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24 Abstract

25 Adherent Invasive Escherichia coli (AIEC) is a non-diarrhoeagenic intestinal E. coli pathotype 

26 associated with Crohn’s Disease. AIEC pathogenesis is characterised by biofilm formation, 

27 adhesion to and invasion of intestinal epithelial cells, and intracellular replication within 

28 epithelial cells and macrophages. Here, we identify and characterise a protein in the 

29 prototypical AIEC strain LF82 which is required for efficient biofilm formation and dispersal – 

30 LF82_p314. LF82 ΔLF82_314 have defective swimming and swarming motility, indicating 

31 LF82_p314 is important for flagellar-mediated motility, and thus surface colonisation and 

32 biofilm dispersal. Flagellar morphology and chemotaxis in liquid appear unaffected by 

33 deletion of LF82_314, suggesting LF82_p314 does not elicit an effect on flagella biogenesis or 

34 environmental sensing. Flagellar motility has been implicated in AIEC virulence, therefore we 

35 assessed the role of LF82_p314 in host colonisation using a Caenorhabditis elegans model. 

36 We found that LF82 ΔLF82_314 have an impaired ability to colonise the C. elegans compared 

37 to wild-type LF82. Phylogenetic analysis showed that LF82_314 is conserved in several major 

38 enterobacterial pathogens, and suggests the gene may have been acquired horizontally in 

39 several genera. Our data suggests LF82_p314 may be a novel component in the flagellar 

40 motility pathway and is a novel determinant of AIEC colonisation. Our findings have potential 

41 implications not only for the pathogenesis of Crohn’s Disease, but also for the course of 

42 infection in several major bacterial pathogens. We propose a new designation for LF82_314, 

43 biofilm coupled to motility A, or bcmA.

44 Author summary

45 Adherent Invasive Escherichia coli (AIEC) are a group of bacteria implicated in the 

46 pathogenesis of Crohn’s Disease, a chronic inflammatory bowel disease with no cure. Critical 

47 to the process of many bacterial infections is the ability of bacteria to swim towards and 

48 colonise the host surface using specialised, propeller-like appendages called flagella. In this 

49 paper, we describe a novel protein – LF82_p314 (BcmA) – which is required for efficient 

50 flagella-mediated motility and surface colonisation in AIEC. Using a nematode worm 

51 (Caenorhabditis elegans) infection model, we show that LF82_p314 enables effective 

52 colonisation of the C. elegans gut, suggesting a role for the protein during human infection. 
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53 These findings indicate BcmA is significant for initial colonisation of the human gut by AIEC, 

54 and therefore the onset of Crohn’s Disease.

55 Introduction

56 Crohn’s Disease (CD) is a chronic and relapsing inflammatory bowel disease presenting with 

57 frequent bloody diarrhoea, bowel obstruction, abdominal pain, and extraintestinal 

58 manifestations affecting the eyes, skin, joints, and liver (reviewed in [1–3]). CD is a complex 

59 syndrome which is understood as an unchecked and inappropriate inflammatory response to 

60 intestinal bacteria, potentiated by carriage of one or several of over 180 predisposing 

61 immune-related alleles [4–13] and their interaction with environmental risk factors such as 

62 smoking [14–16]; consumption of a “western” high-fat, low-fibre diet [17–20]; colonisation 

63 by a low-complexity, pro-inflammatory microbiome [21–23]; and carriage of CD-associated 

64 pathobionts Mycobacterium avium subsp. paratuberculosis [24,25] and Adherent Invasive 

65 Escherichia coli (AIEC) [26–34]. An increasing body of evidence suggests AIEC can act as a key 

66 aetiological component of CD. AIEC strains are found present in the ileal mucosa of up to 

67 51.9% CD patients compared to 16.7% healthy controls [26,30,33], and have been shown to 

68 induce inflammation and colitis in mice carrying CD-associated TLR5 deletions [35–37]; mice 

69 fed CD-associated “western” diets [19]; and mice with infection-associated intestinal 

70 inflammation and microbiome perturbations [37–39]. Indeed, the recent demonstration that 

71 AIEC alone can perturb simple microbiomes and instigate inflammation in a TLR5-/- mouse 

72 model [37] raises the possibility that – given a set of predisposing factors – AIEC infection may 

73 serve as a first step towards triggering the CD inflammatory cascade.

74 AIEC pathogenesis is classically characterised by adherence to, invasion of, and 

75 replication within intestinal epithelial cells (IECs) and macrophages [40–43]. Despite its 

76 significance in CD aetiology, however, the molecular pathogenesis of AIEC infection is 

77 comparatively poorly understood. AIEC are thought to use flagella to swim through the mucus 

78 layer in the gut [44–46], and secrete the mucolytic Vat-AIEC protease [47] to gain access to 

79 the intestinal epithelial surface. AIEC bind the epithelial surface via long polar fimbriae [48] 

80 and interactions between type 1 pili and CEACAM6 [40,49–51], a host adhesin over-expressed 

81 by CD patient intestinal epithelial cells. Epithelium-associated AIEC may be transcytosed by 

82 microfold cells into Peyer’s Patches to be phagocytosed by macrophages, may actively invade 
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83 IECs, or may alternatively form biofilms on the luminal surface of the gut. Invasion is mediated 

84 by microtubule polymerisation and actin recruitment [41], and is thought in part to be 

85 facilitated via uncharacterised effector delivery in outer-membrane vesicles (OMVs) [52,53], 

86 and by a putative oxidoreductase, ibeA [54]. However, inhibited OMV release and ibeA 

87 deletion do not fully abrogate invasion, suggesting other, unknown factors may be involved. 

88 The mechanisms of intracellular replication remain to be elucidated, with only one protein – 

89 the oxidoreductase dsbA – known to be required [55]. In addition to canonical adhesion and 

90 invasion traits explored in the first descriptions of AIEC, biofilm formation [56–58], motility 

91 [44–46,59], and the ability to utilise short-chain fatty acids (SCFA’s) as carbon sources [59–61] 

92 are becoming understood as determinants of AIEC pathogenesis. The discovery of elevated 

93 mucosa-associated biofilms in CD patients [29] suggests biofilms may be of specific 

94 importance in AIEC pathogenesis, warranting further investigation.

95 We previously conducted a high-throughput heterologous expression screen to 

96 identify putative effectors in the prototypical AIEC strain, LF82 [62]. AIEC-specific putative 

97 virulence genes were selected by comparison of the LF82 genome to several pathogenic and 

98 commensal E. coli reference genomes, and expressed in a HeLa cell line as GFP fusions. 

