 1.151 0.005 2.433 0.006 NA NA NA NA 

CA-I 4 ND NA ND NA 1.141 0.001 2.419 0.002 1.144 0.002 2.425 0.002 1.139 0.001 2.420 0.007 NA NA NA NA 

Urban                                        

CA-U 10 1.148 0.008 2.424 0.020 1.169 0.023 2.453 0.029 1.167 0.021 2.444 0.022 1.164 0.021 2.443 0.021 1.183 0.017 2.457 0.014 

AX-U 5 NM NA NM NA NM NA NM NA NM NA NM NA NM NA NM NA NM NA NM NA 

SH-U 8 ND NA ND NA 1.161 0.004 2.437 0.006 1.166 0.006 2.444 0.008 1.163 0.011 2.443 0.009 1.257 0.143 2.822 0.430 

IS-U 8 ND NA ND NA 1.156 0.007 2.433 0.006 1.156 0.006 2.435 0.009 1.158 0.005 2.437 0.010 1.169 0.017 2.460 0.019 

AM-U 4 ND NA ND NA 1.199 0.014 2.474 0.013 1.202 0.015 2.483 0.011 1.190 0.019 2.467 0.020 1.165 0.021 2.450 0.017 

All data 35 NA NA NA NA 1.167 0.019 2.446 0.022 1.168 0.019 2.447 0.020 1.166 0.018 2.445 0.017 1.186 0.051 2.506 0.173 

Agriculture                                       

IS-G 4 ND NA ND NA 1.172 0.013 2.448 0.028 1.172 0.010 2.451 0.010 1.172 0.016 2.457 0.021 1.162 0.013 2.445 0.013 

SK-G 4 ND NA ND NA 1.174 0.011 2.453 0.009 1.176 0.005 2.455 0.006 1.176 0.004 2.453 0.007 1.181 0.001 2.466 0.011 

All data 8 ND NA ND NA 1.173 0.011 2.450 0.020 1.174 0.007 2.453 0.008 1.174 0.011 2.455 0.015 1.168 0.014 2.452 0.016 

Background                                       

SI-B 3 NM NA NM NA NM NA NM NA NM NA NM NA NM NA NM NA NM NA NM NA 

SZ-B 8 ND NA ND NA 1.203 0.006 2.486 0.011 1.200 0.005 2.477 0.004 1.192 0.019 2.462 0.025 1.196 0.019 2.461 0.012 

All data 11 NA NA NA NA 1.203 0.006 2.486 0.011 1.200 0.005 2.477 0.004 1.192 0.019 2.462 0.025 1.196 0.019 2.461 0.012 
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 399 

Figure 2. Isotopic ratios (206Pb/207Pb vs 208Pb/207Pb) of the F1, F2, F3, F4 and F5 SEP fractions in all soil 400 
samples.  Petrol-Pb (black circle) and geogenic-Pb (black square) signatures are also shown as two 401 
possible end members; the dashed line is the mixing line between them. F5 fraction signatures are shown 402 
for samples where F5-Pb was ≥ 40% of total soil Pb (TPb).   403 

 404 
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 429 

 430 

 431 

Figure 3. Isotopic ratios 206Pb/207Pb vs total soil Pb (TPb; mg kg-1) for all SEP fractions: F1 (A), F2 (B), F3 432 
(C), F4 (D) and F5 (E). Sampling locations included lead smelter (black circles), waste water treatment 433 
(asterisks), urban (grey diamonds), agriculture (crosses), cement factory (black triangles) and background 434 
(black squares). Solid and dotted lines represent the 206Pb/207Pb ratios of geogenic-Pb and petrol-Pb, 435 
respectively.  436 
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3.4. Relative contribution of geogenic and petrol Pb pools   438 

The proportional contributions (%) of petrol-Pb and geogenic-Pb in non-residual fractions F2, F3 and F4 in 439 

all soils, except SH-I (lead smelter) soils, were estimated from Eq. 2. Figure 4 shows that the greatest 440 

proportion of petrol-Pb was found in the industrial location CA-I (wastewater treatment) with 66, 68 and 441 

70% of Pb in fractions F3, F2 and F4, respectively. This was followed by the cement factory (HE-I) and 442 

urban locations where there were almost equal proportions of petrol-Pb and geogenic-Pb.  Agricultural 443 

locations were characterized by low petrol-Pb contributions (34 – 36%) to all fractions while background 444 

locations were dominated (84 – 91%) by geogenic-Pb.  Overall, higher total soil Pb (TPb) concentrations 445 

resulted in a greater proportion of petrol-Pb in all fractions.   446 

It appears from Figure 4 that the proportion of Petrol-Pb was consistent within all fractions.  As mentioned 447 

previously (section 3.3), measurable differences in the distribution of anthropogenic-Pb between soil 448 

phases would require a high affinity of the emitted Pb for one particular phase and very slow mixing between 449 

fractions.  However, the evidence from this study suggests that the different sources of Pb have effectively 450 

mixed between (SEP) fractions.    451 

 452 
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 485 

 486 

Figure 4. Proportion (%) of petrol-Pb (white boxes) and geogenic-Pb (dark grey boxes) in the non-residual 487 
fractions F2, F3 and F4 in all sampling locations, excluding the SH-I (lead smelter) samples. Numbers inside 488 
the boxes represent the proportion (%) of each fraction relative to total Pb in the respective soil phase. Error 489 
bars represent the standard deviation between soils from the same location.    490 
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3.5. Interpreting Pb isotopic signatures assuming three sources  495 

