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The dynamics of string junctions and their influence on the evolution of cosmic superstring net-
works are studied in full detail. We review kinematic constraints for colliding strings in a Friedmann-
Lemâıtre-Robertson-Walker background and obtain the average distribution of possible string con-
figurations after string collisions. The study of small-scale structure enables us to investigate the
average growth/reduction rate of string junctions for a given cosmic string network. Incorporat-
ing the averaged junction dynamics into the velocity-dependent one-scale model for multi-tension
string networks, we improve the semi-analytic description and quantitative understanding of cosmic
superstring network evolution.

I. INTRODUCTION

A possible outcome of brane inflation is the production
of a network of cosmic superstrings [1–7]. This particle
physics relic offers an exciting observational opportunity
to shed light on high energy physics processes that may
have taken place in the earliest phases of the evolution of
our universe. In order to have an accurate prediction for
the observational signals from cosmic superstrings, the
cosmological evolution of their networks must be stud-
ied rigorously. Cosmic superstrings can in general have
rather complicated properties compared to conventional
cosmic strings (for reviews of ordinary cosmic strings see
[8, 9]). It is then anticipated that these additional fea-
tures bring about important changes to the network evo-
lution and should be carefully taken into account.

Cosmic superstring collisions give rise to string junc-
tions, and the corresponding multi-tension string net-
works are very challenging to model numerically. Gener-
ically, the networks will not be Brownian, but will be
made up of a series of segments with different tensions
and lengths, connected at junctions. Tensions of cosmic
superstrings are related by the BPS conditions [6, 10, 11]

µpq = µF
√
p2 + q2/g2

s , (1)

where p and q are integers that represent the bound state
of p F -strings and q D-strings (the Ramond-Ramond
scalar is set to zero C0 = 0). Thus the network will
contain a hierarchy of string tensions, and the dynam-
ical equations describing the density and characteristic
length and velocity of each type will all be coupled to
each other.
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Lattice simulations for such networks are prohibitively
time-consuming, so that network evolution cannot be re-
produced with both high-resolution and sufficiently large
dynamical ranges. Furthermore, superstring network
evolution can only be modelled effectively from numerical
simulations: not all properties of cosmic superstring net-
works can be captured by a field theory [12–16]. Given
these computational challenges, a more fruitful approach
to this problem is through semi-analytic methods—a gen-
eralized Velocity-dependent One Scale (VOS) model [17–
19].

To model the cosmological evolution of cosmic super-
string networks one needs to include the important fea-
tures characterising their complex interactions. In par-
ticular, the quantum description of string interactions
[20–24], and the kinematic constraints on junction pro-
duction [25–29] have been included in a VOS description.
Exploration of these analytic models indicates that these
complex networks can still achieve scaling behaviour [30–
33], although the corresponding scaling densities and ve-
locities may be different from those of ordinary strings.
Here we obtain the generalisation of the relevant kine-
matic conditions on junction production for the case of a
Friedmann-Lemâıtre-Robertson-Walker (FLRW) metric
[34]. This generalisation is probed through an example
of collisions of straight strings in an FLRW background,
which provides a time-dependent “angle-velocity” dia-
gram for junction production processes (similar to the
one obtained for Minkowski space in [26]). We further
model, for the first time, the average evolution of string
junctions within the network.

In order to model the evolution of junctions in the
string network we first review the description of small-
scale structure found in [35, 36]. This model—which we
extend in the present work—provides a useful tool for de-
scribing the average growth/reduction of junctions in a
cosmic superstring network. The derived average change
of string lengths due to junction evolution leads to a gen-
eralization of the VOS model describing superstring net-
work evolution with dynamical junctions (Section IV).
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This work directly builds on previous extensions of the
VOS model [17, 18] for describing superstring networks,
which can be found in [30, 31, 33]. We briefly discuss
some of the solutions of our extended model, and com-
pare them with earlier results.

II. JUNCTION DYNAMICS

Let us start our consideration of junction dynamics
from the action for three connected strings, which can be
written as [37, 38]

S = −
∑
i

µi

∫
Θ(si(τ)− σi)

√
−γidσidτ+

+
∑
i

∫
fiµ (xµi (si(τ), τ)−X µ) dτ,

(2)

where the index i = 1, 2, 3 specifies one of the three string
segments (there is no summation over these repeated in-
dices – summation happens only if the symbol

∑
is writ-

ten explicitly), µi are the string tensions, σi and τ are the
spacelike and timelike coordinates on the string world-
sheet(s), γiab are the worldsheet metrics with determi-
nants γi, fiµ are Lagrange multipliers, Θ is the Heaviside
step function, X µ is the space-time position of the ver-
tex (where all three strings are connected), and si is the
parametrisation value of σi at the vertex X µ.

For each of the strings, we use the following worldsheet
parametrization (dropping the index i for simplicity):

σ0 = τ, σ1 = σ,

gµν ẋ
νx′µ = 0 ,

(3)

where gµν is the background spacetime metric, and τ the
(conformal) background time coordinate. Dot and prime
denote differentiation with respect to τ and σ respec-
tively. We are working in a flat FLRW metric

ds2 = a(τ)2
(
τ2 − dl2

)
, (4)

where a is a scale factor and dl2 is the line element of
flat spatial sections. The conformal time τ is related to
physical time t by adτ = dt. We shall now study the
equations of motion describing the dynamics of this 3-
string system in FLRW geometry.

By variation of the action (2) with respect to xi, one
can obtain the standard string equations of motion

ε̇+ 2ε
ȧ

a
ẋ2 = 0,

ẍ + 2
ȧ

a
ẋ(1− ẋ2) =

1

ε

(
x′

ε

)′
,

(5)

where x is the three-dimensional spatial vector, ẋ ≡ ∂x
∂τ ,

x′ ≡ ∂x
∂σ and ε2 = x′ 2

1−ẋ2 .