99 Automated microscopy and image analysis of putative effector-GFP fusions expressing HeLa 

100 cells allowed identification of protein subcellular localisations and co-localisations. From this 

101 screen, we identified a conserved hypothetical protein of unknown function – LF82_314 – 

102 which self-assembles into large filaments (Fig. S1). LF82_314 is widely conserved, and 

103 bioinformatic analysis (Table S1) suggested the gene is co-inherited with components of the 

104 General Secretion Pathway (GSP). The GSP is required for secretion of extracellular proteins, 

105 including pili (reviewed in [63]). We therefore hypothesised that LF82_314 may encode either 

106 a novel, self-assembling pilin, or an amyloid-like biofilm matrix component. Using established 

107 biofilm and motility assays, and a Caenorhabditis elegans infection model, we established that 

108 LF82_p314 is required for efficient biofilm formation, motility, and host colonisation in LF82. 

109 Furthermore, bioinformatic analysis reveals LF82_314 is conserved in a range of 

110 enterobacterial genomes, many of which are human pathogens. Because of the roles 

111 LF82_314 plays in infection, and the potential significance of this novel virulence factor in 

112 diverse enterobacterial pathogens, we propose a new designation for LF82_314, biofilm 

113 coupled to motility A, or bcmA.
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114 Results

115 LF82_p314 promotes biofilm formation

116 To identify a role for LF82_p314 in biofilm formation, we created a clean, markerless deletion 

117 in LF82_314, LF82 ΔLF82_314. Using a microtitre plate-based crystal violet assay, we 

118 established that LF82 ΔLF82_314 has a marked biofilm formation defect with incomplete 

119 dispersal upon biofilm maturation, when compared to wild-type LF82 (Fig. 1A). Episomal 

120 expression of LF82_p314 from pLF82_314 complemented LF82_314 deletion. Microscopic 

121 analysis of LF82 biofilms formed on glass cover slips revealed LF82 ΔLF82_314 form patchier, 

122 less complete biofilms than wild-type LF82, a defect which can be also complemented by 

123 LF82_p314 expression (Fig. 1B). We theorised that the biofilm formation defect may be due 

124 to defective initial surface attachment, intercellular adhesion, or altered extracellular matrix 

125 architecture. If intercellular adhesion or extracellular matrix formation is altered by LF82_314 

126 deletion, LF82 ΔLF82_314 biofilm formation may be complemented in trans by co-culture 

127 with wild-type LF82. We therefore conducted a trans-complementation assay, in which the 

128 biofilm formation of wild-type LF82 and LF82 ΔLF82_314 mixed in a 1:1 ratio was assessed. 

129 We found that the LF82:LF82 ΔLF82_314 mix formed biofilms of intermediate mass when 

130 compared to LF82 and LF82 ΔLF82_314 biofilms (Fig 1C). To characterise the architecture of 

131 these mixed biofilms, LF82 and LF82 ΔLF82_314 strains expressing sGPF2 and mScarlet-I, 

132 respectively, were generated for fluorescence microscopy of biofilms (Fig. 1D). LF82-sGFP2 

133 and LF82 ΔLF82_314-mScarlet-I biofilms appear similar in extant and structure to those 

134 generated by non-fluorescent, parental strains. When mixed in a 1:1 ratio, LF82-sGFP2 and 

135 LF82 ΔLF82_314-mScarlet-I form biofilms composed of distinct, strain-exclusive islands, 

136 suggesting initial attachment and biofilm growth of LF82 and LF82 ΔLF82_314 are 

137 independent of one another. Taken together with Fig. 1C, this demonstrates that the biofilm 

138 formation defect observed in LF82 ΔLF82_314 cannot be complemented in trans, suggesting 

139 that LF82_p314 is unlikely to have a direct role in intercellular adhesion or biofilm matrix 

140 architecture.

141 To define whether LF82_p314 is likely to function as a pilin, adhesin required for initial 

142 attachment, or extracellular matrix component, we characterised the cellular localisation of 

143 LF82_p314 in biofilms and planktonic cells. Fluorescence microscopy of biofilms formed by 
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144 LF82 expressing an LF82_p314-mEmerald fusion protein showed LF82_p314 localises as cell-

145 associated filaments – as in HeLa cells (Fig. 1E) – which align with the long axis of the 

146 bacterium. To assess the subcellular localisation of the LF82_p314 filaments, we stained live, 

147 planktonic LF82 pLF82_314-mEmerald with an amine-reactive succinimidyl ester dye 

148 conjugate (CF™ 633, Sigma Aldrich) to define the outer membrane, fixed the dyed cells, and 

149 them imaged by fluorescence microscopy. Pearson correlation analysis of pixel intensities was 

150 performed using CellProfiler and demonstrated a very weak correlation between CF633 and 

151 LF82_p314-mEmerald fluorescence (Pearson correlation coefficient, mean r = 0.135 ± 0.032 

152 (95% CI)). Furthermore, cross-sectional analysis of fluorescence intensity (Fig. 1F) shows two 

153 peaks of CF633 intensity, representing the cell membranes, and one peak of LF82_p314-

154 mEmerald intensity between these peaks, suggesting that LF82_p314 filaments localise 

155 intracellularly. We also note that in cells imaged 1 hour post induction, LF82_p314 filaments 

156 are shorter than in biofilms imaged at 16 h, and localise near the cell pole, suggesting 

157 interactions with intracellular, pole-localised proteins. LF82_p314 is therefore unlikely to be 

158 a pilin or extracellular matrix component, and the biofilm defect observed in LF82 ΔLF82_314 

159 is not due to aberrant pilin-mediated attachment or extracellular matrix architecture.

160 LF82_p314 modulates flagella-mediated motility via an uncharacterised mechanism

161 In the absence of evidence for an adhesin or extracellular matrix function for LF82_p314, we 

162 reasoned that a motility defect might confer a surface colonisation defect, manifesting in an 

163 apparent biofilm formation defect, as has been shown elsewhere [64]. Accordingly, we used 

164 established soft agar motility assay methods to analyse the swimming and swarming 

165 behaviour of LF82, LF82 ΔLF82_314, and LF82 ΔLF82_314 pLF82_314. We found that LF82 

166 ΔLF82_314 has notable swimming (Fig. 2A) and swarming (Fig. 2B) defects (One-way ANOVA 

167 with multiple comparisons to wild-type LF82; swim, LF82 vs LF28 ΔLF82_314, p = 0.0004; 

168 swarm, LF82 vs LF28 ΔLF82_314, p = 0.0001) when compared to wild-type LF82 at 10 and 24h 

169 post-inoculation, respectively. No significant difference was observed between LF82 and the 

170 LF82_314-expressing strain, LF82 ΔLF82_314 + pLF82_314, demonstrating these defects are 

171 fully complemented by LF82_314 expression. We noted that at 24h post-inoculation, both 

172 LF82 and LF82 ΔLF82_314 on swimming plates had reached the edge of the plate; however, 

173 these plates lack the characteristic chemotactic rings observed on wild-type LF82 and LF82 

