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Slowdown of BCM plasticity with many synapses
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Abstract
During neural development sensory stimulation induces long-term changes in the receptive field of the neurons that
encode the stimuli. The Bienenstock-Cooper-Munro (BCM) model was introduced to model and analyze this process
computationally, and it remains one of the major models of unsupervised plasticity to this day. Here we show that for some
stimulus types, the convergence of the synaptic weights under the BCM rule slows down exponentially as the number of
synapses per neuron increases. We present a mathematical analysis of the slowdown that shows also how the slowdown can
be avoided.
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Unsupervised learning describes how neurons change
their responses when exposed to stimulation, even in the
absence of any reward or teaching signal. This process is
biologically particularly important during development of,
for instance, the visual cortex and is believed to lead to
the emergence of receptive fields well suited for further
processing (Hyvärinen et al. 2009). The changes in the
neural responses appear mostly mediated through long-term
synaptic plasticity. A number of computational models has
been introduced to describe unsupervised learning. One
of the earliest models that gave a decent description of
experimental data is the so called Bienenstock-Cooper-
Munro model (Bienenstock et al. 1982; Cooper and Bear
2012; Cooper et al. 2004).

This note comes from an observation we made when
simulating the BCM plasticity rule for a single neuron. We
found that convergence could take very long, in particular
when we increased the number of synapses modeled. We
stimulate a neuron with 8 to 18 synapses with von Mises
stimuli, centered randomly around any of the inputs (see
Simulation setup for details), Fig. 1a. The weights are
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initialized close to a stable fixed point at which the neuron
will be selective to one input only. We plot the angle
between the weight vector and its final value as a function
of time. The learning becomes exponentially slower when
the neuron has more synapses, Fig. 1b (top). The number
of synapses used is quite small. As biological neurons have
thousand of synapses, this effect can seriously complicate
simulation of neurons with a realistic number of synapses.
In the bottom panel, we repeat the same simulation
for triangular shaped stimuli. This minor modification
speeds up the learning many orders of magnitude and the
exponential slowing down is strongly reduced, Fig. 1b
(bottom).

1 The BCMmodel

We consider the standard BCM plasticity model for a neuron
with N synapses

dwi(t)

dt
= Fi(w, x) (1)

= 1

τw

xiy(y − θ) (2)

where w(t) is the synaptic weight vector with components
wi(t) and i = 1 . . . N . For mathematical convenience we
assume N to be even. The input strength at input i is written
xi . The neuron’s output rate is denoted y and here we use
a linear relation between input and output y = ∑

i wixi .
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Fig. 1 Slowdown of BCM learning for certain stimuli as the number
of synapses is increased. a) Setup: Each time step the single neuron is
stimulated with a stimulus with its peak at a random location (wrap-
around boundaries). Synapses are modified according to the BCM rule.
b) Top: When smooth stimuli are used, the convergence of the learn-
ing slows down exponentially as the number of synapses is increased

from 8 (light) to 18 (dark). Bottom: There is no consistent slowdown
when triangular-shaped stimuli are used. Convergence was measured
as the angle between the weight vector and the weight vector in the
steady state (normalized for visualization). See Simulation setup for
other details

Essential to BCM, the threshold θ(t) tracks the average
post-synaptic activity squared with a time-constant τθ

τθ

dθ(t)

dt
= −θ(t) + y2 (3)

Together, Eqs. (1) and (3) form a (N + 1)-dimensional
dynamical system.

We consider the commonly studied case that the inputs
are sampled from a discrete distribution. In particular we
initially assume that the inputs randomly alternate between
K = N stimuli. One well-studied question is then: What
are the values that the weights attain after learning has
converged and equilibrated?

We write a specific stimulus vector as xk , where index
k = 1 . . . K indexes the stimulus. The equilibrium condition
for learning becomes that for all synapses, i.e. all i,
∑

k

xk
i yk(yk − θ) = 0 (4)

where yk is the neural response to stimulus k. We will
assume that the parameters are taken such that the system
converges to a fixed point, which means that the learning
rate (1/τw) should be slow, and the threshold update rate
(1/τθ ) should be relatively fast (Udeigwe et al. 2017). In that
case we can replace the threshold by the average over the
stimuli θ = (1/K)

∑
k(y

k)2. In other words, the dynamical
system becomes N-dimensional. As an aside we note that
the eigenvalue analysis presented below can also be done
for the full N +1-dimensional system (w, θ); in the limit of
τw � τθ this gives numerically identical results.

Next, we assume that all stimuli are identical but they are
randomly centered at any of the synapses, Fig. 1a. This is in
rough analogy with the visual system where the neurons are

subject to stimuli with many different orientation, but during
development become selective to a particular orientation.
Furthermore we assume that the individual stimuli are
symmetric around their peak response f0, so that xk =
(. . . , f2, f1, f0, f1, f2, . . .). We introduce the matrix X that
summarizes all stimuli so that xk

i = Xik

X =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

f0 f1 f2 . . . f1
f1 f0 f1 . . . f2
f2 f1 f0 . . . f3
...

...
...

. . .
...

f1 f2 f3 . . . f0

⎞

⎟
⎟
⎟
⎟
⎟
⎠

Provided that the xk span a complete basis (i.e. det(X) �= 0),
the only solution to the equilibrium equations, Eq. (4), is
that for every stimulus either yk = 0 or yk = θ . These
conditions correspond to the fixed points in the learning
dynamics.

It is known that the only stable fixed points are those
where the neuron becomes selective to one single input
pattern and remains silent for all other input patterns; fixed
points where the neuron is active for more than one input
or no input at all, are unstable (Castellani et al. 1999).
The corresponding weights at the fixed points can be found
directly as columns of the inverse stimulus matrix, i.e.
w∗

i = N(X−1)ik , where the pre-factor N follows from the
threshold.