An additional equation from the xi variation appears
due to the boundary term in the action (2) and has the
form [39]

µi

(
x′i
εi

+ εiṡiẋi

)
= fi, (6)

on the string junction, i.e. all functions in (6) are evalu-
ated at (s(τ), τ). Further, from the variation with respect
to X µ it follows that the Lagrange multipliers satisfy the
condition ∑

i

fi = 0 , (7)

again evaluated on the junction.
Finally, from the variation of the Lagrange multipliers

fi we obtain the previously mentioned conditions that
σ = s at the vertex,

xi(si(τ), τ) = X(τ), (8)

where X is the spatial part of X µ.
In the case of Minkowski space, which corresponds to

ε = 1, there is an exact solution of the equations of mo-
tion (5). This solution allows one to pick out right/left
moving modes on each string and, from those, obtain the
dynamics of the junction [25]. For the expanding FLRW
metric there is no general solution of the string equa-
tions (5). However, it is possible to build a convenient
analogue of right/left moving modes (this approach for
the FLRW metric was used in [34] for the analysis of
loops with junctions):

q = x′/ε+ ẋ,

p = x′/ε− ẋ.
(9)

In the case of monotonic expansion of the scale factor
in the FLRW metric, it is reasonable to assume that ingo-
ing and outgoing waves are distinguishable and won’t be
mixed during the evolution. That is why we can assume
that vectors q and p are outgoing and ingoing waves,
respectively, for the vertex X in an expanding universe.

Taking into account the fact that |q|2 = 1, |p|2 = 1
and using equations (5)-(8) one can carry out an analy-
sis which generalizes the one done for Minkowski space
in [25]. This leads to the following equations for the 3-
string junction in an expanding universe∑

i

µi ((qi + pi) + εiṡi(qi − pi)) = 0. (10)

Ẋ = − 1

µ

∑
i

µi(1− εiṡi)pi, (11)

(1− εiṡi)µi
µ

=
Mi(1− ci)
M

, (12)
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where we have defined

ci =
1

2

∑
jk

|εijk|pj ·pk ,

Mi = µ2
i −

1

2

∑
jk

(εijk(µj − µk))2,

M =
∑
i

Mi(1− ci),

µ =
∑
i

µi,

(13)

and εijk is the Levi-Civita symbol.
One then observes that the equations describing string

junctions in an expanding universe can be obtained from
those in Minkowski space by just changing ṡi to εiṡi and
the definitions of outgoing and ingoing modes to the gen-
eralised quantities (9). The new set of equations (12)
tell us how growth/reduction of string length proceeds
in an expanding FLRW universe. An important issue
that stems from the above treatment is to understand
under which conditions junction production can success-
fully take place. The condition for junction formation
just requires ṡ3 > 0 and will be considered for straight
strings below.

A. Solution for a straight string in a FLRW
background

It is always possible to choose a sufficiently small re-
gion, near the collision point, where strings can be consid-
ered straight. Hence, to understand the conditions under
which the collision of strings leads to junction production,
it suffices to consider straight string collisions. For this
purpose we first need to construct a proper straight string
solution in a FLRW metric. Let’s consider the following
straight string ansatz, similar to the case of Minkowski
space,

x = {C1σ cosα; C1σ sinα; F (τ)} , (14)

where C1 is a constant that will be defined later and the
function F (τ) is to be determined by the dynamics.

The ansatz (14) describes a straight string located on
the XY -plane and moving along the Z-axis. The angle
α defines the orientation of the string in the XY -plane
with respect to the X-axis.

It should be noted that while the dependence of this
FLRW string solution on the spacelike worldsheet coor-
dinate σ is the same as in Minkowski space, the physical
meaning of σ in these two cases is not identical. Any
interval of string in Minkowski space has a fixed length,
which does not depend on time, while in a FLRW met-
ric the length of a chosen string interval is stretching
as time evolves, which implies a continuous “effective”
reparametrization of the string ansatz (14). Meanwhile,
the time component τ is substituted by the function
F (τ), due to the absence of time translational invariance.

Using the form (14) we can obtain the following useful
quantities

x′ = {C1 cosα; C1 sinα; 0} , (15a)

ẋ =
{

0; 0; Ḟ (τ)
}
, (15b)

ε =

√
x′ 2

1− ẋ2 =

√
C2

1

1− Ḟ 2
, (15c)

ε̇ = |C1|
Ḟ F̈(

1− Ḟ 2
)3/2

. (15d)

Using the expressions (15a)-(15d), one can show that
the equations of motion (5) are reduced to a single equa-
tion for the function F (τ)

F̈ + 2
ȧ

a
Ḟ (1− Ḟ 2) = 0. (16)

When the scale factor is a ∝ τn, equation (16) has an
exact solution

F (τ, v) = ±τ 2F1

(
1

2
;

1

4n
;

1 + 4n

4n
; −
(
τ2n

γvv

)2
)
, (17)

where 2F1 is the Gauss hypergeometric function, γv =
1/
√

1− v2 is the Lorentz factor, and we introduced the

factor (γvv)
−2

to recover the Minkowski solution for n→
0.

The solution (17) is monotonic in the argument τ for all
positive n, which is anticipated from the physical inter-
pretation of (17). The string has initial velocity (0, 0, v)
and initial position Z = 0 at t = 0, cf. (14). The final
vector solution of a straight string in FLRW metric can
be written as

x = {σ cosα; σ sinα; F (τ, v)} , (18)

where C1 was chosen to be 1.
It is seen that the limit n → 0 does not reproduce

ε = 1, which was chosen by parametrisation in [25]. The
use of the vectors (9) allows us to employ any other world-
sheet parametrization for σ (with ε 6= 1) without affect-
ing the final result. We have thus chosen the parametriza-
tion (18) for convenience.

B. Collision of straight strings in expanding
universe

In the above we outlined our approach for the de-
scription of connected strings in the FLRW metric and
constructed one simple straight string solution. Conse-
quently, we can consider the collision of straight strings
in a FLRW background and investigate under which con-
ditions a junction can be produced. We are going to con-
sider only the situation when the scale factor behaves as
a ∝ τn.
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Figure 1. Range of parameters: “initial velocity” υ and
angle α, which allow junction production (ṡ3 > 0) for the case
when the heaviest string has the tension µ3 = 1.4µ1 = 1.4µ2.
The strings are evolving in an expanding FLRW metric with
a ∝ τn, and the plot corresponds to the specific case n =
1.0 (radiation era). The first (blue) area corresponds to the
moment τ = 1.0; later evolution is represented by the other
colours, and the full area (yellow), corresponding to αcr, is
reached in the limit τ →∞.