174 ΔLF82_314 + pLF82_314 plates (Fig. 2A), and also often showed swarming behaviour in the 
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175 centre. We therefore theorised that the motility and/or chemotaxis systems may be defective 

176 in LF82 ΔLF82_314, leading to a slower rate of swimming, and/or an inappropriate response 

177 to wetness conditions. To test the chemotactic response of LF82 ΔLF82_314, we conducted a 

178 simple capillary-based chemotaxis assay using media with or without glucose as a 

179 chemoattractant (Fig. 2C). We found both LF82 and LF82 ΔLF82_314 are more enriched in 

180 capillaries containing glucose than without, and no statistically significant difference was 

181 observed, suggesting chemotaxis is intact in LF82 ΔLF82_314. We also assessed whether the 

182 number per cell or morphology of flagella was affected by deletion of LF82_314, using Kodaka 

183 staining [65] and transmission electron microscopy (TEM). Kodaka staining (Fig. 2D) confirmed 

184 the presence of flagella on both wild-type LF82 and LF82 ΔLF82_314. Negative-stain TEM 

185 demonstrated no gross morphological differences in flagella between wild-type LF82 and 

186 LF82 ΔLF82_314 flagella (Fig. 2E). Flagella counts from 30 TEM micrographs (Fig. 2F) revealed 

187 no difference between the numbers of flagella per flagellated cell. These data demonstrate 

188 LF82_314 is required for efficient flagella-mediated motility; however, gross behavioural and 

189 morphological traits such as in-liquid chemotaxis and flagella biosynthesis are intact in LF82 

190 ΔLF82_314, suggesting LF82_p314 elicits its effect via a more subtle, uncharacterised 

191 mechanism.

192 LF82_p314 is required for optimal C. elegans gut colonisation

193 Non-motile AIEC have significantly reduced virulence in in vivo models [45,46,66], and host-

194 adapted AIEC are hyper-motile [59], suggesting flagella motility is critical in AIEC virulence. 

195 We therefore assayed the in vivo virulence of LF82 and LF82 ΔLF82_314 using an established 

196 C. elegans survival assay [66]. The C. elegans food source strain E. coli OP50 was used as a 

197 negative control. We found LF82 was capable of “slow killing” C. elegans, and that deletion of 

198 LF82_314 does not improve or abrogate the survival of infected C. elegans (Fig. 3A), 

199 suggesting LF82_314 does not directly contribute to C. elegans killing by AIEC in this model. 

200 We noted, however, that worms fed wild-type LF82 consistently begin to die 1-2 days before 

201 those fed LF82 ΔLF82_314, and reasoned that this may be due to less efficient colonisation of 

202 the C. elegans gut by the less motile LF82 ΔLF82_314, prolonging the time required to fully 

203 establish infection. We therefore chose to assess the number of bacteria stably colonising the 

204 C. elegans gut at daily intervals. In worms fed on lawns containing exclusively LF82 or LF82 

205 ΔLF82_314, we found no statistically significant deviation between wild-type and mutant CFU 
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206 recovered per worm gut (Fig. 3B), although mean LF82 CFU per worm gut was higher at 3 and 

207 4 days post-infection (d.p.i.).

208 Reasoning that an assay in which C. elegans are continuously fed up to 1011 CFU/mL 

209 of one bacterial strain may not represent a realistic infection scenario, and that this could 

210 mask a colonisation defect, we conducted competition assays to detect whether LF82_314 

211 deletion impacts fitness against wild-type LF82. LF82 and LF82 ΔLF82_314 carrying the 

212 Kanamycin-resistant pBAD18 (LF82-KanR and LF82 ΔLF82_314-KanR) or Chloramphenicol-

213 resistant pBAD33 (LF82-CmR and LF82 ΔLF82_314-CmR) were used to allow differential 

214 selection of CFU recovered from C. elegans. Worms were fed on 1:1 mixes of LF82-KanR:LF82 

215 ΔLF82_314-CmR or LF82-CmR:LF82 ΔLF82_314-KanR as above. The Competitive Indices (CI) for 

216 LF82 ΔLF82_314 in this assay (Fig. 3C) are significantly below a “no-disadvantage” CI ratio of 

217 1 throughout infection (one-tailed Wilcoxon match-pairs signed rank test, 1 d.p.i., p = 0.0195; 

218 day 3 d.p.i., p = 0.0004; day 6 d.p.i., p = 0.0011), showing LF82 ΔLF82_314 has a gut 

219 colonisation disadvantage to wild-type LF82. To visualise the infection process, LF82-sGFP2 

220 and LF82 ΔLF82_314-mScarlet-I were used to infect worms either alone, or mixed in a 1:1 

221 ratio as above. Fluorescence microscopy of infected worms (Fig. 3D) shows that at 1 d.p.i., 

222 both LF82-sGFP2 and LF82 ΔLF82_314-mScarlet-I colonise the worm mouth. Fluorescence in 

223 worms fed a LF82-sGFP2:LF82 ΔLF82_314-mScarlet-I mix was below background levels. At 3 

224 d.p.i. and 6 d.p.i, LF82-sGFP2 and LF82 ΔLF82_314-mScarlet-I successfully colonise the head 

225 and gut of worm in both mono- and co-feeding conditions, with penetration into the 

226 pseudocoelom at 6 d.p.i.; however, in concordance with Fig. 3C, LF82-sGFP2 appears to 

227 outcompete LF82 ΔLF82_314-mScarlet-I when co-fed to C. elegans. Taken together, our data 

228 suggests that although deletion of LF82_314 does not attenuate “slow killing” of C. elegans in 

229 mono-feeding conditions, LF82_314 is required for efficient colonisation of the C. elegans gut.

230 LF82_314 is a widely-conserved, and may be horizontally transmissible

231 LF82_314 is encoded by 468 DNA bases, annotated as encoding the 155 residue protein 

232 LF82_p314 [67]. All results returned by blastp and JACKHMMER searches designate LF82_314 

233 as a “hypothetical protein,” “conserved hypothetical protein,” “MULTISPECIES: hypothetical 

234 protein,” “uncharacterised protein,” or “conserved uncharacterised protein”. LF82_314 is 

235 located proximal to a tRNA site (asnV) in a region of the LF82 genome (Fig. 4A) which encodes 

236 predicted transposases (LF82_309 and yhhI), integrases (LF82_309 and LF82_311), a toxin-
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237 antitoxin addiction module (LF82_312 and LF82_313), a transcription factor (LF82_774), an 

238 endonuclease (LF82_317), and a helicase (LF82_318). The putative components of this 

239 genome neighbourhood and its proximity to a common transposable element insertion site 

240 (tRNA) led us to theorise that LF82_314 may be encoded on an active or former mobile 

241 genetic element (MGE). MGEs are significant sources of horizontally acquired virulence 

242 factors, notable examples of which include the Shiga toxin – which is transmissible among E. 

