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Fault Tree analysis is not only the most common

technique used in engineering practice for the estima-

tion of system reliability, but is also a key tool shared

between designers, analysts and regulators for safe

operation and licensing purposes. In spite of its long

lasting success, traditional Fault Tree analysis presents

significant limitations in modelling a wide range of

features frequently encountered in modern systems.

The most critical of these is the assumption of failure

events independence, which is often not justified by the

realistic behaviour of engineering system, undermining

modelling accuracy.

This paper introduces a novel methodology for the

analysis of Fault Trees allowing for component depen-

dencies and dynamic features. The proposed approach,

based on the use of Binary Decision Diagrams, is

demonstrated using a simple numerical application

for verification. Its applicability and computational

feasibility is discussed in details.

I. INTRODUCTION

The inability of Fault Trees (FTs) to model com-

ponent dependencies is recognised to be a barrier

towards more realistic modelling and the accurate

representation of systems complexity. The under-

lying assumption of independence among systems’

components on which FT analysis relies, rarely finds

justification in engineering practice. On the contrary,

modern systems strongly rely on the interaction (and

hence mutual influence) of components operational

conditions, resulting in elaborate, dynamic networks

of dependencies which are further contributed to

by shared environmental conditions and common

cause failures. The problem is far from new, and

several alternative tools have been either explicitly

developed to address such limitations or borrowed

from areas outside risk analysis. The first category

embraces mainly dynamic FTs [1] [2]. This method-

ology relies on the conversion of the dynamic gates

of the FT containing the dependencies into Markov

Models. This implies the restriction of the analysis

to dependent events occurring under the same gate

and can result in very large state space models even

for moderately sized problems. While this translates

into a valid modelling strategy for the representation
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of sequence-dependent events, spares and dynamic

redundancy management, dynamic FTs fail to offer

a widely applicable solution for the treatment of the

full range of dependency types. For such reason, the

application of such technique in engineering practice

remains still limited, in spite of numerous research

efforts [3] [4] [5].

The second category entails modelling techniques

such as Static and Dynamic Bayesian Networks and

Petri Nets [6] [7], which while enhancing modelling

flexibility, fail to meet the requirements dictated by

industrial applications, such as modelling causality

and computational feasibility.

This paper offers a mathematical solution tackling

two main challenges associated with the analysis of

dependencies in system reliability: modelling flexi-

bility and computational feasibility. The method im-

plemented allows the incorporation of dependencies

within Fault Tree analysis regardless of their type

or location within the system [8] [9]. Furthermore,

it retains the familiarity and efficiency of the FT

approach, so to match the needs and requirements

of real-world industrial applications.

II. BACKGROUND

A. Binary Decision Diagrams

Binary Decision Diagrams (BDDs) are acyclic

graphs able to encode and manipulate Boolean func-

tions [10] and represent an efficient tool for the

analysis of FTs [11].

As shown in Fig.1, paths through the BDD originate

from a root node and ends in terminal vertices which

can assume the value 1, indicating the occurrence

of the system failure, or 0, its non-occurrence. Each

Fig. 1: Example BDD structure

non-terminal node is labelled according to the FT

basic event to which it refers. Basic events are

considered in a specified order and, as common in

FT practice the failure of system components. In

this paper, such events are labelled after the compo-

nent of reference, while complimentary events (i.e.

component working state) are instead indicated by

a line over the variable name. The state space of a

generic component Xi is then expressed as:

Xi = {Xi, Xi} (1)
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where the probability q associated with each state

verifies the condition:

q(Xi) = 1− q(Xi) (2)

Two edges originate from each node: one, namely

1-branch, refers to the occurrence of the associated

basic event, the other (i.e. 0-branch) with its non-

occurrence. The overall Boolean function encoded

by the BDD structure is factorised node by node

through the use of if − then− else (ite) structure,

such that:

Nk = ite(Xk, h1, h2) (3)

where Nk refers to the Boolean structure of the

k− th node of the BDD and Xk to the failure event

represented by the node. The expression in Eq. 3

translates as: if Xk fails then consider the Boolean

function h1 which lies on the 1-branch of Nk; else

consider function h2 which, lying on the 0-branch,

requires the working state of component Xk [12].