Let us model the situation when two strings x1,2 are
moving towards each other along the Z axis, oriented at
angles (±α) to the X-axis on the XY -plane, and having
equal initial speeds υ. The third string x3 is created
in the XY -plane, with initial velocity u and orientation
defined by an angle θ to the X-axis

x1,2 = {−σ cosα; ∓σ sinα; ±F (τ, v)} ,
x3 = {σ cos θ; σ sin θ; F (τ, u)} .

(19)

In order to have a simple analytic comparison for the
expanding FLRW metric and Minkowski space, let us
consider the case when the tension of the first string is
the same as the tension of the second, µ1 = µ2. This
implies u = 0 and θ = 0. Using the equality (12), one
can show that the solution for ṡ3 is

ṡ3 =
2µ1γ̃(υ, τ) cosα− µ3

2µ1 − µ3γ̃(υ, τ) cosα
, (20)

where γ̃(υ, τ) =
γ−1
υ√

1+υ2(τ−4n−1)
.

Comparing equation (20) with the corresponding result
for Minkowski space in [25], it is seen that the Lorentz
factor γ−1

υ is substituted by the function γ̃, which ap-
proaches γ−1

υ when n → 0, or when τ = 1. Let us
build the region in velocity-angle space, when the junc-
tion can be produced (ṡ3 > 0) - see figure 1. The value
τ = 1 corresponds to the initial conditions of the col-
liding strings, which also coincides with the solution for
Minkowski space. It is seen that as τ grows the region

where ṡ3 > 0 is enlarged. This effect appears due to
the string velocity decreasing in the expanding universe.
Eventually the string speed approaches zero and a junc-
tion can be formed for all possible collisions at angles
smaller than critical angle αcr = arccos (µ3/(2µ1)).

As a result, junction production for straight strings
in an FLRW universe is different from the Minkowski
case only by a change of the relative string velocity. This
result suggests that we can apply the approach developed
in [25, 26] to the study of junction dynamics in the FLRW
metric.

III. AVERAGED JUNCTION EVOLUTION
AFTER STRING COLLISIONS

A. Angles between strings after collision

Let us revisit the result [27] that the tangent vectors
x′ of all string segments ending at a junction are copla-
nar in Minkowski space. We will check that this result is
valid not only in Minkowski, but also in the FLRW back-
ground. The junction itself is described by the vector

X(τ) of equation (8). Hence we have Ẋ
2

= ẋ2
i + ṡ2

ix
′ 2
i ,

and together with the definition of εi it is possible to
obtain

Ẋ
2

= 1− x′ 2i
ε2
i

+ ṡ2
ix
′ 2
i ⇒

⇒
(

1

ε2
i

− ṡ2
i

)
x′ 2i =

(
1

ε2
k

− ṡ2
k

)
x′ 2k .

(21)

We now multiply equation (6) by the vector Ẋ, sum
over the index “i” and use the relation (7), to obtain∑

i

εiṡiµi = 0. (22)

Equation (22) is just a generalized energy conservation
law for shrinking and growing junctions. Using equations
(6), (7), and the definition of Ẋ together with the condi-
tion (22), it is possible to obtain the following expression

∑
i

εiµi

(
1

ε2
i

− ṡ2
i

)
x′i =(

1

ε2
k

− ṡ2
k

)
x′ 2k

∑
i

εiµi
x′i
x′ 2i

= 0⇒

⇒
∑
i

εiµi
x′i
x′ 2i

= 0.

(23)

The last equation tells us that tangent vectors x′i of
connected strings lie in one plane, which means that three
connected strings locally have to be coplanar.

To understand the string configuration right after the
collision, we use the method developed in [40]. Consider
the collision of two strings with an angle 2α between them
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(see figure 2). If the kinematic condition ṡ3 > 0 is satis-
fied, a pair of junctions, with a growing string segment in-
between, should be produced at collision, and two kinks
start propagating on each of the collided strings, in op-
posite directions, as shown in figure 2. As a result, there
will be new angles between the strings and the newly pro-
duced segment, which we denote as π − β1 and π − β2,
with the angle between the colliding strings at the junc-
tion being β1 + β2.

As was discussed above, after the collision of strings
(lines JK1, JK2 and V J) stay on the same plane. From
figure 2, following the work [40], we have that

cosβ1 =
V K1 cos(α− θ)− V J

JK1
=

=
cos(α− θ)− ṡ3(0)√

1 + ṡ3(0) [ṡ3(0)− 2 cos(α− θ)]
,

cosβ2 =
V K2 cos(α+ θ)− V J

JK2
=

cos(α+ θ)− ṡ3(0)√
1 + ṡ3(0) [ṡ3(0)− 2 cos(α+ θ)]

.

(24)

Hence, we obtain

tanβ1 =
sin(α− θ)

cos(α− θ)− ṡ3(0)
,

tanβ2 =
sin(α+ θ)

cos(α+ θ)− ṡ3(0)
,

(25)

where ṡ3(0) denotes the rate of junction growth at the
moment of the sting collision.

It should be noticed that as it was shown in [40], when
υ → 0 we obtain β1,2 = π/2 for α = 0. At the same time,
when υ 6= 0, for α = 0 the angles β1,2 = 0.

Using the equality (24), it is possible to obtain the
angles β1,2 for all possible collisions of strings, where the
full dependence on the tensions and relative velocities of
the colliding strings becomes apparent through equation
(20). Since we are interested in the average picture over a
string network, we wish to know how angles β1,2 depend
on the rms string velocity for fixed values of the string
tensions µ1, µ2 and µ3. In order to achieve this goal we
need to express the angle θ and junction growth rate ṡ3

as functions of α, υ and µi (i = 1, 2, 3). For this purpose
we use the following equations for straight strings [25]

[Mṡ3 +M3(1− c3)] γ−1
u cos θ =

= [M1(1− c1) +M2(1− c2)] γ−1
υ cosα,

[Mṡ3 +M3(1− c3)] γ−1
u sin θ =

= [M1(1− c1)−M2(1− c2)] γ−1
υ sinα,

[M−M3(1− c3)]u =

= [M1(1− c1)−M2(1− c2)] υ

(26)

from which we can also obtain

θ = arctan
(u
υ

tanα
)
,[

µ2
3(1− υ2) + µ2

−(υ2 cos2 α− sin2 α)
]
u2+

+µ− sin2 αu4 − µ2
−υ

2 cos2 α = 0.