243 coli strains by the stx bacteriophage, generating highly virulent Shiga Toxin-producing E. coli 

244 (STEC; reviewed in [68]) – and the Salmonella Typhi pathogenicity island, SPI-7 – a mosaic of 

245 conjugative elements and temperate bacteriophage insertions which encodes genes for Vi 

246 capsule synthesis and the Type III Secretion System effector, sopE [69,70].

247 We therefore sought to assess the distribution of LF82_314 homologues in related 

248 phyla. We harvested the top 100 DNA sequences of LF82_314 homologues returned by blastn 

249 discontiguous megablast (Table S3), and curated this list to remove strains for which 16S rRNA 

250 sequences were not readily available. This produced a list of 77 LF82_314 homologues 

251 encoded in 68 enterobacterial genomes. Many of the strains returned by our search strategy 

252 are human pathogens (see Fig 4C). Of note are several E. coli strains which belong to an 

253 emergent clonal, pandemic urinary tract infection (UTI) -associated Extraintestinal Pathogenic 

254 E. coli (ExPEC) clade, ST131 [71]. Interestingly, blast search strategies excluding the order 

255 enterobacteriales did not return any significant results, suggesting LF82_314 homologues are 

256 restricted to this order. We obtained 16S rRNA sequences from the 68 selected strains from 

257 SILVA, and used these to build a Maximum Likelihood phylogenetic tree. Comparison of this 

258 16S rRNA tree (Fig. S2) with a Maximum Likelihood tree created from LF82_314 homologues 

259 showed marked differences (Figure 4C). For example, in the LF82_314 homologue tree, 

260 Salmonella sp. have a fragmented phylogeny rather than clustering as a distinct phylogenetic 

261 group as in the 16S rRNA tree. Similarly, Shigella boydii strains, and AIEC LF82 and NRG 857c, 

262 cluster together away from the E. coli ST131 clade in the LF82_314 tree, however in the 16S 

263 rRNA tree one E. coli group is formed. These data suggest that LF82_314 may have been 

264 introduced into these strains horizontally, raising the possibility that in some conditions, 

265 LF82_314 may become a transmissible virulence factor. 

266 Discussion
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267 Flagella-mediated motility is a critical virulence factor in a wide variety of gram-negative 

268 bacterial pathogens. In AIEC LF82 and the closely related strain NRG 857c, flagella motility has 

269 been shown to be required for host colonisation, cell invasion, and persistence in in vivo 

270 models [45,46,59,66]. Flagellar biosynthesis in AIEC is regulated in a canonical fashion by the 

271 master flagellar regulators, flhCD and fliA [44,72]. The E. coli quorum sensing system, QseBC, 

272 is involved in regulation of flhCD function [73], and a novel transcription factor, NrdR, has 

273 been implicated in flagellar biosynthesis and regulation of chemotaxis gene expression [45]. 

274 The AIEC LF82 genome encodes a full complement of chemotaxis genes [67], and typical 

275 chemotactic responses have been observed in LF82 in the literature and this study, suggesting 

276 environmental sensing and motile responses are conserved.

277 We describe in this study a conserved hypothetical gene – LF82_314 – which has novel 

278 functions in biofilm formation and host colonisation, which are mediated by a role in flagellar 

279 motility. Although we initially theorised LF82_p314 may function as a self-assembling pilin or 

280 biofilm extracellular matrix protein, we have found that LF82_p314 localises within bacterial 

281 cells, and is therefore likely a cytoplasmic or periplasmic protein. We have demonstrated that 

282 LF82_314 is required for efficient swimming and swarming in soft agar motility assays; we 

283 note, however, in a soft agar swimming assay, that both LF82 and LF82 ΔLF82_314 reach the 

284 edge of the plate at 24h post-inoculation. When considered with the defect observed at 8h 

285 post-inoculation, this observation suggests that LF82 ΔLF82_314 swims and swarms more 

286 slowly than wild-type LF82, a phenotype which may be mediated by defective chemotaxis or 

287 flagella. LF82 ΔLF82_314 swim plates lack chemotactic rings, suggesting aberrant chemotaxis 

288 may be responsible for the observed defect. However, the in-liquid chemotactic response to 

289 glucose, and flagella biosynthesis, are indistinguishable from wild-type LF82 in LF82 

290 ΔLF82_314, suggesting neither gross morphological differences nor defective chemotactic 

291 signalling can account for the observed motility defect. LF82_p314 must therefore elicit a 

292 more subtle effect which nevertheless manifests as a notable motility defect in soft agar. 

293 Currently no model of LF82_p314 function exists. We hypothesise that LF82_p314 may be 

294 involved in modulating bacterial velocity in high-viscosity environments, or may be involved 

295 in surface sensing and transitioning in-liquid motility to surface-associated motility and 

296 adhesion. Further study towards a molecular understanding of LF82_p314’s function – 
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297 including mapping LF82_p314 protein interactions, and studying the effects of LF82_p314 on 

298 the AIEC transcriptome – are ongoing in our laboratory.

299 We demonstrate that LF82_314 is required for efficient biofilm formation in LF82. 

300 Biofilms play a role in Crohn’s Disease pathology [29], and infection-associated biofilms are 

301 often sources of persistence, antibiotic resistance, and tolerance [74,75]. Antibiotic therapy 

302 is routinely used as an intervention in CD, and is known to temporarily ameliorate symptoms 

303 in the majority of patients [76]. However, relapse during treatment is common and reportedly 

304 universal [77] when treatment is halted, suggesting inflammation in relapsing CD may be due 

305 to outgrowth of antibiotic resistant or surviving, tolerant bacteria, such as those in mucosa-

306 associated AIEC biofilms. LF82_p314 may therefore be of some interest as a potential anti-

307 virulence target which might potentiate more successful antibiotic treatment in CD, by 

308 breaking down or inhibiting formation of drug-tolerant AIEC biofilms.

309 Of particular significance, our work demonstrates LF82_314 is required for effective 

310 colonisation of the gut in a C. elegans infection model. We did not observe decreased 

311 virulence or colonisation by LF82 ΔLF82_314 when worms were fed on one strain exclusively, 

312 but were able to detect a clear defect when LF82 ΔLF82_314 was in competition with wild-

313 type LF82. However, this does not imply that LF82_314 has only a marginal effect on LF82 gut 

314 colonisation. In the assay we have adapted from [66], worms are constantly fed on plates 

315 prepared with bacterial concentrations between 1010 and 1011 CFU per ml of culture. In such 

316 mono-feeding experiments, it is likely that bacteria at this density saturate the worm gut, 

317 bringing equal numbers of wild-type and mutant bacterial cells in contact with the gut surface, 

318 thus masking colonisation defects. Indeed, the colonisation defect observed in the 

319 competition assay, which still saturates the gut with bacteria, suggests that in more 

320 biologically relevant scenarios – such as a substantially reduced total infectious dose of LF82 

321 competing against an established microbiome – LF82 ΔLF82_314 may have a marked 

322 colonisation defect. Further study to establish the role of LF82_314 in AIEC colonisation in 

323 complex polymicrobial contexts is required to test this hypothesis; however, our data 

324 provides strong evidence to suggest that LF82_p314-mediated motility plays an important 

325 role in host colonisation.