Algorithms are available for the conversion of FTs

to BDDs [13] [14]. This in fact a widely adopted

strategy for the analysis of FTs, since it ensures

the efficient and accurate computation of system

reliability metrics, such as system failure probability,

system failure intensity and component importance

measures [15].

B. Reliability metrics

The proposed method focuses on the estimation of

three reliability metrics: failure probability, compo-

nent importance (Birnbaum’s measure) and system

failure intensity.

All BDD paths connecting the root node to a termi-

nal 1 correspond to the associated FT cut sets and

are referred to as paths to failure, Pi. The system

failure probability Qsystem can be then expressed

as:

Qsystem =

m∑
i=1

q(Pi) (4)

where q(Pi) indicates the probability associated

with the i − th of the m disjoint paths to failure

represented by the BDD structure.

The Birnbaum’s measure of importance, G(Xj), of

a generic component Xj , quantifies the likelihood

of the system to be in a critical state for that

component, so that the failure of the latter causes

the system to pass from the working to the failed

state. This can be calculated for each component as:

G(Xj) =
∂Qsystem

∂q(Xj)
= Qsystem(Xj)−Qsystem(Xj)

(5)

where Qsystem(Xj) and Qsystem(Xj) refer to the

probability of failure of the system given the failure

and working state of Xj respectively. Under the

assumptions of components independence, Eq.5 can
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be rewritten in function of the BDD paths to failure

as:

G(Xj) =
∑

i|Xj∈Pi

q(Pi)

q(Xj)
−

∑
k|Xj∈Pk

q(Pk)

q(Xj)
(6)

From this, the failure intensity of the system, i.e.

Fsystem, can be calculated as:

Fsystem =

k∑
j=1

G(Xj) · f(Xj) (7)

where f(Xj) refers to the failure intensity of the

j − th of the k components of the system.

C. System dependencies and their representation

The proposed method relies on the direct ma-

nipulation of joint probabilities, such as through

marginalisation and conditioning. The first of these

procedures allows the marginal contribution of one

or more dependent variables to be determined. Con-

sider two components Xi and Xj , and the set of

joint probability values over all their possible states,

i.e. q(Xi,Xj). The probability associated with the

failure state Xi of Xi can be computed as:

q(Xi) =
∑
Xj

q(Xi = Xi,Xj) (8)

where q(Xi = Xi,Xj) indicates the set of joint

probability values covering the entire state space Xj

but including only the state Xi for Xi.

Conditional probability values can be obtain from

joint probabilities through conditioning. This can be

expressed as:

q(Xj | Xi) =
q(Xi, Xj)

q(Xi)
(9)

where q(Xj , Xi) = q(Xi = Xi,Xj = Xj), while

q(Xj | Xi) indicates the probability of component

Xj to be in the failure state Xj given Xi to be in

state Xi.

III. METHODOLOGY

This section describes, in detail, the algorithm

developed for the calculation of the three reliability

metrics of interest discussed:

• system failure probability (or top event proba-

bility);

• system failure intensity (or top event intensity);

• component importance measures.

A graphical overview of the proposed methodology

is presented in Fig2.

TOP EVENT PROBABILITY

The probability of system failure can be calcu-

lated as the sum of all BDD paths probabilities (see

Eq.4). Under the assumption of independence, these

equal the product of the probabilities of individual

events (working and failed) included in each path.

Such procedure is not adequate in the presence of

dependencies.

To take this into account, the proposed approach

relies on the factorisation of each paths into n + 1
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Fig. 2: Overview of the proposed methodology

groupings, corresponding to as many sets of com-

ponents:

Pi = {P 0
i , P

1
i , ..., P

n
i } (10)

where n is the number of dependency groups, DG,

featured in the system, so that:

DG = {DG1,DG2, ...,DGn} (11)

Pi refers to the i − th path of the BDD set of m

paths to failure (PATHS), so that:

PATHS = {P1, .., Pk, ..., Pm} (12)

Its first component P 0
i refers to the set of all

independent components included in Pi, so that:

P 0
i ∈ DG0 ∀i = 1, ...,m (13)

DG0 being the set including all system independent

components.

