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Abstract: Touchscreen-HMIs are increasingly popular within vehicles. Understanding the likely visual 

demand of new designs is therefore important but typically requires time-consuming and costly testing 

with functioning prototypes. Theoretical modelling allows performance to be determined much earlier in 

the design cycle, but has seldom been applied to touch-screen interfaces in divided-attention contexts, such 

as driving. We describe a theoretical model of human performance – derived from empirical testing – that 

makes a priori predictions of the visual demand (total glance time, number of glances and mean glance 

duration) elicited by finger-touch pointing tasks in a driving context. The model integrates two well-

established laws of human behaviour – the Hick-Hyman Law, concerning decision/search behaviour, and 

Fitts’ Law, which considers the movement to acquire a visual target. The model also recognises that 

menus with greater depth will extend decision/search time and delay the time taken to achieve expert 

status. Preliminary validation work, comparing predictions for a real-world prototype touchscreen 

interface with empirically-obtained data, suggests that the model may provide an effective design and 

evaluation tool capable of making valuable predictions regarding the limits of visual demand/performance 

associated with in-vehicle interfaces, enabling designers to explore a wide range of possible designs before 

implementation, and permitting cost-effective redesign. Further work is required to refine the model, 

particularly in consideration of more complex tasks, involving multiple screen interactions. 

 

 

1. Introduction 

Touchscreens Human-Machine Interfaces (HMIs) are increasingly becoming the primary display and 

control interface in vehicles. However, they inherently demand some visual attention, often relying on visual 

cues, in lieu of tactile prompts, and this can divert a driver’s attention away from the road scene. Determining 

the amount of visual attention demanded by such interfaces is therefore important but this traditionally 

necessitates empirical testing and user trials (e.g. [1]) requiring fully-functioning prototypes. Such testing 

can also be time-consuming and costly to conduct, and may result in expensive re-design and re-evaluation. 

Theoretical modelling allows human performance to be determined much earlier in the design cycle than 

traditional design-evaluation techniques and therefore reduces arguments to simple calculations, based on 

an understanding of the underlying characteristics of the interface and task [2]. This enables designers to 

explore a wide range of possible designs before implementation, and permits cost-effective redesign. 

Although there has been significant interest in the theoretical prediction of human behaviour and 

performance within the field of HCI, this has typically focussed on technology and interfaces that act as the 

only or primary focus for a user’s attention (e.g. menu navigation using desktop computers), with the aim 
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of predicting interaction time or performance, and has seldom been applied to interfaces in divided-attention 

contexts, such as driving (although there have been some notable forays, such as Pettitt et al. [3], who 

extended key-stroke level modelling (KLM) to account for the context of driving). 

 

1.1. Information Theory 

 

A common basis to model human performance is Information Theory [4], which views humans as 

information processors. Adaptations of Information Theory were first applied to HCI during the 1980s by 

Card et al. [5], who articulated two information theoretic models as guiding principles to enhance technology 

and interface design and usability, notably Fitts’ Law [6] and the Hick-Hyman Law [7, 8].  

Fitts’ Law is concerned with predicting the time taken to move to an item using a pointing device and 

is predicated on the fact that human performance is limited primarily by the capacity of the human motor 

system, as determined by the visual and proprioceptive feedback that permits an individual to monitor their 

own activity. It predicts a logarithmic relationship between movement time and target-distance and width 

because human pointing to visual targets typically allows a large proportion of the distance towards the 

target to be completed rapidly without attending to feedback. Essentially, Fitts’ Law predicts that small, 

distant targets require more information processing than larger, closer targets, and therefore take longer to 

acquire.  

The Hick–Hyman Law compliments Fitts’ Law by modelling the relationship between information 

load and choice-reaction time, i.e. the time taken to determine which target/item to acquire before moving 

towards it. The law predicts a linear relationship between reaction time and the item’s information content 

(e.g. number of options on a menu); it also predicts that as users become more experienced, their visual 

search strategy/decision time will change from linear to logarithmic, i.e. the time taken to locate an item 

reduces significantly as familiarity increases. 