(27)

Hence, we can numerically obtain the angles β1,2 as
functions of µi, υ and α. Taking the integral over the an-
gles α from 0 to the maximal value of αcr (the maximum
angle at which a junction can be created) we average
over all possible collisions that lead to junction produc-
tion (see section IV B and reference [33] for more details).

It should be noted that the velocity υ used up to now
(see equation (19) describing two colliding straight string
segments) is the velocity in the frame where both strings
move towards each other with equal speeds υ. However,
when we consider the encounters of a typical string with
other strings in the network (integrating over all possible
relative angles and velocities) we need to transform our
calculations to the rest frame of the string in which the
collision velocity vcl is related to v by

vcl =
2υ

1 + υ2
. (28)

Further in the text, individual string velocities will be
defined in the string rest frame as collision velocities but
denoted simply as v. See appendix V for for further clar-
ification of the different velocities used in this work.

For now the velocity distribution is taken in the form
of a delta function centred in the rms velocity value (but
can be generalised to a gaussian centred at the rms string
velocity with a width introduced as an additional param-
eter).

Carrying out the numerical computation of the average
values of the angles β1,2, we build the plot of the angle-
dependence on the rms velocity. In figure 3 we show
examples of the average value of β (for µ1 = µ2) and β1,
β2 (for µ1 6= µ2) depending on the rms velocity υ of the
string network. The results for the average angles β1 and
β2 will be used later as initial values for the study of the
subsequent dynamics of junctions in the string network.

B. Correlation functions of ingoing components
and small-scale structure

To understand junction growth in the string network,
we need to figure out the behaviour of the averaged scalar
product that occurs from averaging equations (12) and
(13)

hi = 1− < ci > , (29)

where ci is defined in Eq. (13). In other words we need to
model how these scalar products evolve and study their
effect on junction growth through equations (12)

〈εiṡiµiM〉 = µiMh − µMihi, (30)
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Figure 2. Collision of two straight strings, shown as blue and red lines. When the kinematic condition ṡ3 > 0 is satisfied, a pair
of junctions between colliding strings is produced with a growing string segment in-between (shown by a green line). The left
panel shows the geometrical configuration of the strings just before the collision, while the right panel shows the configuration
after the collision.

Figure 3. The collision parameters identified in figure 2 are shown here averaged over all possible angles of string collisions that
give rise to junctions, cf. expression (56); the velocity distribution function has been assumed to be a Dirac delta function, and
we have also chosen P = 1 (section IV B will provide more details about averaging). The left panel shows results for a case with
two equal tensions, µ1 = µ2 = 1, µ3 = 1.4, specifically collisions of 1, 2 (green line) and 2, 3 = 1, 3 (purple line) pairs of strings.
The right panel shows a more generic example of unequal tensions µ1 = 1, µ2 = 1.2 and µ3 = 1.4, specifically collisions of 1, 2
(green line), 1, 3 (blue line) and 2, 3 (red line) pairs of strings. Solid lines show the average angle α of string collisions leading
to junction production. The dashed lines denote the average angles β1,2.

where

〈...〉 =

∫
... εdσ∫
εdσ

(31)

denotes the average of the enclosed quantity over the
string network and

Mh =

∫
ε1ε2ε3

∑
jMj(1− cj) dσ1dσ2dσ3∫

ε1dσ1

∫
ε2dσ2

∫
ε3dσ3

=

=
∑
j

Mjhj .
(32)

Here, the averages have been taken over correspond-
ing string types and we assumed that ci depends only
on σi (correlation function changes with junction length
growth; see IV A for more details).

We should emphasize that the correlator h is defined
between different strings connected at the junction: h
includes product of vectors pi that belong to different
strings. Below we will also use the correlator h defined
on one string, which includes the product of vectors pi
that belong to one string separated by some distance l.

To approach this problem, we can study the depen-
dence of the scalar product < p(x1)i · p(x2)i > on the
distance l = x2 − x1. This problem has been studied
both numerically and analytically in a number of papers
[35, 36, 41–46]. We revisit the main results of these stud-
ies and emphasize the important points for further inves-
tigation.

Let us recall the definition of ε and notice that this
variable depends on the σ parametrization. Thus, if the
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length of the string is reduced by a factor p = σ/σ̃, we
have the following relation

ε(σ̃) =

√
∂σ̃x2

1− ẋ2 =
∂σ

∂σ̃

√
∂σx2

1− ẋ2 = p ε(σ). (33)

We see that the equation of motion (5) is invariant un-
der the transformation (33) if the multiplier p is a con-
stant. However, if p is a time dependent function, there
will be an additional contribution in the form

ε̇i + 2
ȧ

a
εiẋ

2
i +

ṗ

p
εi = 0. (34)

To estimate the ratio ṗ/p we should remember that
it is proportional to the string energy, i.e. the larger p
is, the more energy the string has. Using the effective
chopping parameter describing the average probability
for one string to lose energy due to loop production, we
can write

ṗ

p
=
ρ̇

ρ

∣∣∣∣
loops

= cl
|υ|
L
, (35)

where in the last equality we used the standard contribu-
tion to energy loss from the loop production mechanism,
where the length Lc i is the comoving distance that the
string travels before a collision (average comoving dis-
tance between strings). This is akin to the mean free
path. Note, however, that this is a small-scale-structure
energy loss mechanism, that can be understood as re-
ducing the string energy per correlation length (without
affecting the string number density) rather than directly
altering the correlation length.

Using the relation (35), we can include the phenomeno-
logical energy loss term at the microscopic level. Equa-
tion (34) can then be rewritten as

ε̇i + 2
ȧ

a
εiẋ

2
i + εi|υi|

cl i
Lc i

= 0. (36)

It can be shown that using equation (36), one can
rewrite the equations of motion for a string in terms of
vectors p and q [47] as

ṗi +
1

εi
p′i =

ȧ

a
(qi − (pi · qi)pi) +

+
qi + pi

2

√
1− (pi · qi)

2

cl i
Li
,

q̇i −
1

εi
q′i =

ȧ

a
(pi − (pi · qi)qi) +

+
qi + pi

2

√
1− (pi · qi)

2

cl i
Li
.