The first step of the proposed strategy addresses

the identification of the BDD paths and their com-

ponents. The probability associated with the path

independent components, i.e. q(P 0
i ), is estimated

simultaneously, as described in step three. The third

step targets the estimation of the contributions to

each path probability associated with dependent

components (q(P k
i ) with k = 1, ..., n). Finally,

system failure probability is computed in step four.

Step 1: Paths identification

Each BDD path is uniquely identified by the

combination of the component event identifiers. The

aim of the first step of the algorithm is then to

record the events included in each path Pi while

classifying them according to the dependency group

of reference. This is achieved node by node, in a

bottom-up direction: starting from terminal 1, the set

of parent node are identified. Each event associated

with the branch linking the parent and child nodes

is added to the component of path Pi according to

the dependency group of belonging. For instance,

let assume terminal 1 has only one parent node
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Algorithm 1: Path identification
Result: PATHS = {P1, P2, ..., Pm}

[with m paths to failure]

PATHS ← {P1}, where P1 = {1}
[start from terminal 1]

For each Pi = {1, ..., Nm} ∈ PATHS do
for h← 1 to m do

Pa(Nh) = {Nh−1, Nh−2, ..., Nh−n}
[set of n parent nodes of Nh] for

j ← 1 to n do
Pi−j+n ← Pi

Add Pi−j+n to PATHS

[duplicate path by parents]

Nh−j = ite(X,H,F ), X ∈ DGk

if H = Nh then
add X to P k

i−j+n

else if F = Nh then
add X to P k

i−j+n

end if
end for

end for
until Root node N1 is reached;

Nh (Pa(1) = Nh), such that ite(Nh) = (X, 1, 0)

and X a dependent component of dependency group

DGk. Hence, the event X is added to the k − th

component of path Pi such that, for the current

stage of the procedure, P k
i = Nh. The node Nh

is then processed in the same way, starting with the

identification of its parents. The procedure is in fact

repeated for all queued parents until the root node is

reached and the queue empty. The path is duplicated

in the case of multiple parents, so to allow the

differentiation of branches originating from the same

child and their assignment to separate paths.

Step 2: Independent path element probability, P 0
i

computation

The probability associated with the path indepen-

dent component, i.e. q(P 0
i ), is estimated simultane-

ously with the progression of the path identification

procedure. In fact, the probability of the independent

component q(P 0
i ) of the i−th path can be calculated

as the product of all independent events lying on

it: hence, any time an independent event X is

added to the subset P 0
i of the i − th path Pi

(according to the former step), its probability q(X)

is multiplied by the product of the probabilities

of independent events previous recorded within the

same path. For the sake of clarity, this further step

is represented in a separate pseudo code, shown

in Algorithm 2, which expands on the underlined

sections of Algorithm 1. This finally results in

Algorithm 2: Computation of independent

probability components

Result: q(PATHS0) =
{q(P 0

1 ), q(P
0
2 ), ..., q(P

0
m)}

[with m BDD paths to failure]

When: Add X to P k
i :

if k=0 then
q(P 0

i ) = q(P 0
i ) · q(X)

end if

the computation of the contributions of each paths
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independent component grouping probability, i.e.

q(PATHS0) = {q(P 0
1 ), q(P

0
2 ), ..., q(P

0
m)}.

Step 3: Dependent path probability computation

The contribution of a dependent event X , where

X ∈ DGk with k 6= 0, to the probability of a

generic path Pi cannot be estimated as the product

of marginal probabilities as done so far. Conversely,

the value of X probability depends on the state of

the other events from the same dependency group

in the path. The contribution of dependent compo-

nents to the overall path probability can hence be

computed only after the path definition in Step 1 is

completed. Once the events in P k
i associated with

dependency group DGk are known for each i− th

path to failure, their probability can be calculated on

the basis of the joint probability in input, and finally

multiplied by the total path probability since the

group is independent from other dependency groups.

