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Abstract  

Collagen plays a key role in normal and malignant tissue homeostasis. While the prognostic significance of 

collagen fibre remodeling in invasive breast cancer has been studied, its role in ductal carcinoma in situ 

(DCIS) remains poorly defined. Using image analysis, we aimed to evaluate the prognostic significance of 

the geometric characteristics of collagen surrounding DCIS. A large well-characterized cohort of DCIS 

comprising pure DCIS (n=610) and DCIS co-existing with invasive carcinoma (n=180) were histochemically 

stained for collagen using picrosirius red. ImageJ software was used to assess collagen density, degree of 

collagen fibre dispersion and directionality in relation to DCIS ducts’ boundary. We developed a collagen 

prognostic index and evaluated its prognostic significance. A poor index was observed in 24% of the pure 

DCIS and was associated with determinants of high-risk DCIS including higher grade, comedo necrosis, 

hormonal receptor negativity, HER2 positivity and high proliferation index. High index was associated with 

overexpression of the collagen remodeling protein prolyl-4-hydroxlase alpha 2 and the hypoxia inducible 

factor 1α. DCIS co-existing with invasive carcinoma had a higher collagen prognostic index than pure DCIS 

(p<0.0001). High index was an independent poor prognostic factor for all DCIS recurrences (HR=2.3, 

p=0.005) and just invasive recurrences (HR=3.4, p=0.003). Interaction with radiotherapy showed that the 

higher index was associated with poor outcome even with adjuvant radiotherapy (p=0.0001). In conclusion, 

collagen re-organization around DCIS is associated with poor outcome and provides a potential predictor for 

disease progression and resistance to radiotherapy. Mechanistic studies are warranted to decipher the 

underlying mechanisms.  
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Introduction 

The key difference between invasive breast cancer and ductal carcinoma in situ (DCIS) is the destruction of 

the surrounding basement membrane and invasion of the malignant cells into the surrounding stroma 

accompanied by desmoplastic reaction. However, studies have shown that changes in the surrounding tumor 

microenvironment including infiltrating immune cells, stromal cells and extracellular matrix composition 

occurs early in carcinogenesis much before malignant cells invade the surrounding stroma (1-5). More so, 

these changes may provide a surrogate to predict tumor behavior and potential outcomes (5-7). One of the 

major limitations of currently available clinicopathological indices and molecular signatures to predict DCIS 

risk is the underestimated role of microenvironmental factors. Therefore, despite advances in management 

modalities, a considerable percentage of DCIS are either over- or under-treated. In addition, most molecular 

studies that compared the genetic profiles of DCIS and invasive breast cancer report a high degree of 

similarity (8, 9), creating a compelling need to decipher the role of the tumor microenvironment in DCIS 

behavior.       

Collagen is the main constituent of extracellular matrix and plays a crucial role in tissues homeostasis (10). 

There are many types of collagen with varied localizations and functions in normal and pathological 

conditions (2, 10). The role of collagen in cancer development is not solely related to its chemical 

composition or signaling interaction but is mainly linked to its physical properties and geometric 

characteristics in relation to the tumor cells (4, 11-13). Recent advances in imaging techniques and specific 

histochemical staining of collagen have spurred an increased interest to discover its physical roles and 

biological functions (12, 14-16). In invasive cancers including breast cancer, studies have shown that 

densely aligned collagen is associated with poor outcome and various tumor-associated collagen signatures 

have been described to assess the collagen organization surrounding invasive breast cancer (11). There is 

a dearth of studies deciphering the role of collagen in DCIS; hence more investigations are needed to 

evaluate its prognostic significance. While an earlier study has shown association of aligned collagen with 

other determinants of DCIS aggressive behavior, no statistically significant association with disease 

recurrence or progression was reported (6). In the current study, we hypothesized that collagen re-
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organization surrounding DCIS is linked to aggressive behavior. We have developed an imaged-based 

collagen prognostic index that relies on three factors: the directionality of collagen fibre relative to DCIS 

boundary, collagen density and dispersion using a large cohort of DCIS. 