Both Fitts’ Law and the Hick-Hyman Law are highly applicable within the fields of HCI and Human 

Factors. However, much of the proceeding work has focussed largely on the application of Fitts’ Law in 

isolation, therefore overlooking the time taken to choose and locate the target, or has failed to consider 

adaptations to visual search strategies and any associated changes in search time as users become more 

familiar with interfaces. Moreover, each law has tended to be applied in isolation. 

Combining Fitts’ and Hick-Hyman laws can provide a more expansive prediction of human behaviour 

than each model offers alone (for examples see: [9, 10, 11]), but these have typically achieved limited 

success. More recently, Cockburn et al. [12] proposed a model of menu performance – that combines 
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element of Fitts’ and Hick-Hyman laws – to predict the time to find a target item and the time to select (or 

move to) that item; the model also recognises users’ increasing expertise, reflected in a gradual move from 

a linear to logarithmic visual search/decision time. Results of the validation studies conducted by Cockburn 

et al. [12] suggest that their predictions of static task time were generally very accurate – within 2% of 

empirically collected data. However, a significant limitation of the Cockburn et al. [12] model – at least 

from our own research perspective – is that it only applies to the prediction of static task time in a sedentary 

context. As automotive ergonomists, we are interested in whether similar predictions could be made 

regarding interactions with in-vehicle HMIs while driving: to date, there is no evidence of successful 

attempts to combine Fitts’ and Hick-Hyman Laws to model ‘search, find and select’ interactions with a 

touchscreen HMI in a driving context. 

 

1.2. Approach and Assumptions 

 

In a driving context, vision provides the primary source of information available to drivers. Therefore, 

while total task-time is commonly used an indicator of the suitability of secondary tasks or devices, the 

visual attention demanded by such tasks is likely to be a far better predictor of suitability [1]. Moreover, 

there is a demonstrable link between glance behaviour and safe driving. For example, naturalistic driving 

studies have shown that the risk of a crash or near-crash event increases significantly as eyes-off-road time 

increases above 2.0 seconds [13, 1].  

Secondary task visual demand is typically measured using three key metrics – total glance time (TGT), 

mean glance duration (MGD) and number of glances (NG) – with guidelines recommending ‘safe’ limits 

associated with each metric. In accordance with ISO 15007 part 1 [14], TGT is defined as the “summation 

of all glance durations to an area of interest (or set of related areas of interest) during a condition task, 

subtask or sub-subtask”. MGD is the “mean duration of all glance durations to an area of interest (or set of 

related areas of interest) during a condition task, subtask or sub-subtask”, and NG is the “count of glances 

to an area of interest (or set of related areas of interest) during a condition task, subtask or sub-subtask” [14].  

In line with Cockburn et al. [12], we consider ‘search, find and select’ tasks to comprise 

decision/search (Hick-Hyman) and pointing (Fitts) components. Cockburn et al. [12] were concerned with 

predicting the time to select an item using static menus. Assuming similar logic, we predict that the glances 

associated with selecting an item, i, comprises glances associated with both deciding/searching (ds) and 

pointing (pt). Thus,  
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 𝑇𝐺𝑇𝑖 = 𝑇𝐺𝑇𝑑𝑠 + 𝑇𝐺𝑇𝑝𝑡 (1) 

 𝑁𝐺𝑖 = 𝑁𝐺𝑑𝑠 + 𝑁𝐺𝑝𝑡 (2) 

 

For MGD, we assume that this can be obtained from TGT and NG data, in line with International 

Standards definitions [14]. 

 

 𝑀𝐺𝐷𝑖 = 𝑇𝐺𝑇𝑖 ÷ 𝑁𝐺𝑖 (3) 

 

Finally, in order to isolate decision/searching and pointing behaviour, we initially assume that these 

activities can be modelled separately from one another. To ensure that participants’ behaviour could be 

segregated in this manner, we asked participants to locate their hand on the steering wheel at a designated 

location during each study, and remove this only when they began pointing. Therefore, for the purpose of 

analysis, we assume that pointing behaviour began at the time that participants’ hand left the steering wheel; 

anything prior to this action (following the presentation of a new stimulus/instruction) was deemed to be 

associated with deciding/searching. 