This procedure is summarised in Algorithm 3.

Algorithm 3: Computation of dependent

path probability components
Result: q(PATHS) =

{q(P1), q(P2), ..., q(Pm)}
[with m BDD paths to failure]

do
q(Pi)← q(P 0

i )

for k ← 1 to n do
q(Pi) = q(Pi) · q(P k

i )

end for
for all Pi, i=1, ..., m;

Step 4: System failure probability

Once the probability of each BDD path has been

computed, the failure probability of the system is

calculated according to Eq. 4.

BIRNBAUM’S MEASURE OF IMPORTANCE

Steps 5 and 6 are dedicated to compute the criti-

cality function (Birnbaum’s measure of component

importance) for independent and dependent system

components respectively.

Step 5: Birnbaum’s meausure of importance

For independent components, the value of the

Birnbaum’s measure of importance can be cal-

culated according to Eq.6, as summarised in the

pseudo code shown in Algorithm 4. The state of a

Algorithm 4: Computation of Birnbaum’s

importance measure of independent compo-

nent X
Xl ∈ DG0

for i← 1 to m do
if Xl ∈ P 0

i then
G(Xl) = G(Xl) +

q(Pi)
q(Xl)

else if Xl ∈ P 0
i then

G(Xl) = G(Xl)− q(Pi)
1−q(Xl)

end if
end for

dependent component, have a direct impact on the

probability value associated with other members of

the same dependency group. Hence, assumptions on

the working or failure state of dependent compo-
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nents (as those implicitly adopted in the calculation

of Birnbaum’s measures), affect the probability of

paths of belonging, as well as paths including other

events from the same dependency group, even when

excluding the component itself. In the first case, the

contribution to the component Birnbaum’s measures

from paths including such component can be calcu-

lated following the same procedure discussed for in-

dependent component (Algorithm 4). The secondary

contribution G(Yl)
i to the Birnbaum measure of

component Yl from the i− th path including events

of the same dependency group DGk but not Yl, can

be instead calculated as:

G(Yl)
i = q(Pi | Yl)− q(Pi|Yl)

=
q(Pi)

q(Pik)
· (q(Pik | Yl)− q(Pik | Yl))

(14)

where q(Pi | Yl) and q(Pi | Yl) indicate the condi-

tional probability associated to the i− th path given

the failure and working state of Yl respectively,

and q(Pik) is the probability associated with the

k − th component of path Pi, which includes ex-

clusively any number of members of the dependency

group DGK except Yl itself. Hence, the values

q(Pik | Yl) and q(Pik | Yl) indicate the conditional

joint probability of any component dependent on Yl

and lying on path Pi, and can then be calculated

manipulating the joint probability in input through

marginalisation and conditioning (see Eq.8 and 9).

The overall procedure is discussed further in Section

IV-C.

Algorithm 5: Computation of Birnbaum’s

importance measure of dependent compo-

nent Yl

Yl ∈ DGk with k 6= 0

for i← 1 to m do
if P k

i 6= ∅ then
if Yl ∈ P k

i then
G(Yl) = G(Yl) +

q(Pi)
q(Yl)

else if Yl ∈ P k
i then

G(Yl) = G(Yl)− q(Pi)

q(Yl)

else
G(Yl) = G(Yl) +

q(Pi)
q(Pik)

·(
q(Pik | Yl)− q(Pik | Yl)

)
end if

end if
end for

TOP EVENT FAILURE INTENSITY

The availability of the components Birnbaum’s

measures of importance enables the calculation of

the final reliability parameter of interest, system

failure intensity, carried out in step six.

Step 6: Failure Intensity

The system failure intensity is computed accord-

ing to Eq.7.

A. Computational Feasibility

The complexity of the methodology proposed de-

pends on the BDD structure, being directly propor-

tional to the number of paths to failure. This implies
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that, for extremely large BDDs, the technique may

become computationally intractable.