We investigated the possibility of modelling the contribution of a third ‘industrial’ Pb contribution to the total 496 

Pb pool in addition to the geogenic-Pb and petrol-Pb end-members in all soil phases.  As discussed 497 

previously (section 3.3), soils from the Lead Smelter location (SH-I) are likely to have a distinct isotopic 498 

signature (IR of 1.14 for 206Pb/207Pb and 2.41 for 208Pb/207Pb for total soil Pb) that is independent in origin 499 

from the other two definable sources (petrol-Pb and geogenic-Pb).  This smelting facility recycled lead from 500 

various industries that used imported Pb metal, so it seemed possible that the Pb signature of the SH-I 501 

location soil may represent the range of Pb used industrially in Egypt. As such, the smelter site could be 502 

considered as representing a third Pb isotope end-member.  503 

However, the IA values of 208Pb in the smelter samples were too low to represent a discrete end member. 504 

To resolve a hypothetical third Pb source (designated ‘industrial Pb’), it was necessary to lower the isotopic 505 

abundances (IA) of 204Pb, 206Pb, 207Pb using a factor of 0.985, allowing the 208Pb IA to compensate by 506 

keeping the sum of IA values equal to 1.  The ‘Solver’ function of Excel together with Eq. 3 and Eq. 4 (as 507 

described in section 2.5) was then employed to find an optimum ‘industrial’ end-member for TPb and the 508 

SEP fractions across all soils simultaneously.  The best fit between modelled and measured isotopic 509 

abundances of 206Pb, 207Pb and 208Pb was achieved with IR values of 1.14 for 206Pb/207Pb and 2.48 for 510 

208Pb/207Pb in the ‘industrial’ source (Figure A.2).  The resulting contributions of all three hypothetical Pb 511 

sources (petrol, geogenic and industrial) are shown in Figure 5.  The industrial-Pb source contribution was 512 

relatively uniform across all soils and soils fractions ranging from 13 – 28% of TPb.  The relative contribution 513 

of petrol-Pb and geogenic Pb displayed similar patterns to that observed with the binary model (section 3.5; 514 

Figure 4) showing considerably higher geogenic-Pb contributions in the background and agriculture soils 515 

(Figure 5 D and E), almost equal contribution of both sources in the cement factory location (Figure 5 A) 516 

and a larger contribution from petrol-Pb in the waste treatment location.   517 

In an alternative approach, the anthropogenic-Pb isotopic abundances were calculated by subtracting an 518 

estimate of the geogenic-Pb contribution from total Pb in all soil fractions (Eq. 5). Geogenic Pb isotope 519 

concentrations were estimated from the average Pb concentration and isotopic abundances of the 520 

background location SZ-B. This approach assumes a uniform distribution of geogenic-Pb in the studied 521 
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soils arising from similar underlying geological Pb concentrations and isotopic signatures across all the 522 

studied terrains.  The molar concentrations of all four (anthropogenic) Pb isotopes were then calculated 523 

from Eq. 5.  Figure 6 shows the isotopic signatures of the calculated anthropogenic-Pb in all soil fractions. 524 

However, it was apparent that the ‘removal’ of such a small background Pb content produced little change 525 

in the distribution of Pb isotopes and the ‘anthropogenic’ isotopic ratios of Pb were distributed between 526 

petrol-Pb and geogenic-Pb and well beyond the Pb smelter data (higher 206Pb/207Pb ratios) provisionally 527 

assumed to represent the ‘industrial Pb’ signature. The smelter Pb is certainly a candidate source for the 528 

mix of Pb in Egyptian soils – and this is consistent with the fact that it falls on the periphery of the soil Pb 529 

isotope ratio dataset (Figure 6).  However, it is also clear from the position of the majority of the soil data in 530 

Figure 6 that the Pb smelter cannot serve as a single ‘industrial-Pb’ source in Egypt and must be regarded 531 

as a contributory factor.  Figure 6 clearly indicates that a more general pool of (non-petrol) ‘industrial-Pb’ in 532 

Egypt must have a Pb isotope signature closer to that of Egyptian geogenic-Pb.  533 