2. Method  

Derivation of the model incorporated three studies, each conducted independently. Common elements, 

such as the driving simulator and set-up/approach, are summarised below, with further study-specific details 

provided in the subsequent sections. Study one considered the pointing component of single-target 

acquisition, thereby deriving an initial Fitts’ Law relationship. Study two considered the effect of additional 

flanking items on pointing efficiency – thereby modifying the relationship derived in study one – and 

isolated an associated Hick-Hyman decision/search component. Study three provided an initial validation 

of the derived model by applying it to a real-world prototype touchscreen interface. 

 
2.1. Apparatus, Design and Procedure 

 

All testing took place using a medium-fidelity, fixed-based driving simulator based at the University 

of Nottingham. Participants comprised experienced and regular drivers who responded to advertisements 

posted online and around the University campus; they were reimbursed with shopping vouchers as 

compensation for their time and provided written informed consent before taking part. 

The driving simulator comprised the front half of a 2001 right-hand drive Honda Civic car positioned 

within a curved screen affording a 270° viewing angle. A bespoke driving scenario was created using 



5 

 

STISIM (v2) software to replicate a generic three-lane UK motorway, and projected onto the screen using 

three overhead projectors (Figure 1). 

 

 
 
Fig. 1.  Driving simulator showing motorway scenario used during stuides 

 

The car-following dual task paradigm was employed throughout testing. This approach is typically 

employed in driver distraction research to control primary task workload, and is specified as part of a 

standardised experimental protocol within international driving standards (e.g. [1]).  

During each study, stimuli were displayed on an HP EliteBook 2740p tablet computer that was located 

in a representative location within the centre console of the car. During study one, the location of the tablet 

was alternated between two different positions – notionally referred to as ‘upper’ and ‘lower’ – in order to 

capture a larger range of ‘distances to target’ (Fitts’ law ‘D’ metric). In all other testing, the tablet computer 

was located in the ‘upper’ position – a more common location for an in-vehicle, centre console display 

(Figure 2). All testing assimilated data from multiple stimulus-response iterations to ensure that the derived 

relationships were well-founded and robust.  

SensoMotoric Instruments (SMI) Eye Tracking Glasses (ETG) were used to collect binocular gaze 

data at thirty frames-per-second throughout testing; eye-tracking data were subsequently coded using 

semantic gaze mapping. Secondary task/response time, comprising search time and pointing time, was also 

recorded. Forty experienced and active drivers took part in testing (23 male, 17 female, with a mean age of 

31.4 years; mean annual mileage was 6390), with a different cohort recruited for each of the separate studies.  
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Fig. 2.  Location of touchscreen within driving simulator buck (example taken from study 1) 

 

 

2.2. Study 1: Fitts’ Pointing Component (Single Targets) 

 

During study one, participants undertook two counterbalanced driving sessions – one with the 

touchscreen located in the upper position, the other, with it in the lower position. Each driving session lasted 

approximately fifteen minutes. At the start of the testing phase of each session, participants were instructed 

to locate their left hand at a predefined position on the steering wheel marked with white tape (see Figure 2) 

approximating to the 10 o’clock position on an analogue clock face. This ensured that the ‘distance to target’ 

(required for Fitts’ law) could be determined for each location. 

For each stimulus, a single square target item appeared on the touchscreen (Figure 2), accompanied 

by an audible tone to inform participants of the presence a new target. Participants were instructed to touch 

(‘point at’) the target as quickly and accurately as possible (while maintaining safe driving), and then return 

their hand to the steering wheel. After touching the target, it disappeared from the screen and, following a 

short delay, a new target appeared. Targets varied in size (6, 12, 18, 24mm) and location, based on existing 

in-vehicle HMI guidelines. The order of presentation of target locations and dimensions was randomised 

between participants. 
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2.3. Study 2: Fitts’ Pointing Component (Flanking Targets) and Hick-Hyman Decision/Search 
Component 

 

In order to add a decision/search element, participants were required to find and select a single target 

item located amongst an array of similar items during study two. Participants were presented with a pre-

recorded auditory cue – a target word, spoken aloud – and were required to locate and select the on-screen 

element containing the first two letters of that word as quickly as possible. All words conformed to regular 

UK English phonetic pronunciation and spelling and were between 6 and 12 letters in length.  