A possible alternative could be shifting to an ap-

proximate solution: this implies the exclusion from

the computation of any path whose probability falls

under a pre-established threshold qthreshold. Such a

truncation procedure could be carried out in the path

identification phase, hence modifying the procedure

proposed in Algorithm 1 as shown in Algorithm

6. While the system failure probability calculated

Algorithm 6: Path elimination procedure for

approximate failure probability computation

When: Add X to P k
i :

if k=0 then
q(P 0

i ) = q(P 0
i ) · q(X)

if q(P 0
i ) < qthreshold then

delete Pi

end if
end if

with the truncated paths set would result in an

underestimation of the real value, by recording the

number of censored paths it is possible to provide

an upper bound to the approximate output. In fact,

since each eliminated path P truncated
j is associated

to a probability value lower than qthreshold, the max-

imum contribution to the overall failure probability

lost through the truncation procedure is less than:

Qtruncated
system = M · qthreshold (15)

where M is the number of eliminated paths. Hence,

it results:

Qapprox
system < Qsystem <

(
Qapprox

system +Qtruncated
system

)
where Qapprox

system is the estimate approximating the

real system failure probability Qsystem.

IV. NUMERICAL APPLICATION

In order to test the capabilities of the proposed

methodology, a simple case study focusing on the

fault tree structure shown in Fig.3 has been analysed,

introducing multiple dependency groups.

A. Case study

The FT shown in Fig.3, represents a system of ten

components: X1-X10. The top event TOP repre-

sents the simultaneous failure of two subsystems, in

turn depicted by the FT subsections below gates G6

and G7. Both subsystems embrace two components

working in parallel, i.e. X1 and X2 for gate G6, X7

and X8 for gate G7. These components below each

gate are considered to have mutual dependencies: it

is assumed that the failure of one of the parallel

components will put a larger load on the other,

increasing its failure probability. This results in

the definition of two dependency groups, DG1 =

{X1, X2} and DG2 = {X7, X8}. In order to test

the generality of the proposed method, a further de-

pendency relation embracing components belonging
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Fig. 3: Fault Tree structure for the case-study anal-
ysed

to different subsystem (i.e. X5 and X9) is also

considered, resulting in a third dependency group

DG3 = {X5, X9}. This could be representative of

more complex types of dependencies, e.g. related

to maintenance strategies. As discussed, the FT is

first converted into a BDD structure: this is shown

in Fig.4. For the sake of clarity, nodes associated

with dependent components (i.e.X1, X2, X5, X7,

X8 and X9), are represented as double line ellipses,

while different dependency groups are highlighted in

different color shades. The dependency groups so

defined are accounted for numerically through the

use of joint estimates, as discussed in Section II-C:

these are listed in Table I-III for the dependency

groups DG1, DG2 and DG3 respectively.

The reliability information assumed for the remain-

ing independent components are shown in Table IV.

Fig. 4: BDD structure resulting from the conversion
of the FT in Fig3. Double ellipses refer to dependent
components, while color shades have been assigned
to different dependency groups

B. System Failure Probability by Path

The application of the methodology described in

Section III resulted in the identification of 45 dis-

joint failure paths, shown in Table V together with

their individual probabilities. The overall system
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Joint States Probability Intensity
[h−1]

X1, X2 1.6205 · 10−01 8.4478 · 10−01
X1, X2 2.1658 · 10−01 2.7614 · 10−01
X1,X2 2.1612 · 10−01 2.7478 · 10−01
X1, X2 4.05250 · 10−01 6.75408 · 10−01

TABLE I: Joint reliability information for DG1

Joint States Probability Intensity
[h−1]

X7, X8 1.17647 · 10−02 7.05882 · 10−02
X7, X8 3.5294 · 10−02 4.58823 · 10−01
X7,X8 3.5294 · 10−02 4.58823 · 10−01
X7, X8 9.1765 · 10−01 9.1765 · 10−01

TABLE II: Joint reliability information for DG2

failure probability is computed by the summation

of such values as:

Qsystem =

45∑
i=1

q(Pi) = 1.0906 · 10−02 (16)

C. Birnbaum’s Measures of Importance

Birnbaum’s measures of importance were calcu-

lated, resulting in the values shown in Table VI.