 

MATERIAL AND METHODS 

 

Study Cohort  

A large well-characterized and annotated cohort of DCIS including pure DCIS (n=776) and DCIS mixed with 

invasive breast cancer (DCIS-mixed) (n=239) diagnosed between 1990 to 2012 at Nottingham City Hospital, 

Nottingham, United Kingdom was used (17). To avoid selection bias, the DCIS-mixed cohort was selected 

with clinicopathological features comparable to the pure cohort regarding age at diagnosis, DCIS nuclear 

grade, and the presence of comedo type necrosis. All demographic, clinical, histological, management 

information was collected. Breast conserving surgery was the primary surgical option for 70% of cases, 

however due to close or positive surgical margins a considerable percentage of patients underwent 

completion mastectomy; half of the cases were treated by mastectomy as the final operation. Data about 

the molecular classes, tumor infiltrating lymphocytes density (7), as well as the key regulator of collagen 

biosynthesis and remodeling prolyl-4-hydroxlases alpha subunit 2 (10) and the hypoxia related marker 

hypoxia inducible factor 1α were available. In brief, the molecular classes were defined based on the 

immunohistochemistry using estrogen (ER) and progesterone (PR) receptor, the human epidermal growth 

factor receptor 2 (HER2) and Ki67 proliferation index. ER and PR were considered positive if >1% of tumor 

cells showed nuclear staining (18) while HER2 positivity was defined when more than 10% of tumor cells 

showed strong complete membranous staining (+3 score). Chromogenic in situ hybridisation was used to 

determine the gene amplification status in borderline cases (+2 score) (19). The proliferation index was 

defined as low when <14% of cells showed nuclear staining for Ki67 (20). Hypoxia inducible factor 1α was 

evaluated using immunohistochemistry and was considered positive when >1% of tumor cells showed 

nuclear staining as previously described (21). Dense tumor infiltrating lymphocytes DCIS was defined in 

DCIS as an average number of ≥20 lymphocytes/duct (7). Follow up data was collected and local recurrence 
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free interval was defined as the time (in months) between 6 months after the primary DCIS excision and 

the development of ipsilateral recurrence (either as DCIS or invasive breast cancer). Cases undergoing 

completion re-excision due to margins’ involvement or presence of residual tumor within the first six months 

of the primary operation were not considered as disease recurrence. Contralateral disease following DCIS 

diagnosis was not accounted as a recurrence and these patients were censored at the time of the 

development of the contralateral cancer. Within a median follow up period of 103 months (range 6-240), 

83 cases (11%) developed a recurrence in the pure DCIS cohort with 30 DCIS (36%) and 53 invasive 

recurrence (64%) (10, 22). Most recurrences (n=66) developed in patients treated with breast conserving 

surgery alone.  

 

Histochemical collagen staining with picrosirius red  

Tissue microarrays were prepared from both cohorts as previously described (17). Briefly, 1 mm punch sets 

were used to construct the tissue microarray using an automated GRAND MASTER 2.4-UG-EN tissue 

microarray machine. For better representation of cases with heterogeneous DCIS histological patterns 

and/or nuclear grade, multiple cores were sampled from all representative areas. 

Picrosirius red solution was prepared by mixing 0.5 g of Sirius Red [Direct red 80, Cat#365548, Sigma-

Aldrich, Darmstadt, Germany] with 500 ml of saturated aqueous solution of picric acid [Cat# P6744-1GA, 

Sigma-Aldrich, Darmstadt, Germany]. Briefly, tissue microarrays sections (4 µm) were deparaffinized and 

rehydrated and immersed in the picrosirius red solution for 60 minutes. Physical removal of excess stain 

was carried out by vigorous slide shaking followed by gentle blotting against soft filter paper. Slides were 

washed in two changes of acidified water, dehydrate in three changes of 100% ethanol, cleared in xylene, 

mounted and cover-slipped. Using light microscopy, epithelial cells were stained yellow while the collagen 

fibres stained red.  
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Image acquisition  

The stained tissue microarrays were scanned using a high-resolution digital scanner (NanoZoomer; 

Hamamatsu Photonics, Welwyn Garden City, UK), at 20× magnification. For obtaining the images for 

subsequent analysis, individual tissue spots were exported as JPEG (8-bit) files at ×20 magnification (1368 

× 768 pixels). Multiple spots were exported for each core to represent the whole tissue. To improve the 

reliability of the study, cores with less than 15% area of stroma were excluded from the analysis. All 

excluded cases were unbiased with respect to clinicopathological features.  