(37)

In the same way as it was done in [35], we can choose
the characteristic variable sσ(τ) instead of σ, which is
constant for ingoing waves (∂sσp = 0). Using this new
variable sσ(τ), let us estimate how the orientation of the

p(0) p(ξ)

dt
dξ

Figure 4. Schematic evolution of the vector p along the
string. Dashed lines show different possible realizations of
the string with corresponding faded vectors p. At the cor-
relation length ξ vectors p become, on average, completely
independent < p(0) · p(ξ) >= 0. Note that the correlation
length ξ is a function of time, which grows in an expanding
universe.

vector pi is changing along the string (see figure 4). In
particular, we are interested in the average scalar product
(correlation) between two vectors pi as a function of their
separation and time, hi(l, t),

hi = 1− < pi · p̃i > . (38)

Note the roman font for this correlator (hi), indicating
that both vectors are on the same string segment. This is
in contrast to the correlator hi (italic font) encountered
previously (cf. 29), in which the two vectors belong to
two different strings.

For this purpose we are going to choose the pi
parametrizations for the two vectors as sσ(τ) and s′σ(τ),
separated by the physical length l. It should be noticed
that the time dependence of parameter sσ(τ) does not
change equations (37). In order to understand how the
average scalar product is evolving with time, and how it
depends on length, we write the averaged equation for
the time evolution of the scalar product (further we will
write sσ instead of sσ(τ) for compactness):

< ∂τ (pi · p̃i) >=
< qi · p̃i + pi · p̃i >

2
|υi|

cl i
Li

+

< q̃i · pi + pi · p̃i >
2

|υi|
cl i
Li

+

ȧ

a
< qi · p̃i + pi · q̃i − 2pi · p̃iαi > +

+

Nk∑
j

< δ(s− sj)pi · p̃i + δ(s′ − s′j)p̃i · pi >,

(39)

where αi =< pi ·qi >= 1− 2υ2
i with υ2

i =< ẋ2
i >, tilded

and untilded variables are calculated at s′ and s respec-
tively, the sum appears due to the possible presence of
kinks on the length between s and s′, Nk is the number of
kinks between s and s′, δ(...) is the Dirac delta function,
and the sign < ... > means averaging over an ensemble
of segments and integrating over many Hubble times.

To treat equation (39) we are going to use the method
employed in [35]. Let us consider that sσ and s′σ are
close to each other, and we expand equations (39) around
sσ − s′σ and drop all terms higher than first order in
[sσ − s′σ]. The outgoing q(sσ, τ) and ingoing p̃(s′σ, τ)
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modes meet each other at the worldsheet point (sσ, τ−δ),
where δ is of the order of [sσ − s′σ]. Hence, the product
of outgoing and ingoing modes can be approximated as
< qi(sσ, τ) · p̃i(s′σ, τ) >= αi (for more details see [35]).

Moreover, the averaged contribution from the sum of
kinks is proportional to the linear density of kinks K(τ),
which also includes the average sharpness of kinks, mul-
tiplied by the interval (s− s′). As a result, equation (39)
can be rewritten as

∂τhi = −hi

(
2
ȧ

a
αi −

|υi|cl i
Li

)
−

−|υi|cl i
Li

(1 + αi) + 2K(1− hi) +O([sσ − s′σ]2) .

(40)

We emphasize that the quantitative difference between hi
(relevant here) and hi (cf. Eq. 29) is that when the dis-
tance l approaches zero the former necessarily approaches
zero (since the correlator approaches unity), while the
latter need not do so since the value of the correlator near
the junction is determined by the string junction config-
uration described in Sect. III A (note that the product of
vectors pi that belong to different strings at the junction
does not have to be unity).

Assuming that the scale factor evolves according to a
power law a ∝ τn, we anticipate that the characteristic
length Li ∝ εiτ and the kink density is K(t) ∝ kk

τ (the
parameter kk denotes the kink decay rate, which can be
caused by expansion, radiation [42] or backreaction – this
requires further study to understand how fast kinks can
be smoothed; recent results on this subject can be found
in [48, 49]) where n, εi and kk are constants. With these
assumptions we can solve (40) finding

hi ∝
gi(s

′
σ − sσ)

τ2(nαi+kk)−|υi|cl i/εi
, (41)

where gi(s
′
σ − sσ) is a function that depends only on the

distance along the string, defined by parameters s′σ − sσ.
At the same time, under our assumptions, we can es-

tablish from equation (36) that

εi ∝ τ−2nυ2
i+|υi|cl i/εi (42)

and so the corresponding string length has the form

l = a

∫
εdσ ∝ a(σ − σ′)τ−2nυ2

i+|υi|cl i/εi . (43)

Assuming that the length l has a scaling behavior l ∝
x0t, where x0 is a constant, we obtain the relation

σ′ − σ = x0τ
1+2nυ2

i−|υi|cl i/εi . (44)

Using the property that σ−σ′ = s−s′ and substituting
(44) in the solution (41) as initial condition for a specific
constant value hi = h0, we obtain that [35]

hi = h0

(
σ − σ′

x0τ1+2nυ2
i−|υi|cl i/εi

)2χi

= A

(
l

t

)2χi

, (45)

Table I. Fitted parameters of the correlation function (45)
for different expansion rates (n = 0, 1, 2), from independent
measurements of correlators corrx′ (Eq. 46) and corrẋ (Eq.
47) (with corresponded indices) obtained from Nambu-Goto
string simulations [44]. The loop chopping parameters are
fitted from the scaling regimes of the networks using the VOS
equations for L.

Ax′ Aẋ χx′ χẋ kk x′ kk ẋ cl

n = 0 1.37 1.16 0.04 0.05 0.96 0.95 0.33

n = 1 1.39 1.22 0.12 0.09 0.48 0.47 0.27

n = 2 1.03 0.92 0.20 0.19 0.04 0.03 0.24

where χi = nαi+kk−κi
1+2nυ2

i−2κi
with κi = |υi|c̃i

2εi
, and A is a con-

stant.
Comparing (45) with the corresponding result from

[35], we see that due to including the loop production
term and kinks, we have additional terms in χi. These
are essential for describing the evolution of the correla-
tion function (45) in Minkowski space. We note that
the result obtained in [35] would not apply to the case
of Minkowski space (for which it would give the clearly
incorrect χi = 0) while our result is also valid for that
case.