 534 

 535 

 536 

 537 

 538 

 539 

 540 

 541 

 542 

 543 

 544 

 545 



24 
 

38 39 44 44

24 25 16 15

38 36 40 40

0%

40%

80%

120%

TPb F2 F3 F4

A- Cement

25 26 26 23

16 13 19
17

59 61 54 60

0%

40%

80%

120%

TPb F2 F3 F4

B- Waste Treatment

49 47 48 46

25
20 20 21

25 33 32 33

0%

40%

80%

120%

TPb F2 F3 F4

C- Urban

51 53 54 52

28 20 24 27

21 27 23 20

0%

40%

80%

120%

TPb F2 F3 F4

D- Agriculture

75
73 76

71

18
26 24

15

18 26 24 15

0%

40%

80%

120%

TPb F2 F3 F4

E- Background

 546 

 547 

 548 

 549 

 550 

 551 

 552 

 553 

 554 

 555 

 556 

 557 

 558 

 559 

 560 

 561 

 562 

 563 

 564 

 565 

 566 

 567 

 568 

 569 

 570 

 571 

Figure 5. Proportion (%) of petrol-Pb (white boxes), industrial-Pb (light grey boxes) and geogenic-Pb (dark 572 
grey boxes)  in the total soil Pb (TPb) and the non-residual fractions F2, F3 and F4 in all sampling locations 573 
excluding the SH-I (lead smelter) samples. Industrial-Pb signature was modelled by Solver from Eq. 3 and 574 
Eq. 4 with the hypothesis that all end-members isotopic signatures are locate at the periphery of the dataset. 575 
Numbers inside the boxes represent the proportion (%) of each fraction to total Pb in the respective soil 576 
phase. Error bars represent the standard deviation between soils from the same location or soil type.   577 
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 579 

 580 

Figure 6. Anthropogenic-Pb isotopic ratios (206Pb/207Pb vs 208Pb/207Pb) of the whole soil and all five SEP 581 
fractions, in all soil samples.  Petrol-Pb (black diamond), industrial-Pb (black square) and geogenic-Pb 582 
(black circle) signatures are also shown as possible end members. F5 fraction signatures are shown for 583 
samples where F5-Pb is ≥ 40% of total soil Pb (TPb). Dashed line in the mixing line between petrol-Pb and 584 
geogenic-Pb signatures while the dotted line is the mixing line between petrol-Pb and industrial-Pb (lead 585 
smelter).  586 
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4. Conclusions 596 

The concentrations of total soil Pb (TPb) in most of the studied soils were generally low and ranged around 597 

the background and crustal Pb levels of ~ 5 and 14 mg kg-1, respectively.  Substantially elevated TPb levels 598 

were only found in two industrial locations around a closed lead smelter (SH-I; ~ 16201 mg kg-1) and a 599 

waste water treatment facility (CA-I; ~ 171 mg kg-1), and in two urban locations around major motorways 600 

within Cairo (CA-U; ~160 mg kg-1) and Alexandria (AX-U; ~ 83 mg kg-1).   601 

The residual fraction (F5-Pb) was the largest single fraction (38 - 63%) in all the studied locations with the 602 

exception of SH-I and CA-I sites which were dominated by the carbonate (F2-Pb; 44%) and organic (F4-603 

Pb; 61%) fractions, respectively.  Exchangeable Pb (F1-Pb) was only detectable in two locations: SH-I (1% 604 

TPb; ~ 162 mg kg-1) and CA-U (0.3% TPb; ~1.6 mg kg-1).  Although this may suggest that the current risk 605 

of releasing considerable amounts of available Pb is exclusive to SH-I site (lead smelter), Pb in the other 3 606 

non-residual fractions, in all locations including SH-I, may become available with any change in the soil 607 

Eh/pH conditions.  For example, in location CA-I (waste water treatment), if the conditions become more 608 

oxidizing e.g. due to the waste treatment operations, the large organic (F4-Pb) pool will be released in 609 

available forms.  Therefore, in the four locations with elevated TPb levels (SH-I, CA-I, CA-U and AX-U), 610 

despite their low/undetectable exchangeable-Pb, careful consideration should be taken to avoid mobilizing 611 

hazardous amounts of Pb to the surrounding environments.   612 

The non-residual Pb isotopic signatures (F1 – F4; 206Pb/207Pb) were dependent on the Pb source and level 613 

of contamination; however, they displayed very similar patterns between the non-residual fractions (F2 - 614 

F4).  Similarly, the relative contribution of petrol-Pb to the non-residual Pb pools varied considerably 615 

between sampling locations and was apparently controlled by the concentration of TPb despite being 616 

almost identical in all the non-residual fractions (F2 - F4).  This suggests no apparent difference in chemical 617 

affinity of any given anthropogenic-Pb source for specific non-residual fractions in soil. Any initial source-618 

dependent distribution within the active soil fractions, following application to the soil, has apparently 619 

disappeared with time. 620 

It was not possible to identify a single ‘third Pb source’ to explain the distribution of Pb isotope ratios.  A 621 

major source, the Pb smelter in Cairo-Shubra, appeared to fall on the periphery of the dataset and could 622 
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be a significant contributor to Pb contamination in the country.  However, removal of an assumed 623 

background geogenic source produced a dataset in which the majority of Pb isotope ratios fell beyond the 624 

range covered by the petrol and smelter sources.  The suggestion is therefore that the majority of 625 

‘contaminant Pb’ in Egypt has an isotopic signature close to that of geogenic Pb. 626 
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