Joint States Probability Intensity
[h−1]

X5, X9 8.0842 · 10−04 7.6261 · 10−03
X5, X9 4.4276 · 10−02 7.9212 · 10−02
X5,X9 4.6546 · 10−02 7.9727 · 10−02
X5, X9 9.0837 · 10−01 1.5131 · 10−01

TABLE III: Joint reliability information for DG3

Component Probability Intensity
[h−1]

X3 1.3500 · 10−06 2.7000 · 10−07
X4 6.1136 · 10−03 2.2018 · 10−03
X6 2.3810 · 10−05 1.7000 · 10−06
X10 2.3810 · 10−05 1.7000 · 10−06

TABLE IV: Independent components reliability info

As described in Section III, the computation of

the criticality measure of independent component

follows Algorithm 4, which factorises Eq.6 into

individual path contributions. For the independent

component X3 in the example, this results in:

G(X3) =

∑15
j=6 q(Pj)

q(X3)
−
∑45

i=16 q(Pi)

q(X3)

= 4.7694 · 10−02
(17)

where the positive term refers to the probability of

failure paths embracing the working state of X3

(i.e., paths 16 to 45 in Table V) conditional to the

working state of the component. This is calculated

dividing the joint probability of the paths by the

probability of event X3, according to the condition-

ing procedure of Eq.9. Similarly, the negative term

is associated with paths implying the failure of X3

(i.e., 6 to 15 in Table V). Paths from 1 to 5 in Table

V do not contain events X3 or X3, hence contribute

to system failure regardless of the state of the

component: this implies the two resulting identical

terms cancel themselves out when considered under

both assumptions of X3 working and failure states,

reducing to the expression in Eq.17.

While assumptions on the working or failure state

of independent components affect only the failure

probability of the individual component, similar

hypothesis have a larger impact when entailing

dependencies. For instance, assuming the dependent
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Path No Events Contribution Probability
1 q(X1, X2) · q(X7, X8) 1.9065 · 10−03
2 q(X1, X2) · q(X7, X8) · q(X9) 2.7084 · 10−04
3 q(X1, X2) · q(X7, X8) · q(X9) · q(X10) 2.2212 · 10−07
4 q(X1, X2) · q(X7) · q(X9) 7.3126 · 10−03
5 q(X1, X2) · q(X7) · q(X9) · q(X10) 5.9973 · 10−06
6 q(X1) · q(X3) · q(X7, X8) 9.8761 · 10−09
7 q(X1) · q(X3) · q(X7, X8) · q(X9) 1.4030 · 10−09
8 q(X1) · q(X3) · q(X7, X8) · q(X9) · q(X10) 1.1507 · 10−12
9 q(X1) · q(X3) · q(X7) · q(X9) 3.7882 · 10−08