Let us compare the equation (45) with the results of
Nambu-Goto simulations [44]. To do so, we are going
to use simulations for string network evolution for all
currently available expansion rates: n = 0 (Minkowski
space), n = 1 (Radiation domination epoch), n = 2
(Matter domination epoch). We fix the values of the
chopping parameters cl for each expansion rate by study-
ing the corresponding scaling regimes, in accordance with
[17, 18]. Taking fixed values of cl we are left only with
one additional free parameter kk in equation (45). To
obtain kk we are going to fit a dependence of the form
(45) to simulations measurements of the correlators of
the tangent vectors [35]

corrx′ =
< x′(σ, τ) · x′(σ′, τ) >

< x′(σ, τ) · x′(σ, τ) >
≈

≈ 1− A

2(1− υ2)

(
l

t

)2χ (46)

and velocities along the string

corrẋ =
< ẋ(σ, τ) · ẋ(σ′, τ) >

< ẋ(σ, τ) · ẋ(σ, τ) >
≈

≈ 1− A

2υ2

(
l

t

)2χ

.

(47)

The results of this analysis are depicted in figure 5 and
the values obtained for the fitted model parameters are
listed in table I.

A similar scaling behaviour for l/t has been observed
in numerical simulations of Abelian Higgs cosmic strings
[46]. The typical values of the parameters χi measured
in Abelian-Higgs simulations are higher than in Nambu-
Goto. While the most parsimonious explanation for this
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Figure 5. The behaviour of tangent and velocity correlators. The shaded dots represent data from simulations [44] for the
correlation functions (46) and (47), depending on the string length l and physical time t. To fit the analytic estimate for these
correlation functions we use the interval of l/t that has already reached scaling behaviour (45). The data points used for the fits
dots are shown by dots in bright color. Solid lines demonstrate the best fit of the correlation functions (46), (47) for parameters
A and χ. Different colors correspond to different expansion rates: red n = 0, blue n = 1, green n = 2.

difference stems from the fact that Abelian-Higgs simu-
lations have a much lower spatial resolution (making the
measurement of these correlators harder and less accu-
rate), it could also be explained by domination of another
type of energy loss mechanism or by a difference in the
evolution of kinks.

It is worthy of note that the parameter χ appears
in a number of relevant string network characteristics,
notably the fractal dimension and the loop distribu-
tion function: for an approximate analytic description
see [35, 50, 51] and for numerical simulation results see
[44, 46, 52, 53]. As a result, the understanding and ac-
curate modelling of parameter χ is important for quan-
tifying observational outcomes of cosmic string networks
[54].

An important remark on figure 5 is that the correla-
tion function h reaches unity on the length l ≈ t. This
fact is explicitly seen for Nambu-Goto and Abelian-Higgs
simulations if the correlators are plotted against log(l/t)
instead of the ratio between l and characteristic length-
scale L. Hereinafter, we will use this as our definition of
the correlation length ξ, i.e. the distance l at which the
vectors x′ and ẋ become uncorrelated. (Note that there
are several different definition in the literature.) Thus,
with out definition, simulations show that ξ ≈ t.

We should remember that the treatment described
above is an approximation, valid within a specific range
of scales. If we consider the smallest scales, where loop
production is insignificant and only one kink is present,
then, as was shown in [36], the correlator hi has the fol-
lowing behaviour

hi kink ∝
(
l

t

)
. (48)

The relation (48) can be evolving slightly during network
evolution. However, we do not anticipate significant cor-
rections when the network reaches a scaling regime.

For scales larger than the correlation length, l/ξ > 1,
the function hi tends to unity (since the correlator itself
vanishes). We are interested in finding a function that
can mimic all ranges of l/t for the correlation function
hi. We denote this by h(l/t) and we sketch its behaviour
in figure 6.

IV. EXTENDED VOS MODEL WITH
DYNAMICAL JUNCTIONS

A. Junction increase/decrease rates for a scaling
string network

In the previous section we estimated the behaviour of
the correlation function h(l/t) on a string. Now, using
this result, we are ready to study junction evolution when
the string network reaches a scaling regime, i.e. when the
characteristic length and rms velocity behave as L ∝ ετ ,
υ = const. To do so, we use the average equation (30),
where the functions hi are approximated by the function
hi depicted in figure 6 (recall that the only difference
between the two is that in the limit of zero separation
only the latter needs to vanish).

We define the average rate of change of the string con-
formal length as (compare with the definition (43) for the
string length)

∆l̇c = 〈εṡ〉 . (49)

In an averaged sense, we expect a decay of correlation
when the junction destroys or produces strings. The way
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h

Kink scale Loops, stretchingscale Uncorrelatedscale
l

1

log l /t

l2 χ

l
k l~ξ

Figure 6. Behaviour of the function h(l/t). The plot shows
how the correlation between vectors decreases with distance
l (logarithmic scale). On small sales the function should be
linear h ∝ l/t, but then it becomes a power law h ∝ (l/t)2χ,
with χ a described in the text. Eventually the function h
becomes constant 1 when the distance l ∼ ξ, the correlation
length.

this happens should be (again, in a statistical sense) sim-
ilar to the way the correlation function decays along the
string, when we compare different segments of it. Since
the newly strings (produced due to collisions) should ini-
tially grow (ṡi > 0), it seems reasonable to connect the
length this string growth with decay of correspondent
correlation.

We thus make the further simplifying but reasonable
assumption that the correlation function hi is determined
by the change of comoving length ∆lc g of the growing
string (the one that is being created by string zipping
process). Using definitions (31),(49), we can then average
equations (30) to find

∆l̇
(n)
c i = 1− µMihi(∆l

(n)
c g /τ)

µiM
, (50)

where the indices n count the number of possible string
collisions and the subscript g indicates the newly created
string that is growing after junction formation while the
colliding strings are zipping along their length. To obtain
(50) we also assumed that < εiṡi(1− ci) >= ∆l̇c ihi

We should keep in mind that we are interested in the
behaviour of the correlation function in figure 6 near the
point where three string segments are connected on a Y-
type junction. This means that instead of focusing on the
correlation function on a single string, we deal with cor-
relations between vectors on different strings (which we
denoted as hi(∆lc g/τ)—recall its definition in Eq. 29).
Its value at zero separation h∆l=0 is defined by the junc-
tion configuration (average angles between strings as in
figure 2), which was studied in Sect. III A, and it depends

only on the relative velocity of the colliding strings and
their tensions.