326 Finally, we report that LF82_314 is widely distributed throughout the 

327 Enterobacteriaceae, including several significant human pathogens, and that the gene 
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328 appears to be laterally inherited. Our analysis was limited to the top 100 blastn results; 

329 however, the wide distribution of closely related LF82_314 homologues presented in our 

330 analysis suggests that this novel virulence factor is likely to be present in an even greater 

331 range of enterobacterial pathogens. Although our analysis does not show that the putative 

332 LF82_314 mobile genetic element can be mobilised in the strains we have analysed, it is 

333 conceivable that this element may be transmissible from a strain not included in our analysis. 

334 This is of particular interest in the context of some of the strains we analysed, such as those 

335 belonging to the E. coli ST131 clade. ST131 is a clade of ExPEC associated with antibiotic-

336 resistant recurrent UTIs, which was first identified in 2008 [71]. Among the pathogenic 

337 characteristics of ST131 are increased biofilm formation and adhesion to epithelial cells, both 

338 processes which require flagella motility, and which may be potentiated by LF82_p314. It is 

339 thought that many UTIs are seeded from a gut reservoir and colonisation of both epithelial 

340 surfaces occurs via similar mechanisms [78]. An ST131 LF82_314 homologue may play a role 

341 both in establishment of a gut niche, as well as subsequent infection of the urinary epithelium. 

342 The presence of LF82_314 in the genomes of numerous strains representing an emergent 

343 pathogen raises the possibility that acquisition of LF82_314 may have been an important step 

344 in becoming such a successful pathogen. 

345 Further work is required to understand the molecular function of LF82_p314; to assess 

346 its significance in higher-complexity infection systems; and to characterise fully its 

347 distribution, and whether this novel virulence factor is transmissible. What is clear is 

348 LF82_314 is a novel player in flagellar-mediated motility with significance for host colonisation 

349 and biofilm formation, and is conserved in a range of important human pathogens. We 

350 therefore suggest a new designation for LF82_314 and its homologues – bcmA (biofilm 

351 coupled to motility A) – to facilitate future work without diverse nomenclature confusing the 

352 literature.

353 Materials and Methods

354 Strains and media

355 E. coli LF82, XL-1, and OP50, were grown in Lysogeny Broth (LB) or on LB agar with 

356 supplements, antibiotics, and agitation as appropriate, and incubated at 37°C unless 

357 otherwise stated. E. coli S17-1 carrying pMRE-Tn7-XXX plasmids were maintained at 25°C. C. 
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358 elegans SS104 [glp-4(bn2)I.] obtained from the Caenorhabditis Genetics Centre were cultured 

359 as in [79]. Strains used in this study are listed in Table 1.

360 Table 1

Strain Genotype / Description Source / Reference
Caenorhabditis elegans 
SS104

[glp-4(bn2)I.] Caenorhabditis 
Genetics Centre

E. coli LF82 Prototypical AIEC type strain. 
Genome sequenced.

Arlette Darfeuille-
Michaud, 
Université 
Clermont 
Auvergne

E. coli LF82 ΔLF82_314 LF82 with 428 bases of the 
LF82_314 CDS deleted

This study

E. coli LF82 ΔLF82_314 
pLF82_314

E. coli LF82 ΔLF82_314 with an 
LF82_314-3xFLAG contruct on 
pBAD18

This study

E. coli LF82-sGFP2 LF82 with chromosomally inserted 
sGFP2

This study

E. coli LF82 ΔLF82_p314-
mScarlet-I

LF82 ΔLF82_314 with 
chromosomally inserted mScarlet-
I

This study

E. coli LF82-KanR LF82 carrying pBAD18 This study

E. coli LF82-CmR LF82 carrying pBAD33 This study
E. coli LF82 ΔLF82_314-
KanR

LF82 ΔLF82_314 carrying pBAD18

This study

E. coli LF82 ΔLF82_314-CmR

LF82 ΔLF82_314 carrying pBAD33

This study

E. coli OP50 Uracil auxotrphic C. elegans food 
source. Genome sequenced. TetR

Steve Atkinson, 
University of 
Nottingham

E. coli S17-1 λ pir Strain for conjugation of pMre-
Tn7-XXX plasmids into LF82 strains

AddGene, (81)

E. coli XL-1 blue Common cloning strain  
361 Strains used in this study. CmR = Chloramphenicol resistant; KanR = Kanamycin resistant; TetR 

362 = Tetracycline resistant.

363 Genetic manipulation

364 Genes of interest were amplified by PCR amplification using Phusion-HF DNA Polymerase 

365 (NEB). Sequences were inserted into pBAD18 or pBAD33 by restriction digest using EcoRI, 

366 KpnI, and XbaI restriction enzymes (NEB), and ligation using T4 DNA ligase (NEB). LF82 

.CC-BY 4.0 International licenseIt is made available under a 
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/606798doi: bioRxiv preprint first posted online Apr. 11, 2019; 

http://dx.doi.org/10.1101/606798
http://creativecommons.org/licenses/by/4.0/


367 ΔLF82_314 was generated from LF82 wild-type using the CRISPR-Cas9-based no-SCAR 

368 strategy [80]. Deletion was confirmed by Sanger sequencing, and strains were fully validated 

369 by whole genome Illumina sequencing (MicrobesNG, Birmingham, UK). LF82-sGFP2 and LF82 

370 ΔLF82_314-mScarlet-I were constructed using pMRE-Tn7-132 and pMRE-Tn7-135 

371 respectively, as in [81]. See Table 2 for a list of plasmids used in this study, and Table 3 for a 

372 list of primers.