Target arrays varied in size from one to 36, but targets were always adjacent, equally spaced and 

grouped in squares, i.e. 1x1, 2x2, 3x3 and 6x6, affording 1, 4, 9 or 36 targets; target size was consistent 

throughout the study, in line with existing in-vehicle HMI guidelines, and was the median size used during 

study one (i.e. 15mm). Targets were presented as either alphabetically-structured arrays, affording 

anticipation, or unstructured arrays (Figure 3). Participants undertook seven drives (i.e. there was only one 

drive for N=1), each of which constituted a different array size and structure, and lasted approximately 5 

minutes. Participants experienced all structured array conditions sequentially (i.e. N=1, 4, 9 and 36), 

followed by all unstructured conditions (or vice versa to avoid order/learning effects), with the order of array 

size (N) presentation within each condition (structured/unstructured) randomised. During each drive (and 

therefore each configuration), participants were required to locate and select 36 targets, with a target 

appearing in each of the possible locations. After selecting the correct target, the array disappeared from the 

screen and, following a short delay, the array re-appeared, preceded by a new auditory cue. The layout of 

the unstructured arrays remained consistent within each of these drives in order to investigate the experience 

effects of repeated exposure to an unstructured display.  

 

 

Fig. 3.  Example of 6x6 arrays showing structured (left) and unstructured (right) 
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2.4. Study 3: Model Validation 
 

As a preliminary validation, a novel touchscreen interface providing ‘infotainment’ and HVAC control 

functions was evaluated in accordance with the NHTSA Eye Glance Testing using a Driving Simulator 

(EGDS) test protocol [1]. Three tasks were evaluated: changing the listening mode to ‘radio’ 

(‘Entertainment’), changing the airflow from ‘balanced’ to ‘soft and quiet’ (‘HVAC’) and changing the 

driver seat massage mode to ‘shoulder’ and increasing the massage intensity to ‘level 4’ (‘Personal 

Comfort’). Following the completion of empirical testing, the derived model was used to predict the visual 

demand of each task (TGT, NG and MGD). The theoretical predictions of visual demand were then 

compared to the empirically derived measures. 

3. Results and Analysis  

The results of study one were used to determine the Fitts’ pointing component for single targets. For 

the purpose of analysis, it is assumed that there is no ‘search’ associated with single target acquisition. 

 
3.1. Study 1: Fitts’ Pointing Component – Single Targets 

 

Pointing behaviour is derived from Fitts’ Law.  Results show a strong linear relationship between Fitts’ 

‘index of difficulty’, log2
𝐷

𝑊
 (where D = distance to target and W = width of target), and pointing TGT, 

suggesting that Fitts’ law applies to single target acquisition in a driving context (Figure 4).  

 

 

Fig. 4.  Fitts’ Law relationships derived from study 1 

 

The following relationship is thus derived: 

 𝑇𝐺𝑇𝑝𝑡 = 0.26 +  0.11 log2
𝐷

𝑊
 (𝑅2 = 0.77) (4) 
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Given that pointing is achieved within a single glance (moreover, this is an assumption of our analysis 

approach), NGpt is assumed to equal one (for single targets) and MGDpt can therefore be determined using 

the same relationship as TGTpt. 

 
3.2. Study 2: Fitts’ Pointing Component – Flanking Targets 

 

During study two (where ‘search’ activities were also required during most tasks), we assumed that 

pointing began when the participant’s hand left the steering wheel, and instructed participants as such during 

testing. In situations where single items were presented, predictions of TGTpt corresponded well with 

predictions from study one. However, in the presence of additional flanking items, it was evident that TGTpt 

exceeded the predictions from the first study, suggesting that pointing efficiency was degraded in the 

presence of additional targets, thereby increasing visual demand (Figure 5). The additional visual demand 

encouraged by the presence of multiple targets can be derived empirically as: 0.045 log2 𝑁 (𝑅2 = 0.98), 

where N = the number of targets. Thus, we appended this term to Equation 4. 