10 q(X1) · q(X3) · q(X7) · q(X9) · q(X10) 3.1068 · 10−11
11 q(X1, X2) · q(X3) · q(X7, X8) 3.4325 · 10−09
12 q(X1, X2) · q(X3) · q(X7, X8) · q(X9) 4.8763 · 10−10
13 q(X1, X2) · q(X3) · q(X7, X8) · q(X9) · q(X10) 3.9992 · 10−13
14 q(X1, X2) · q(X3) · q(X7) · q(X9) 1.3166 · 10−08
15 q(X1, X2) · q(X3) · q(X7) · q(X9) · q(X10) 1.0798 · 10−11
16 q(X1) · q(X3) · q(X4) · q(X7, X8) 4.4725 · 10−05
17 q(X1) · q(X3) · q(X4) · q(X7, X8) · q(X9) 6.3537 · 10−06
18 q(X1) · q(X3) · q(X4) · q(X7, X8) · q(X9) · q(X10) 5.2109 · 10−09
19 q(X1) · q(X3) · q(X4) · q(X7) · q(X9) 1.7155 · 10−04
20 q(X1) · q(X3) · q(X4) · q(X7) · q(X9) · q(X10) 1.4069 · 10−07
21 q(X1, X2) · q(X3) · q(X4) · q(X7, X8) 1.5544 · 10−05
22 q(X1, X2) · q(X3) · q(X4) · q(X7, X8) · q(X9) 2.2082 · 10−06
23 q(X1, X2) · q(X3) · q(X4) · q(X7, X8) · q(X9) · q(X10) 1.8111 · 10−09
24 q(X1, X2) · q(X3) · q(X4) · q(X7) · q(X9) 5.9622 · 10−05
25 q(X1, X2) · q(X3) · q(X4) · q(X7) · q(X9) · q(X10) 4.8899 · 10−08
26 q(X1) · q(X3) · q(X4) · q(X7, X8) · q(X5) 3.2780 · 10−04
27 q(X1) · q(X3) · q(X4) · q(X7, X8) · q(X9, X5) 1.7634 · 10−05
28 q(X1) · q(X3) · q(X4) · q(X7, X8) · q(X9, X5) · q(X10) 3.9372 · 10−08
29 q(X1) · q(X3) · q(X4) · q(X7) · q(X9, X5) 4.7611 · 10−04
30 q(X1) · q(X3) · q(X4) · q(X7) · q(X9, X5) · q(X10) 1.0631 · 10−06
31 q(X1, X2) · q(X3) · q(X4) · q(X7, X8) · q(X5) 1.1393 · 10−04
32 q(X1, X2) · q(X3) · q(X4) · q(X7, X8) · q(X9, X5) 6.1287 · 10−06
33 q(X1, X2) · q(X3) · q(X4) · q(X7, X8) · q(X9, X5) · q(X10) 1.3684 · 10−08
34 q(X1, X2) · q(X3) · q(X4) · q(X7) · q(X9, X5) 1.6548 · 10−04
35 q(X1, X2) · q(X3) · q(X4) · q(X7) · q(X9, X5) · q(X10) 3.6947 · 10−07
36 q(X1) · q(X3) · q(X4) · q(X7, X8) · q(X5) · q(X6) 1.6531 · 10−07
37 q(X1) · q(X3) · q(X4) · q(X7, X8) · q(X9, X5) · q(X6) 2.4174 · 10−08
38 q(X1) · q(X3) · q(X4) · q(X7, X8) · q(X9, X5) · q(X10) · q(X6) 1.9233 · 10−11
39 q(X1) · q(X3) · q(X4) · q(X7) · q(X9, X5) · q(X6) 6.5268 · 10−07
40 q(X1) · q(X3) · q(X4) · q(X7) · q(X9, X5) · q(X10) · q(X6) 5.1928 · 10−10
41 q(X1, X2) · q(X3) · q(X4) · q(X7, X8) · q(X5) · q(X6) 5.7455 · 10−08
42 q(X1, X2) · q(X3) · q(X4) · q(X7, X8) · q(X9, X5) · q(X6) 8.4016 · 10−09
43 q(X1, X2) · q(X3) · q(X4) · q(X7, X8) · q(X9, X5) · q(X10) · q(X6) 6.6844 · 10−12
44 q(X1, X2) · q(X3) · q(X4) · q(X7, X8) · q(X9, X5) · q(X6) 2.2684 · 10−07
45 q(X1, X2) · q(X3) · q(X4) · q(X7, X8) · q(X9, X5) · q(X10) · q(X6) 1.8048 · 10−10

TABLE V: Failure paths for the BDD in Fig.4
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Component Birnbaum Measure
X1 2.4390 · 10−02
X2 2.4360 · 10−02
X3 4.7694 · 10−02
X4 4.7987 · 10−02
X5 1.9498 · 10−02
X6 4.7695 · 10−02
X7 4.9035 · 10−02
X8 4.9035 · 10−02
X9 1.7898 · 10−01
X10 1.9384 · 10−01

TABLE VI: Components Birnbaum’s Measure of
Importance

component X2 to be working correctly implies:

q(X2) = 0, q(X2) = 1

q(X1, X2) = 0, q(X1, X2) = q(X1|X2)

q(X1) = q(X1|X2), q(X1) = q(X1|X2)

(18)

Hence, the calculation of the system failure prob-

ability conditional on the working or failure state

of the dependent component X2 has to take into

account not only the paths involving X2 itself, but

also those including the other components of the

dependency groups DG1 to which X2 belongs (i.e.