373 Table 2

Plasmid Description
pBAD18 Expression plasmid; KanR

pBAD33 Expression plasmid; CmR

pBAD -LF82_314-
mEmerald

Expression plasmid for LF82_p314-mEmerald 
fusion protein; CmR

pCas9-cr4 Cas9- expressing plasmid for no-SCAR deletion 
strategy; TetR

pCMV-3xFLAG-
LF82_314

Plasmid for expression of FLAG-tagged LF82_p314 
in mammalian cells; AmpR

pCMV-mEmerald-
4GS

Plasmid for expression of mEmerald-tagged 
proteins in mammalian cells; AmpR

pCMV-mEmerald-
LF82_314

Plasmid for expression of mEmerald-tagged 
LF82_p314 in mammalian cells; AmpR

pKD-sgRNA-p314 λ-Red recombinase- and LF82_314-targeting 
sgRNA-expressing plasmid for no-SCAR deletion 
strategy; SpcR

pLF82_314 Complementation plasmid for LF82 ΔLF82_314 
encoding an LF82_p314-3xFLAG protein on 
pBAD18; KanR

pMRE-Tn7-132 Conjugative suicide plasmid for transposon 
cloning of sGFP2 construct into chromosomal 
sites; AmpR, CmR

pMRE-Tn7-135 Conjugative suicide plasmid for transposon 
cloning of mScarlet-I construct into chromosomal 
sites; AmpR, CmR

374 Plasmids used in this study. AmpR = Ampicillin resistant; CmR = Chloramphenicol resistant; 

375 KanR = Kanamycin resistant; SpcR = Spectinomycin resistant; TetR = Tetracycline resistant.

376
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377 Table 3

Primer Sequence Description
3xFLAG F GAggtaccGACTACAAGGACGACGATG
3xFLAG R GAtctagactaGCCCCCTCCACCAATTCG

Amplifying 3xFLAG 
tag for insertion 
into pBAD plasmids

LF82_314 F GCgaatccAGGAGGAtaaataATGGCTACGATCCCCAC

LF82_314 R CCggtaccTGCTTTGGCCTCCACACC

Amplifying 
LF82_314 from 
LF82 genome for 
insertion into pBAD 
plasmids

mEmerald F TAggtaccATGGTGAGCAAGGGCGAG
mEmerald R GCtctagaCTACTTGTACAGCTCGTCCATG

Amplifying 
mEmerald for 
insertion into pBAD 
plasmids

p314_del F GAGGAACATCAGCGATAGC
p314_del R GCGCGCTTAGCTACACC

Confirming 
LF82_314 deletion

pTET_com CCAATTGTCCATATTGCATCA
pTET_p314 GTCTGACTCTGCTGCAACCCGTGCTCAGTATCTCTATCACTGA

Amplifying pKD-
sgRNA-p314 in two 
parts

sgRNA_com TTTATAACCTCCTTAGAGCTCGA

sgRNA p314 GGGTTGCAGCAGAGTCAGACGTTTTAGAGCTAGAAATAGCA
AG

Amplifying pKD-
sgRNA-p314 in two 
parts

378 Primers used in this study. Upper-case letters denote complimentary sequences; lower-case 

379 bases represent restriction sites

380 Light microscopy

381 Light microscopy was conducted using an Olympus BX51 microscope at appropriate 

382 magnifications, using µManager software [82].

383 Electron microscopy

384 EM images were captured using a Tecnai T12 BioTwin Transmission Electron Microscope at 

385 an accelerating voltage of 100 kV. Images were captured using a Megaview III Soft Imaging 

386 System (SIS) camera.

387 Biofilm assays

388 Crystal Violet (CV) biofilm assays were adapted from [83]. Overnight bacterial cultures were 

389 diluted 1:100 in LB, and 100 µl diluted culture was inoculated into each well of a 96-well 

390 microtitre plate before static incubation at 37°C. For trans-complementation assays, diluted 
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391 cultures were mixed in specified ratios before inoculation. At appropriate intervals, 

392 planktonic bacteria were removed from the plate, and biofilms were washed three times with 

393 phosphate buffered saline (PBS). Washed biofilms were stained with 0.1% CV dissolved in 

394 water. CV was removed, and stained biofilms were washed four times with PBS, before the 

395 plates were dried in a laminar flow cabinet. Dry stain was solubilised in 30% glacial acetic acid 

396 and moved to a clean 96-well plate. The OD550 of solubilised CV was read using an automated 

397 plate reader. Each experiment contained 3-4 technical replicates of 4 biological replicates.

398 Biofilm microscopy

399 Biofilms were grown for microscopy on acid-washed coverslips. Coverslips were placed in 12-

400 well plates, which were then inoculated with 500 µl bacterial culture diluted as above. 

401 Inoculated plates were inclined at a 45° angle to ensure the air-liquid interface bisected the 

402 coverslip, and were incubated at 37°C for 16 h. At 16 h, culture media was aspirated, and 

403 biofilms were fixed in 4% formaldehyde in PBS for 1 h. Fixed biofilms were washed three times 

404 with PBS, and coverslips were mounted on slides in a 90% glycerol mounting medium with 

405 0.1% DABCO (Sigma), before imaging at 40x and 100x magnification.

406 Motility assays

407 Motility was assessed using established soft agar protocols. 5µl of saturated overnight culture 

408 was inoculated into the centre of soft LB agar plates, solidified with either 0.15% (swimming) 

409 or 0.25% (swarming) agar (Sigma) supplemented with 0.4% glucose. Plates were incubated at 

410 37°C. At appropriate intervals, the maximum diameter of the resulting bacterial cloud or 

411 swarm was determined, and plates were imaged using a handheld camera.

412 Chemotaxis assays

413 A chemotaxis assay was modified from [84]. 75mm Haemocrit capillary tubes (Hawksley & 

414 Sons Ltd, catalogue no. 01604-00) were sealed at one end in a Bunsen flame, before being 

415 passed quickly through the flame several times to heat the glass. Heated capillaries were 

416 immediately placed open-end down into LB with or without 0.4% (w/v) glucose, and left to 

417 draw in media for 15 minutes. Overnight cultures were diluted 1:100 in fresh LB, and 

418 inoculated into the wells of a 96-well plate. Media-loaded capillaries were placed into 

419 inoculated wells, and the plate was incubated in a laminar flow cabinet at room temperature 
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420 for 1 h. To recover bacteria, the outside of capillaries were washed with water, and the sealed 

421 ends were broken over tubes containing fresh LB to catch escaping culture. Remaining culture 

422 was removed by pipetting. Recovered bacteria were then plated at appropriate dilutions for 

423 colony forming unit (CFU) enumeration.

424 Flagella staining

425 To prepare bacteria for light microscopy, overnight cultures were diluted 1:33 in fresh LB and 

426 incubated at 37°C with agitation for 3 hours, before being spread onto glass slides and stained 

427 as in [65]. Stained bacteria were then mounted in immersion oil under a cover slip, sealed 

428 with nail varnish, and imaged at 100x magnification. TEM samples were prepared in a protocol 

429 modified from [85]. Bacterial cultures were prepared as above, before being absorbed onto 

430 carbon-coated copper grids (EM Resolutions) for 10 minutes. Excess fluid was blotted away, 

431 and bacteria were fixed in 3% glutaraldehyde in 0.1 M sodium cacodylate buffer for 2 minutes. 