 

 

Fig. 5.  Fitts’ pointing relationship for TGT, showing: observed versus predicted behaviour from study one (red 

bars=additional pointing time) (left), and derivation of additional pointing glance time modifier due to flanking targets (right) 

 

 

 𝑇𝐺𝑇𝑝𝑡 = (0.26 + 0.11 log2
𝐷

𝑊
) + (0.045 log2 𝑁) (5) 

 

Again, we assumed that pointing requires only one glance, so NGpt remained equal to one and MGDpt 

could effectively be determined using the same expression as TGTpt. 
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3.3. Study 2: Fitts’ Hick-Hyman Search Component 

 

In line with Cockburn et al. (2007), we assumed that decision/search behaviour (in the presence of 

additional, flanking targets) can be determined by interpolating behaviour between a linear visual search 

component (vs) and a logarithmic Hick-Hyman decision component (hh).  

However, given that our model concerns the prediction of visual behaviour in a driving context, it is 

recognised that the visual attention directed towards a secondary interface/task will naturally be restricted 

by the demands of the primary driving task, and further likely to be interrupted as drivers are required to 

routinely attend to the primary driving task. Thus, rather than ‘user expertise’ per se (as defined by Cockburn 

et al. [12]), we expect decision/search behaviour to be influenced by a driver’s ability to anticipate the 

location of the target and resume searching after their attention has been directed elsewhere (e.g. towards 

the driving task). Consequently, our evaluations of decision/search activities associated with multiple targets 

also concerned structured (st) and unstructured (un) arrays. 

Moreover, we assumed that when a user is inexperienced, they are unable to anticipate the target 

location, and thus there is a linear relationship between TGT and the total number of items – for both 

structured and unstructured interfaces/arrays – in line with Cockburn et al.’s [12] approach. Plotting these 

data for inexperienced users (i.e. at t=1, where t = the number of exposures to an interface), we confirm a 

linear relationship for TGT associated with both structured and unstructured arrays (Figure 6). A similar 

linear relationship can be derived for NG (no figure). 

 
 

Fig. 6.  Modelling visual search behaviour – TGT @ t=1 for structured (left) and unstructured (right) interfaces, where t = the 

number of exposures 

 

The following relationships are thus derived: 

 𝑇𝐺𝑇𝑣𝑠_𝑠𝑡 = 0.029𝑁 + 0.44 (𝑅2 = 0.97) (6) 

 𝑇𝐺𝑇𝑣𝑠_𝑢𝑛 = 0.10𝑁 − 0.028 (𝑅2 = 0.99) (7) 
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 𝑁𝐺𝑣𝑠_𝑠𝑡 = 0.021𝑁 + 1.04 (𝑅2 = 0.98) (8) 

 𝑁𝐺𝑣𝑠_𝑢𝑛 = 0.044𝑁 + 0.81 (𝑅2 = 0.94) (9) 

 

Further to this, it is assumed that all HMIs intended for deployment within vehicles are ultimately 

‘learnable’, as defined by Cockburn et al. [12] (i.e. items remain in fixed locations). It is also expected that 

users will require more trials to achieve ‘expert’ status when using menus containing multiple targets. 

However, given the divided-attention context of driving (i.e. drivers may be required to stop and resume 

search activities on several occasions – as dictated by the demands of the primary driving task – particularly 

for larger arrays), it is expected that the search component, e.g. TGTvs, will persist longer in the presence of 

additional target items compared to the predictions made by Cockburn et al. [12]. Using the empirical data, 

a visual search/experience scale factor, dvs, is thus derived (Equation 10), applicable to situations of divided 

attention. Consequently, Equation 1 can be redefined as Equation 11, below.  

 

 𝑑𝑣𝑠 =
log2 𝑁

log2(𝑁+𝑡𝑖)
 (10) 

 

 𝑇𝐺𝑇𝑑𝑠 = 𝑑𝑣𝑠. 𝑇𝐺𝑇𝑣𝑠 + 𝑇𝐺𝑇ℎℎ (11) 

 

3.4. Study 2: Fitts’ Hick-Hyman Decision Component 
 

As users become more experienced with an interface, they are able to anticipate the location of their 

target item based on spatial memory. Using the data for experienced users (i.e. at t=36, taken as the 

maximum exposure recorded during the studies and the point at which users were therefore expected to be 

familiar with the array), a logarithmic Hick-Hyman relationship can be derived. For structured interfaces, 

the linear visual search term is thus replaced by a logarithmic Hick-Hyman relationship: 

 

 𝑇𝐺𝑇ℎℎ_𝑠𝑡 = 0.069 log2 𝑁 + 0.094 (𝑅2 = 0.84) (12) 

 

In contrast, the data obtained from exposures to unstructured interfaces suggest that the relationship 

between glance duration (TGT) and the number of items is linear, indicating that no such anticipation is 

possible for unstructured interfaces (as would be expected). 