Combining all results together, we can calculate how
the junction will grow or shrink on average under the as-
sumption that the network has reached a scaling regime.
It is useful to rewrite equation (50) in the following way

∆l̇
(n)
c i = 1− µMi

µiM
h0 i

[
η1Θ(lc k −∆l

(n)
c k )

(
∆l

(n)
c g

τ

)
+

+η2Θ(∆l(n)
c g − lk)Θ(ξc −∆l(n)

c g )

(
∆l

(n)
c g

τ

)2χi

+

+Θ(∆l(n)
c g − ξc)

]
,

(51)
where η1,2 are constants that ensure the continuity of the
correlation function, while h0 = h∆l=0 is the initial value
of the correlation function (see figure 6 for a graphical il-
lustration of the meaning of lc k and ξ). The initial values
h0 i are calculated from the geometry of strings (see fig-
ure 2), taking into account that the initial average angles
are given by integration of (24) – refer to the examples
in figure 3.

Let us consider the situation where the tensions of the
strings are related by the BPS conditions for cosmic su-
perstrings (1). In the example we will consider below, we
will set µF = 1 and the coupling constant gs = 0.3.

Each collision between strings of types 1 and 2 leads
to an increase of the length of string of type 3. To un-
derstand how much this can grow overall in the string
network, we need to determine the average initial an-
gle for such collisions. For the string network we fix the
macroscopic network parameters according to a scaling
regime in the radiation domination period: we have cho-
sen υ = 0.64, L = 0.3τ , ξ = τ (n = 1). As a result,
using the average equations (51) with the ansatz (1) we
can obtain the average length growth/reduction for each
type of string for all possible collisions. The results are
shown in figure 7. The thin solid lines show the resulting
length exchange for collisions of 1 ≡ (1, 0) and 2 ≡ (0, 1)
strings and the growth of the 3 ≡ (1, 1) string. The blue,
red and green colors corresponds to strings of types 1, 2
and 3 respectively. We apply the same treatment for col-
lisions between strings of types 2 and 3 (dash-dotted lines
in figure 7) and for collisions between strings of types 1
and 3 (dashed lines in figure 7). The sum of all lengths
exchange is shown by the thick lines in figure 7.

B. VOS model for strings with dynamical junctions

Having done the relevant preparatory work (sections
III A - III B), we can return to the VOS model (for a
detailed description of it see [17–19]) and introduce the
necessary modifications. In particular, we are aiming to
obtain a model where the junction evolution is described
by averaged kinematic constraints. Specifically, in this
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Figure 7. Growth/decrease of length of junction segments
∆`i for a scaling string network with υi = 0.64, Li = 0.3τ ,
ξ = τ and tensions defined by (1) with gs = 0.3. The solid thin
lines represent the change of the length after collisions of 1-2
strings, the dash-dotted ones to collisions of 2-3 strings and
the dashed ones to collisions of 1-3 strings. Thick solid lines
show the total length change from the sum of all collisions,
while the black line shows the sum of all µi∆`i c. Blue lines
represent strings of type 1, red lines strings of type 2, and
green lines strings of type 3.

section we are consider a string network with 3 types of
strings, with tensions given by Eq. (1) and with the same
value of the string coupling constant gs = 0.3 as in the
previous section.

To model the network evolution we need to introduce
energy exchange terms that describe the averaged dy-
namics of junctions. For this purpose we use the VOS
type of model developed in [31]. The probability of string
interactions and their effect were already studied in sev-
eral previous works [32, 33, 55]. Here our main advance is
to explicitly introduce the dynamics of junctions, through
average growth/decrease lengths.

Our model of multi-tensional string network evolution
with dynamical junctions evolving under the above as-
sumptions can be written in the following way, as an
extension of [31]:

L̇c i =
ȧ

a
v2
iLc i +

1

2
civi−

−
3∑

n,j,k

|εnjk|djk
vjk∆l

(n)
c i

4L2
c jL

2
c k

L3
c i,

v̇i = (1− v2
i )

(
k(vi)

Lc i
− 2vi

ȧ

a

)
,

∆l̇
(n)
c i = 1− µMihi(∆l

(n)
c g /τ)

µiM
,

(52)

where

vjk =
√
v2
j + v2

k ,

k(υ) =
2
√

2

π
(1− υ2)(1 + 2

√
2υ3)

1− 8υ6

1 + 8υ6
, (53)

and the parameters ci, d
(n) model the probabilities of

string interactions and will be defined below.
As mentioned in the introduction, cosmic superstrings

can reconnect (interact) with probabilities that can be
computed/estimated by the study of fundamental string
scattering amplitudes [20–22] and effective field theory
on strings [24]. The probability of a fundamental string
(p′ = 1, q′ = 0) to interact with a (p, q) bound string
state is estimated as [22]

Pf =
q2v2 + g2

s

(
p− γ−1

v cos θ µFµpq

)2

8vγ−1
v sin θ µFµpq

, (54)

where θ and v are the angle and velocity of collision.
The probability of a (p, q) string to interact with an-

other (p′, q′) string (where q, q′ ≥ 1) is given by expres-
sion [22, 24]

Pd = min
[
1, 1− (1− P )

qq′
]
, (55)

where

P =

√
gse

2
√

2/3θ/v

2(πθ)3/4
exp

[
−4
√
πθ3/2

gs
e−4
√

2/3θ/v

]
.