2 Approach to equilibrium

We study how quickly the dynamics approach the fixed
points. We denote the fixed points in the space of synaptic
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weights by w∗. Close to the fixed points we can linearize
the dynamics of Eq. (1) as τw

dw(t)
dt

= J .(w(t)−w∗), where
Jacobian matrix is

Jij = ∂Fi

∂wj

|w=w∗

= −N

K∑

k=1

xk
i xk

j

= −NXX

Like the matrix X, the Jacobian matrix J is symmetric
(Jij = Jji) and circulant (in a circulant matrix each row is
rotated one position w.r.t. the previous one). The eigenvalues
of circulant matrices are identical to the Fourier coefficients
of a row vector. Because f is symmetric, we can write it
as a cosine series. Thus the eigenvalues of matrix X are the
Fourier coefficients am = ∑N−1

j=0 fj cos (2πjm/N), with
fN−j = fj , and m = −N/2 + 1, . . . , N/2. Hence the
eigenvalues of the matrix J are −Na2m.

For the von Mises function, the eigenvalue with m =
N/2 is closest to zero. Thus the most rapidly fluctuating
spatial Fourier mode determines the convergence speed of
the learning. It is given by the alternating sum

λcrit = −Na2N/2 (5)

= −N
(
f0−2f1 + 2f2−. . . ± 2fN/2−1 ∓ fN/2

)2 (6)

from which the slowest time-constant follows as τcrit =
τw/λcrit.

What happens when the number of synapses N is
increased? From Eq. (5) one would expect the magnitude
of the eigenvalue to increase as N , and thus convergence
would be quicker. However, if the stimulus is sampled from
a smooth underlying function, the Fourier coefficient aN/2

will decrease as N increases, so that the time-constant slows
down. In the case of von Mises stimuli the time-constant
increases exponentially, Fig. 2. It is this effect that underlies
the slowdown observed in Fig. 1. Indeed, the simulations
(circles) match the theory (solid line), Fig. 2.

Another way to see that the smoothness of the underlying
function matters, is to realize that the critical eigenvalue,
Eq. (5), can be rewritten as the sum of discrete second
derivatives of the stimulus λcrit ∝ (

f ′′
1 + f ′′

3 + f ′′
5 + . . .

)2,
where f ′′

i = fi−1 − 2fi + fi+1. The smaller this sum, the
slower the convergence. This correctly predicts for instance,
that increasing the width ω slows down the dynamics (not
shown).

For triangular stimuli there is much less slowdown,
Fig. 1 bottom. In this case the highest Fourier mode does
not decrease with N . For non-smooth stimuli, highest
Fourier mode is also not necessarily the critical eigenvalue,
Fig. 2. Finally, the simulation do not match particularly
well (triangles), as likely many modes contribute to the
convergence.
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Fig. 2 The slowest time-scale (the inverse of the smallest eigenvalue)
for various stimuli. For von Mises stimuli (solid line), the time scale
increases exponentially with the number of inputs. This matches the
simulation results extracted from Fig. 1 (circles). For triangular stimuli
there is no such increase. Furthermore, for the triangular stimuli the
eigenvalue corresponding to the highest Fourier-mode (dotted) is not
necessarily the slowest eigenvalue (dashed). The simulations reflect
this as well (triangles)

Finally, we wondered if the finding was specific for the
case where the number of stimuli equals the number of
inputs (K = N). While we have not been able to extend
the theory to this case, the situation can be simulated easily,
Fig. 3. We find that when K = N/2, the convergence speed
no longer strongly depends on the number of synapses, but
for K = 2N , the slowdown is still present.
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Fig. 3 Convergence for under-complete and over-complete stimulus
ensembles. The stimuli were N/2, N , or 2N equi-spaced von Mises
profiles. Convergence speed was slow when the number of stimuli was
equal or larger than the number of synapses. Note, for the cases where
K �= N the initial weight vector was a random vector, resulting in a
more random trajectory
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3 Discussion

In short we have demonstrated both in simulation and by
analysis that for some stimulus profiles BCM plasticity
converges exponentially more slowly as the number
synapses is increased. The reason is that the dynamics
is proportional to the magnitude of the highest spatial
frequency in the stimulus. As one increases the number
of synapses and samples the stimulus more finely, this
magnitude decreases for smooth stimuli.

While this turns out to be an important factor in the con-
vergence speed of BCM learning, we stress that the analysis
is by no means a full quantitative theory. The mathemati-
cal analysis presented here obviously required quite a few
assumptions and approximations. The convergence speed
will in general also depend on the initial conditions, and
the other eigenvalues. Furthermore, it would be of interest
to know how the convergence is affected by noise, hetero-
geneity, and how convergence proceeds far away from the
equilibrium.

The slowdown is certainly relevant for researchers
simulating the BCM rule. Whether these findings also carry
a prediction for biology, that is, whether a similar slow down
could be observed experimentally, will however require
more research.

4 Simulation setup

We simulated the BCM learning rule using as input xk
i =

f|i−k| = exp{[cos( 2π
N

(i − k))−1]/ω}, with width ω = 1/2.
Von Mises functions are smooth periodic functions similar
to Gaussian functions. Triangular stimuli defined as fi =
max(1 − |i|/(ωN), 0), with ω = 0.38. The stimuli were
repeatedly presented in a randomly permuted order. The τw

was set to 1000 steps.
The initial weights were set as a unequal mix of two fixed

points, w(t = 0) = (1 − ε)w1∗ + εw2∗, with ε = 0.1 and
wk∗ = NX−1ek , so the dynamics was prone to converge to

w(t → ∞) = w1∗. C and Octave code is available from the
corresponding author.
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