 

 𝑇𝐺𝑇ℎℎ_𝑢𝑛 = 0.049𝑁 − 0.091 (𝑅2 = 0.998) (13) 
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Relationships for NG can be derived in a similar fashion. 

 

 𝑁𝐺ℎℎ_𝑠𝑡 = 1 (14) 

 

 𝑁𝐺ℎℎ_𝑢𝑛 = 0.0071𝑁 + 0.96 (𝑅2 = 0.98) (15) 

 

 

3.5. Refining the Model 

 

It was evident from the data that, given the short duration of each ‘task’ (i.e. selecting a single item), 

experienced users were, on average, able to achieve selections (including pointing, decision and search 

activities) from a structured array in one glance, even for the larger target arrays (Equation 14). This suggests 

that pointing seldom necessitated a separate, dedicated glance as initially assumed. Instead, it was suspected 

that participants began pointing (i.e. their hand left the steering wheel) during a search/decide glance, despite 

instructions to the contrary. To confirm this behaviour, we re-examined all individual glances made by 

participants for both structured and unstructured interfaces, specifically comparing the duration of the final 

glance with the predicted pointing component: in every situation, the pointing glance component constituted 

only a proportion of the final glance. Thus, we concluded that the final glance constituted elements of both 

search/decide and pointing. This is perhaps unsurprising given that in a divided attention context, it is 

expected that users would naturally be inclined to select a target as soon as it is located, rather than actively 

segregating decision/search and pointing activities (e.g. by returning their attention to the primary task), as 

this would require them to relocate the target during subsequent glances.  

We therefore modified our analysis approach, disregarding a separate pointing element for NG, and 

assume that this glance is already included during the derivation of NGds. Again, we can derive MGD by 

dividing TGT (i.e. TGTpt plus TGTds) by NG, in line with International Standards definitions [14]. Combining 

searching, decision and pointing terms, the following equations were therefore obtained: 

 

 𝑇𝐺𝑇𝑠𝑡 = (
log2 𝑁

log2(𝑁+𝑡𝑖)
) (0.029𝑁 + 0.44) + 0.11 log2 𝑁 + 0.11 log2

𝐷

𝑊
+ 0.35 (16) 

 𝑇𝐺𝑇𝑢𝑛 = (
log2 𝑁

log2(𝑁+𝑡𝑖)
) (0.10𝑁 − 0.028) + 0.049𝑁 + 0.045 log2 𝑁 + 0.11 log2

𝐷

𝑊
+ 0.17 (17) 
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 𝑁𝐺𝑠𝑡 = (
log2 𝑁

log2(𝑁+𝑡𝑖)
) (0.021𝑁 + 1.04) + 1 (18) 

 𝑁𝐺𝑢𝑛 = (
log2 𝑁

log2(𝑁+𝑡𝑖)
) (0.044𝑁 + 0.81) + 0.0071𝑁 + 1.96 (19) 

 

 𝑀𝐺𝐷𝑠𝑡 = 𝑇𝐺𝑇𝑠𝑡 ÷ 𝑁𝐺𝑠𝑡 (20) 

 𝑀𝐺𝐷𝑢𝑛 = 𝑇𝐺𝑇𝑢𝑛 ÷ 𝑁𝐺𝑢𝑛 (21) 

 

where: 

 st = structured 

 un = unstructured 

 N  =  total number of selectable items on the screen 

 t  =  number of exposures to interface  

 D  =  distance to target from hand position on steering wheel 

 W  =  target width 

 

 