432 Fixed samples were washed three times with 0.1 M sodium cacodylate buffer for 10 seconds. 

433 Samples were then stained using 2% phosphotungstic acid before imaging at 6000x 

434 magnification as above.

435 Surface staining

436 To stain the outer surface of LF82, we employed an amine-reactive dye conjugation, modified 

437 from [86]. An overnight culture of LF82 pLF82_314-mEmerald was sub-cultured as for flagella 

438 staining, and LF82_p314 expression was induced with 0.1% arabinose. At appropriate 

439 intervals, 1 ml culture was spun at 1200 x g for 10 minutes in a 15ml round-bottom tube, 

440 washed twice in 1 ml PBS, and resuspended in 100 µl PBS using minimal agitation. Cells were 

441 stained at 37°C using 300 µg/ml CF-633 succinimidyl ester (Sigma) for 30 minutes with 

442 agitation at 100 rpm, then washed in PBS. Finally, bacteria were fixed in 4% formaldehyde in 

443 PBS for 20 minutes, washed, and mounted on 2% agarose pads for microscopy. Images were 

444 captured using a 100x lens.

445 C. elegans kill assays

446 A C. elegans infection model was modified from [66]. To preclude data being confounded by 

447 progeny, C. elegans SS104 cultures were synchronised as in [79], and maintained at 25°C to 

448 ensure development of sterile adult worms. To prepare kill plates, 100 µl 10x concentrated 
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449 overnight cultures was spread onto NGM agar plates with appropriate antibiotics, and 

450 incubated at 37°C overnight. 30 synchronised L4 or young adult worms were transferred to 

451 the prepared kill plates, and incubated at 25°C for up to 14 days. Plates were scored every 24 

452 hours for death, and dead worms were removed. To prevent contamination, worms were 

453 transferred to freshly prepared kill plates every 4 days.

454 C. elegans colonisation assays

455 C. elegans colonisation assays were modified from [66]. Colonisation plates were prepared as 

456 above, and 50 synchronised L4 or young adult worms were transferred to each plate, before 

457 being incubated at 25°C. To assay stable gut colonisation, 10 worms were transferred to 

458 freshly prepared OP50 lawns daily, and incubated at 25°C for 1 h to “wash” transient bacteria 

459 from the gut and worm exterior. Worms were then picked and suspended in 1ml M9 buffer, 

460 before being washed three times by pelleting at 1200 x g for 1 minute before removal of 750 

461 µL buffer, which was replaced with fresh M9 buffer. To determine external bacterial numbers 

462 following washing, a sample from the final wash was plated at appropriate dilutions on 

463 selective agar. To release gut contents, the worms were homogenised by vortexing with 

464 approximately 400 mg sterile 1mm diameter glass beads (BioSpec Products Inc., catalogue 

465 no. 11079110) in 1% Triton-X (Sigma) in M9 buffer for 2 minutes, before plating the 

466 homogenate at appropriate dilutions on selective agar. CFU per worm gut was defined as:

467  (2)𝐶𝐹𝑈 𝑝𝑒𝑟 𝑤𝑜𝑟𝑚 𝑔𝑢𝑡 = 𝐻𝑜𝑚𝑜𝑔𝑒𝑛𝑎𝑡𝑒 𝐶𝐹𝑈 𝑝𝑒𝑟 𝑤𝑜𝑟𝑚 ‒ 𝐸𝑥𝑡𝑒𝑟𝑛𝑎𝑙 𝐶𝐹𝑈 𝑝𝑒𝑟 𝑤𝑜𝑟𝑚

468 Colonisation experiments were conducted at least twice, with three separate 

469 biological replicates per experiment.

470 C. elegans competition assays

471 Plates for competition assays were prepared as above, using 1:1 ratios of LF82-KanR:LF82 

472 ΔLF82_314-CmR or LF82-CmR:LF82 ΔLF82_314-KanR. Plates with an input ratio substantially 

473 different from 1 were discarded. CFU per worm gut was assessed as above, and a competitive 

474 index (CI) was calculated. CI was defined as:

475 (2)𝐶𝐼 =  
(𝐶𝐹𝑈 𝑝𝑒𝑟 𝑤𝑜𝑟𝑚 𝑔𝑢𝑡)LF82 𝛥𝐿𝐹82_314

(𝐶𝐹𝑈 𝑝𝑒𝑟 𝑤𝑜𝑟𝑚 𝑔𝑢𝑡)LF82
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476 Competition assays were conducted three times, with three separate biological 

477 replicates of each mix per experiment.

478 To image competition assays, infected worms were “washed” on OP50 lawns as 

479 above, and immobilised in a 0.1% NaN3 solution on a 2% agarose 0.05% NaN3 pad on a glass 

480 slide, which was sealed under a cover slip. Slides were imaged at 10x magnification.

481 Data analysis

482 Statistical analyses were conducted in GraphPad Prism 7. Error bars in graphs represent 

483 standard deviation, unless stated otherwise. Light microscopy images were analysed and 

484 processed using FIJI. Fluorescence co-localisation data analysis and Pearson correlation 

485 analysis was conducted in CellProfiler. Raw r values were converted to z’ values by Fisher’s Z-

486 Transformation and used to calculate mean correlations and 95% CIs, before transformation 

487 back to Pearson’s r values for interpretation. Cross-sectional intensity measurements were 

488 taken using ImageJ.

489 Bioinformatics

490 Protein and nucleotide sequences were retrieved from NCBI [87]. 16S rRNA sequences were 

491 harvested from SILVA [88]. Protein homology searches were conducted using BLASTp and 

492 JACKHMMER [89,90]. Nucleotide sequences for phylogenetic analysis were retrieved by 

493 discontiguous megablast [91]. Multiple sequence alignments were generated using MAAFT 

494 [92–94], before submission to PhyML [95] for automated tree generation. Trees were 

495 visualised in PRESTO (Phylogenetic tReE viSualisaTiOn, available at http://www.atgc-

496 montpellier.fr/presto/).
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816 Fig 1. LF82_314 is required for optimal biofilm formation

817 (A) LF82 ΔLF82_314 do not form biofilms as strongly as wild-type LF82, and LF82 ΔLF82_314 

818 biofilms do not appear to mature and disperse as readily as wild-type biofilms. Wild-type 

819 biofilm formation and dispersal behaviour is restored by episomal expression of LF82_314. 