X1).

When X2 is working correctly, BDD paths from 1

to 5 shown in Table V assume probability equal to

0 (due to q(X1, X2) = 0, as for Eq.18). Paths 21 to

25, 31 to 35 and 41 to 45 contain the simultaneous

occurrence of dependent events X1 and X2, hence

their probability contains the joint value q(X1, X2).

According to the conditions in Eq. 18, this is equal

to the conditional probability q(X1|X2) under the

assumption of X2 working. Hence, in this case the

contribution of these paths to the system failure

probability can be estimating dividing their individ-

ual probability by the q(X2), which is equivalent

to substituting the joint value q(X1, X2) with the

conditional probability q(X1|X2) in the expression

of the individual path probability.

The probability associated with the paths including

event X1 (i.e., paths 6 to 20, 26 to 30 and 36 to 40)

needs to be ’updated’ according to the working as-

sumption substituting the probability q(X1) with the

conditional value q(X1|X2). This can be achieved

multiplying the unconditional probability associated

with such paths by q(X1|X2)

q(X1)
. Overall, the system

failure probability conditional to the working state

of X2 can then be expressed as:

Qsystem(X2)

=

∑25
i=21 q(Pi) +

∑35
j=31 q(Pj) +

∑45
k=41 q(Pk)

q(X2)

+

(
20∑
l=6

q(Pl) +

30∑
w=26

q(Pw) +

40∑
h=36

q(Ph)

)

· q(X1|X2)

q(X1)
= 1.6826 · 10−03

(19)
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Similarly, the failure probability of the system con-

ditional to the failure of X2, can be computed as:

Qsystem(X2)

=

∑5
i=1 q(Pi)

q(X2)

+

(
20∑
l=6

q(Pl) +

30∑
w=26

q(Pw) +

40∑
h=36

q(Ph)

)

· q(X1|X2)

q(X1)
= 2.6042 · 10−02

(20)

As a result, the Birnbaum importance measure for

the dependent component X2 can be calculated as:

G(X3) = Qsystem(X2)−Qsystem(X2)

=

∑5
i=1 q(Pi)

q(X2)

−
∑25

i=21 q(Pi) +
∑35

j=31 q(Pj) +
∑45

k=41 q(Pk)

q(X2)

+

(
20∑
l=6

q(Pl) +

30∑
w=26

q(Pw) +

40∑
h=36

q(Ph)

)

·
(
q(X1|X2)

q(X1)
− q(X1|X2)

q(X1)

)
= 2.4360 · 10−02

(21)

which corresponds to the sum of all path contribu-

tions obtained with Eq.14 according to the procedure

described in Algorithm 5.

D. System Failure Intensity

Once the Birnbaum’s measure of component im-

portance are computed, the failure intensity of the

overall system, i.e. Fsystem, can be calculated. As

for the failure probability values, the individual

failure intensity of dependent components can be

calculated through the marginalisation procedure

discussed in the previous sections. This finally re-

sults in:

Fsystem =

10∑
i=1

G(Xi) · f(Xi)

= G(X1) · f(X1) +G(X2) · f(X2)

+G(X3) · f(X3) +G(X4) · f(X4)

+G(X5) · f(X5) +G(X6) · f(X6)

+G(X7) · f(X7) +G(X8) · f(X8)

+G(X9) · f(X9) +G(X10) · f(X10)

= 1.2440 · 10−01h−1

(22)

V. CONCLUSIONS

A novel FT analysis methodology based on the

use of BDDs and allowing for component depen-

dencies is proposed. The approach relies on the

conversion of FT to BDD and the identification of

the associated paths to failure. Each path probability

is estimated taking into account the contribution

of independent and dependent component, adopting

joint probabilities to capture the relationships of

dependent events. The resulting approach guaran-

tees preserve the familiarity and efficiency of Fault

Tree analysis while enhancing modelling flexibility.

This is achieved allowing for the inclusion in the

analysis of any type of dependency regardless of

their location within the Fault Tree structure.
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