3.6. Study 3: Model Validation 
 

To ensure thorough evaluation, results obtained for TGT, NG and MGD (obtained from testing a novel 

touchscreen interface in accordance with the NHTSA EGDS test protocol [1]) were initially compared to 

predictions made by both structured and unstructured predictive models (Equations 16-21). Given that the 

tasks under investigation comprised multiple screen interactions, it was assumed that each separate 

screen/interaction constituted an isolated subtask (involving a ‘search, find and select’ activity) that could 

be modelled independently. For example, the ‘HVAC’ task (change the airflow from ‘balanced’ to ‘soft’) 

constituted four ‘subtasks’: pressing the ‘setting’ button; pressing ‘driver airflow’; pressing ‘soft and quiet’; 

and pressing the ‘close’ button. 

Moreover, it was assumed that each subtask (and its associated metrics) occurred in series and thus 

predictions could be aggregated to determine the total (TGT, NG) or mean (MGD) visual demand associated 

with each complete task. Figure 7 shows observed behaviour plotted against the structured and unstructured 

predictions for each task.  

It is evident that, for all three tasks, the model overestimates TGT and NG for subtask 1 (i.e. 

interactions associated with the home screen). For subsequent subtasks, the observed behaviour generally 

falls between (or close to) the limits of structured and unstructured predictions. 
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Fig. 7.  Structured and unstructured model predictions compared to observed performance, isolated by subtask, for 

Entertainment (top), HVAC (centre) and Personal Comfort (bottom) tasks. Predictions are shown in blue (structured) and red 

(unstructured) lines; observed data is shown in green. 

 

4. Discussion 

We describe a model of human behaviour inspired by the work of Cockburn et al. [12] that aims to 

predict the demand of finger-touch ‘search, find and select’ tasks in a driving context, based on information 

theory principles (Fitts’ Law and Hick-Hyman Law). The model therefore extends the work of Cockburn et 

al [12] and in particular makes this applicable to visual demand in situations of divided attention, such as 

driving. 

There are clear similarities between our model and the equations proposed by Cockburn et al. [12]. A 

notable difference is the inclusion of an additional visual search/experience scale factor (dvs), which reflects 

the increased learning required for interfaces containing a larger number of targets, and the additional visual 

demand necessitated by switching between primary and secondary task execution. This is an important 

consideration because it reflects the fact that drivers are required to divide their attention between driving 
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(primary task) and interacting with the interface (secondary task), and may therefore be required to resume 

their search on multiple occasions, rather than only during the initial exposure to the interface. Consequently, 

an element of ‘searching’ is likely to persist, even after multiple interactions with well-designed, ‘learnable’ 

interfaces. In contrast, no such ‘chunking’ and search resumption would be expected in situations involving 

static menus in a sedentary context (where the interface is the primary – and often only – candidate for users’ 

attention); in these situations, the ‘searching’ element quickly decays during repeat exposure, as shown by 

Cockburn et al. [12]. 

An important consideration when designing HMIs intended for in-vehicle placement is the extent to 

which users are able to anticipate the location of their chosen option or function. Anticipation can be 

encouraged through repeated exposure and/or structuring items – repeated exposure enhances familiarisation 

and allows users to anticipate the location of target items, whereas structure can provide clues about target 

location. Structuring can be achieved by arranging options in alphabetical, numerical or chronological order. 

However, effective structuring within graphical user interfaces can be difficult to achieve, particularly if 

using visual iconography, typical of current in-vehicle touchscreen applications. Thus, one could consider 

any new icon-based interface to be ‘unstructured’ when encountered for the first time. However, when the 

interface becomes more familiar (for example, through repeated exposure) – and users are able to anticipate 

the locations of target items – it may be more appropriate to consider the interface as ‘structured’. By 

deriving equations for both structured and unstructured interfaces in the current study, it is therefore possible 

to predict the range of performance that may be achieved from initial exposure – typical of novice or 

occasional users – to expert performance, achieved through regular, repeated use.  