820 Coloured asterisks represent significant difference between mutant (magenta) and 

821 complemented (black) groups, and LF82 (two-way ANOVA with multiple comparisons to LF82; 

822 see Table S2 for significance levels). (B) Microscopic analysis of biofilms at 16 h shows LF82 

823 ΔLF82_314 form patchy, less dense biofilms than wild-type LF82, and that this phenotype can 

824 be complemented by LF82_314 expression. (C) To assess whether LF82_p314 functions in 

825 trans, we assessed the biofilm formation of wild-type LF82, LF82 ΔLF82_314, and a 1:1 mix of 

826 LF82:LF82 ΔLF82_314. An LF82 ΔLF82_314 biofilm defect was observed as in (A); however, a 

827 1:1 mix of LF82:LF82 ΔLF82_314 displayed an intermediate phenotype. Coloured asterisks 

828 represent significant difference between mutant (magenta) and mixed (black) cultures, and 

829 LF82 (two-way ANOVA with multiple comparisons to LF82; see Table S1 for significance 

830 levels).  (D) LF82-sGFP2 (green) and LF82 ΔLF82_314_mScarlet-I (magenta) form biofilms 

831 comparable to non-fluorescent LF82 and LF82 ΔLF82_314.  A 1:1 co-culture of LF82-sGFP2 

832 and LF82 ΔLF82_314_mScarlet-I show that mixed biofilm are composed of strain-exclusive 

833 islands. (E) Biofilms in which LF82 express an LF82_p314-mEmerald fusion protein (green) 

834 shows LF82_p314 forms cell-associated filaments, as observed in HeLa cells [62]. (F) 

835 Fluorescence intensity cross-section analysis of LF82 expressing LF82_314-mEmerald with 

836 CF633 succinimidyl ester-stained outer membrane proteins shows the extracellular stain and 

837 mEmerald fluorescence intensity peaks do not overlap, demonstrating an intracellular 

838 localisation for LF82_314 filaments. White lines represent the 30 pixels of the cross-section. 

839 Cyan = CF633; green = LF82_p314-mEmerald.

840 Fig. 2. LF82_314 promotes flagella-mediated motility via an uncharacterised mechanism.

841 LF82 ΔLF82_314 has notable defects in (A) swimming and (B) swarming motility (One-way 

842 ANOVA, *** = p ≤ 0.001), which are complemented by LF82_314 expression. Each dot 

843 represents one technical replicate, or plate; separate colours represent biological replicates. 

844 Swim plates were measured at 10 h post-inoculation, and swarm plates at 24h. Motility plates 

845 imaged at 24 h post-inoculation show LF82 ΔLF82_314 have atypical swimming motility 

846 lacking chemotactic rings observed on wild-type plates, and the swarming defect. (C) A 
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847 capillary-based chemotaxis assay demonstrated increased recovery of both LF82 and LF82 

848 ΔLF82_314 CFU from media supplemented with glucose compared to LB alone, with no 

849 significant difference between strains in CFU recovered in either condition. Each dot 

850 represents one biological replicate.  Bright-field microscopy of Kodaka stained (D) and 

851 negative stain TEM (E) of LF82 and LF82 ΔLF82_314 demonstrates no differences in flagella 

852 morphology, and flagella counts from 30 TEM micrographs (F) show no difference in flagella 

853 numbers per flagellated cell, suggesting flagella biosynthesis is intact in both strains. TEM 

854 scale bar represents 5 µm.

855 Fig. 3. LF82_314 promotes gut colonisation in Caenorhabditis elegans

856 (A) Survival of C. elegans SS104 is significantly decreased when cultivated on LF82 or LF82 

857 ΔLF82_314, compared to OP50, however no significant difference was noted between 

858 survival on LF82 or LF82 ΔLF82_314. (B) No significant difference in stable colonisation of the 

859 C. elegans gut by LF82 or LF82 ΔLF82_314 was found when worm were fed on each strain 

860 exclusively. (C) A competition assay demonstrated LF82 ΔLF82_314 has a competitive 

861 colonisation disadvantage compared to LF82 throughout the course of infection (one-tailed 

862 Wilcoxon match-pairs signed rank test, * = p ≤ 0.05, ** = p ≤ 0.01, *** = p ≤ 0.001. CI’s were 

863 compared to an ideal “no-disadvantage” CI = 1). CI ratios below 1 represent a competitive 

864 disadvantage. Data was pooled from 3 independent experiments. Error bars show 95% 

865 confidence intervals. (D) Fluorescence microscopy of C. elegans fed LF82-sGFP2 and LF82 

866 ΔLF82_314-mScarlet-I alone demonstrates both LF82 and LF82 ΔLF82_314 are capable of 

867 establishing gut and pseudocoelomic infections; however, when fed to worms in a 1:1 ratio, 

868 LF82-sGFP2 appears to outcompete LF82 ΔLF82_314-mScarlet-I, mirroring Fig. 3C. These data 

869 suggest that LF82_314 is required for efficient host colonisation. Scale bars represent 50 µm.

870 Fig. 4. LF82_314 is conserved among enterobacterial pathogens

871 LF82_314 is encoded in a region of the LF82 genome (A) containing several ORFs with 

872 predicted transposase and integrase functions, and a toxin-antitoxin addiction module (B), 

873 suggesting the region may represent an MGE. (C) A ML tree of 77 LF82_314 homologues from 

874 68 strains reveals that LF82_314 is conserved in a wide variety of pathogenic enterobacteria, 

875 and that LF82_314 homologue-derived phylogenies do not recapitulate expected 

876 phylogenetic relationships (see Fig. S2). Of note is the large clade E. coli strains, which 
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877 represents members of the clonal, UTI-associated ExPEC, ST131. Red = human pathogen; gold 

878 = human and animal or zoonotic pathogen; green = plant pathogen; brown = commensal; blue 

879 = environmental; black = insufficient data. Scale bar represents number of substitutions per 

880 site.
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901 Supporting information

902 S1 Fig. LF82_314 self-assembles into large filaments

903 When expressed heterologously in HeLa cells, LF82_314 forms large filaments. Filament formation is 

904 independent of the tag used for visualisation, suggesting this phenotype is not a tag-dependent 

905 artefact. See S3 File Supplementary methods for protocol.

906 S2 Fig. LF82_314 homologue distribution does not mirror true phylogenies

907 The distribution of LF82_314 homologues represented in the LF82_314 ML phylogenetic tree (A) 

908 differs significantly from the 16S rRNA phylogenies (B). For example, in (A), E. coli LF82 and NRG 857c 

909 cluster with Shigella boydii Sb227 and ATCC 9210 in a separate clade to other E. coli isolates; however, 

910 in (B), LF82, NRG 857c, Sb227, and ATCC 9210 cluster as expected with E. coli in a distinct clade. 

911 Similarly, (A) suggests a loose relationship exists between Salmonella strains, whereas in (B), a distinct 

912 phylogenetic group is generated. These data suggest LF82_314 may be horizontally inherited. Strains 

913 are coloured by genus. Scale bars = substitutions per site.

914 S1 File LF82_314 is co-inherited with the general secretion pathway

915 S2 File LF82_314 homologues from blastn discontiguous megablast

916 S3 File Supplementary methods

917 S1 Table p-values for Fig. 1
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