In order to apply probabilities (54), (55) to the VOS
model we need to average them over the string network.
For this purpose we integrate expressions (54), (55) over
all possible velocities and angles in the network, taking
into account the kinematic constraints arising from the
Nambu-Goto action for three strings joining at a junction
[32, 33]

P =
1

N

∫ vcr

0

∫ αcr

0

Pf,d e−(v−υ)2/σ2
vv2 sin θdθdv, (56)

where υ is the rms relative velocity of strings, αcr and
vcr are the limits of integration in angles and velocities
respectively, defining the region in angle-velocity space
for which string collisions lead to junction formation (this
region is generally non-trivial so αcr = αcr(vcr)). Note
that a large variance is allowed, σv = 0.5 [32]. Finally
the normalization factor N is defined as

N =

∫ 1

0

∫ π/2

0

e−(v−υ)2/σ2
vv2 sin θdθdv. (57)

The values of the average probabilities as functions of
the rms velocity υ are shown in figure 8. To speed up
the computation of the VOS model scaling solutions, we
approximate the integral (56) by a table of pre-computed
values. These are shown as thick lines in figure 8.
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Figure 8. Probabilities of (p, q) string interactions depending
on the rms velocity υ. Blue lines represent the probability of
(1, 0) string interaction with (1, 0) (solid), (0, 1) (dashed) and
(1, 1) (dash-dotted) strings. Red lines show the probability
of (0, 1) string to interact with (0, 1) (solid) and (1, 1) (dash-
dotted) strings. Thick transparent lines present the numerical
approximation of these probabilities.

We define the self-interaction coefficients, taking into
account probabilities (56), in the form

ci = (Pii Vii)1/3c, (58)

where Vij is a volume factor (the influence of this fac-
tor was studied in [33]), Pij is the probability (56) for
the corresponding string collision, and c is the standard
chopping parameter. The power 1/3 in equation (58)
comes from simulations of Nambu-Goto networks [55].
The coefficient of string interactions djk can be written
as

djk = (Pjk Vjk)1/3d, (59)

where d is a constant. Here, we will study the case where
all volume factors are unity, Vjk = 1. For a discussion of
the effect of these volume factors on network evolution
see [33].

Having the form of the parameters djk and ci we can
solve the VOS model (52) and look for scaling solutions.
Specifically, we will illustrate the model results with the
case of the radiation domination epoch (n = 1) with
the following choice of parameters: gs = 0.3, c = 0.27,
d = 0.1, kk = 0.48 (see table I for justification of some
values). The result of these calculations is shown in fig-
ure 9 by the solid lines. It is interesting to compare
the result obtained here with the previous approach in
[31], where the energy exchange term was assumed to be

∆l
(n)
c = 1

2

∑
ij |εnij |

LiLj
Li+Lj

. These calculations are shown

in figure 9 by the dashed lines. It is worth pointing out
that the model developed in [31] predicts an identical
evolution for all types of strings if the probabilities of in-
teractions are the same. Meanwhile, the model developed

Figure 9. Energies ρi = µi
L2
i

and rms velocities of the multi-

tensional string network. Green lines correspond to heaviest
strings, red to the middle ones and blue to lightest strings.
Dashed lines correspond to standard VOS model from [31],
dash-dotted lines to the current model without contribution
of probabilities to interact and solid lines represent the full
model (52) studied in this work. Calculations are performed
for radiation domination period (n = 1) with c = 0.27, d =
0.1.

in this work differentiate the evolution of strings with dif-
ferent tensions even if they have identical probabilities to
interact. Assuming the probability of interaction for all
strings to be unity, we demonstrate the last statement in
figure 9 by dash-dotted lines.

V. CONCLUSIONS

In this work we revisited the description of junctions
in cosmic string networks, and of their impact in the
overall dynamics. We studied kinematic constraints and
collision between straight string segments in a generic
FLRW background metric. As anticipated, the approach
developed in [25–27] in Minkowski space can readily be
generalised to an expanding FLRW metric (as it was done
for loops in [34, 56]). In particular, for straight string
collisions we studied the region in angle-velocity space
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for which junction production is allowed in an FLRW
metric. We demonstrated that the change of the angle-
velocity area is caused only by the deceleration of straight
strings in an expanding universe.

We thus studied the averaged properties of string col-
lisions within a string network. We computed the string
configurations (in particular, the angles between string
segments, see figure 2) that should appear on average
immediately after string collisions. We argued why junc-
tions should eventually stop growing and also discussed
how we can track their dynamics on a macroscopic level.
To do so, we connected the equation for junction dynam-
ics with the correlation function along the string, which
has been directly measured in Goto-Nambu string simu-
lations. The initial conditions (in the limit of zero sepa-
ration) for the correlation functions have been obtained
from average string configurations just after the collision
of strings.

Putting everything together, that is combining the av-
eraged probabilities of string interactions, the correla-
tion functions and the velocity dependent angle config-
urations, we introduced modifications (which effectively
correspond to new energy loss/gain terms) to the VOS
model describing the evolution of superstring networks.
The resulting VOS model thus includes the dynamics of
string junctions. We presented one example where scal-
ing solutions were found for a 3-string toy model in the
radiation era; analogous solutions exist for the matter
era. Our results on string evolution and the methodol-
ogy developed here will be useful for further studies of
cosmic strings and their observational outcomes.
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APPENDIX: ON THE VARIOUS DEFINITIONS
OF VELOCITY

In this Appendix we clarify the different velocities used
in this work. There are subtle differences among the ve-
locities appearing in our equations, owing to the use of
different reference frames in their derivation (both in our
own work here and in the already available literature).
We have been careful with using the correct velocities in
our formulae, but this is not always shown in the nota-
tion, which would have otherwise been rather cumber-
some.

The computation of the kinematic constraints in [25–
27] and in section II of this work is performed in the
frame where both of the colliding strings are moving with
equal speed towards each other. In particular, the veloc-
ity in Section II and in Figure 1 should not be confused
with the velocity of collision that can be obtained by the
transformation (28).

The results we use for the probabilities of string inter-
actions [22, 24] are calculated in the string rest frame in
which one of the colliding strings is at rest. Note this
is in contrast to [20, 21], where the computation is done
in the reference frame where the colliding strings have
equal speeds. Hence, when we apply the kinematic con-
straints and intercommuting probabilities for the string
network, integrating over all possible angles and veloci-
ties, c.f. (56), we should use the same reference frame.

Special attention should be given to the transition from
microscopic velocities of string segments to averaged ve-
locities for the string network. In this work we used the
approach of [32], where the integration was carried out
under the assumption that, in the string rest frame, the
velocity has a Gaussian distribution (56). Note, however,
that this distribution is not mathematically rigorous and
further study is required to demonstrate that it captures
the main characteristics of network velocities in string
simulations. In addition, in order to reach a more ac-
curate description of the VOS model for multi-tensional
string networks (52), it will be necessary to be able to
distinguish between rms velocity, mean velocity, and the
average velocity of string collisions.
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