It is evident from the preliminary validation study that, with the exception of the home-screen (subtask 

1), the empirical data generally existed between structured and unstructured predictions, with notable 

variability for different subtasks/measures (see Figure 7), suggesting that this interpretation may be true – 

in situations where the observed behaviour was more closely aligned with ‘unstructured’ predictions, users 

were less familiar with that particular subtask or screen layout, and one might consequently expect visual 

behaviour to migrate towards ‘structured’ predictions as drivers’ familiarity/expertise increases. From this 

perspective, the validation results suggest that users may have been more familiar with some screens than 

others – the observed visual demand associated with the home-screen, in particular, was significantly lower 

than even the structured predictions, suggesting that this was very familiar and easy to access. 

An alternative explanation is that the observed behaviour may be indicative of the effectiveness of the 

interface design. Indeed, participants who took part in the validation study were trained in accordance with 

NHTSA EGDS protocol [1] and thus, could be considered as ‘expert performers’. Consequently, in 
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situations where the observed behaviour was more closely aligned with structured predictions, one could 

conclude that the interface or interactions associated with that task or subtask were effective and afforded 

anticipation. In contrast, visual behaviour tending towards the unstructured predictions may be indicative of 

poor design, i.e. the interface or task lacked learnability. Therefore, the predictive model may also have 

utility as a formative design evaluation tool. However, it is noteworthy that the evaluation results were 

predicated on the assumption that the tasks could be broken down into discrete subtasks, each of which 

could be modelled independently and occurred in series; this is not necessarily the case in all situations. 

Further work is required to explore this assumption. 

An additional consideration is that assigning model parameters (e.g. number of items in an interface, 

target width, distance to target etc.) to real-world interfaces may be complicated by design techniques, such 

as skeuomorphic elements that may not lend themselves to theoretical analysis. During the validation work, 

all interactions involved finger touch input using discrete and delineated elements; this may not be the case 

for all real-world interfaces. Therefore, further work that considers different design elements and interaction 

techniques is required. 

It is also noteworthy that despite the model’s apparent utility as both a design and evaluation tool, the 

resulting predictions are likely to be highly contextual. Testing was conducted in a medium fidelity, fixed-

based driving simulator using a generic motorway scenario. If a different simulated driving scenario had 

been used during testing, some aspects of visual behaviour may have been affected (see: [15]), and thus the 

derived equations would have differed. Visual demand may also have been influenced by the search tasks 

employed to capture data, such as semantic complexity associated with different target words in study 2, 

although efforts were made to mitigate this affect by selecting unambiguous targets. Furthermore, in a real-

world environment, other factors that are likely to vary significantly between vehicle designs (e.g. space, 

anthropometry, location of touchscreen, the provision of an arm rest to support touchscreen operation, 

drivers’ handedness etc.), may also influence secondary task visual demand while driving (particularly NG 

and MGD) and the simulated vehicle, experimental approach and participant cohort may have been 

insufficient to fully represent all factors. Consequently, using the model to provide absolute predictions of 

visual demand should be considered carefully and we recommend that derived data should serve as a guide 

only. The model’s true utility is likely to exist in its ability to predict relative metrics, thereby allowing 

several prospective design concepts to be considered early in the design cycle, and reducing arguments to 

simple calculations based on an understanding of the underlying characteristics of the interface and task (see: 

[2]). 
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5. Conclusions and Future Work 

We describe a predictive model of visual behaviour associated with in-vehicle HMIs that combines 

elements from Fitts’ Law and Hick-Hyman Law and considers anticipation afforded by structuring and 

repeated exposure to an interface; it also refelcts the additional learning required to achieve expert status 

while using menus containing larger numbers of items. Initial validation suggests that the model may be 

effective as both an evaluation and design tool, enabling stakeholders to consider the visual demand 

associated with a larger number of HMIs or menu designs, intended for in-vehicle deployment, much earlier 

within the design cycle and without the pre-requisite investment in costly implementation or extensive user 

trials. In line with similar theoretical work (e.g. [12]), the model assumes that ‘search, find and select’ tasks 

can be considered as comprising separate decision/search and pointing components that can be modelled 

independently; this may be an over-simplification and further validation work is required to validate this 

approach. Further work should also consider the visual demand of more complex interactions, e.g. surface 

gestures, as well as investigating other techniques, such as grouping and skeuomorphic elements, intended 

to enhance HMI usability, learning and design.  
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