 

Image analysis 

The image analysis was carried out using the Fiji package of ImageJ (NIHR public domain) which is available 

for free download at (https://imagej.nih.gov/ij/download.html). Individual tissue spot JPEG files were 

imported into ImageJ and was split into RBG (Red, Blue, Green) channels. The image segmentation of tumor 

from stroma was carried out on the green color space; the red and blue channels were discarded. The 

segmentation to identify objects of interest was carried out by adjusting the greyscale data to a binary 

image with foreground pixels of interest set to red (pixel signal intensity of 0) and background pixels set to 

white (maximum 8-bit intensity of 255). The pixel intensity threshold for classifying all pixels as either 

foreground or background was defined automatically using the ImageJ histogram thresholding feature. To 

decease background noise, all images were adjusted to threshold of 150. Fields of interest (specialised 

stromal collagen surrounding DCIS ducts) (23) were identified by manually delineating of multiple squares, 

400x400 µm each in dimension (i.e. equivalent to 2-high power fields of the surrounding collagen), with 

their bases touching and parallel/tangential to the duct boundary at the area of contact. Several non-

overlapping areas were marked per image to segment the surrounding stroma resulting in >100 fields 

(average 120 fields) of interest were delineated per each core. Features were extracted by measuring the 

pixel numbers for any particles in the final image using the automated tools in ImageJ. Features extracted 

included the directionality of collagen fibres, i.e. the angle of the adjacent collagen fibres in each square 

relative to the angle of the tangent (duct boundary); collagen fibres dispersion, i.e. the arrangement of fibres 

https://imagej.nih.gov/ij/download.html
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relative to each other; and solidity representing the collagen density. Data were recorded in degree (o) for 

directionality and dispersion while pixels were used for solidity measurement. Each field of interest was 

analyzed separately and the average reading for each tissue core was considered as the final score for 

analysis.  Moreover, cases with multiple cores were scored and the average of the final scores for each core 

were used for the analysis. Figure 1 and Supplementary Figures 1 show a schematic representation of the 

image analysis process.  

 

Calculation of collagen prognostic index score 

Each parameter was categorized into three scores (1, 2 and 3) using cut-offs generated from X-tile 

bioinformatics software (Yale University, version 3.6.1) (24) based local recurrence free interval in the pure 

DCIS cohort (Supplementary table 1). Score 3 directionality indicated more perpendicular collagen fibres to 

duct boundary, Score 3 solidity related to dense collagen fibres while Score 3 dispersion referred to lower 

degree of collagen fibre dispersion i.e. collagen fibres parallel to each other. Collagen prognostic index was 

calculated according to the equation;  

 

Collagen prognostic index=collagen directionality score (1-3) + collagen solidity score (1-3) + collagen 

dispersion score (1-3) 

The generated score range was 3-9, and was divided into three prognostic groups based on X-tile software 

whereby a score of 3 or 4 is the good prognostic group, 5-7 for intermediate and score 8 or 9 indicates the 

poor prognostic group (Supplementary Table 1) 

 

Statistical analysis 

Statistical analyses were performed using SPSS v21 (Chicago, IL, USA) for Windows. Spearman’s Rho test 

was used to correlate between the different assessed parameters. Association between collagen prognostic 

index and its different parameters and clinicopathological parameters was performed using Chi-square, 

Mann Whitney and Kruskal-Wallis tests (for categorical and numerical data respectively). Univariate survival 
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analysis against local recurrence free interval was carried out using log rank test and Kaplan Meier curves. 

Cox regression model was used for multivariate analysis and to evaluate the interaction between 

radiotherapy and collagen prognostic index regarding the recurrence. For all tests, a two-tailed p-value of 

less than 0.05 was considered as statistically significant. 

 

This work obtained ethics approval by the North West – Greater Manchester Central Research Ethics 

Committee under the title; Nottingham Health Science Biobank (NHSB), reference number 15/NW/0685. 

 

 

RESULTS 

Distribution of collagen prognostic index parameters and groups 

The final number of cases suitable for scoring was 424 pure DCIS and 149 DCIS co-existing with invasive 

breast cancer after unbiased exclusion of uninformative cores (lost, folded and those containing <15% 

stroma area). The distribution of collagen prognostic index and the three collagen geometric parameters are 

summarized in Supplementary Table 2.  The median directionality and dispersion angles in the pure DCIS 

were 19.6o (range 1-85) and 16.7o (range 5-58), respectively, while the median solidity was 0.5 (range 

0.001-0.9) and the median collagen prognostic index score was 6 (range 3-9). The distribution of all 

parameters was unimodal. The poor collagen prognostic index group represented 24% of the cohort with a 

similar percentage of DCIS in the good prognostic group (23%). Figure 2 shows various patterns of collagen 

arrangement surrounding DCIS. We found a positive linear correlation between high collagen solidity and 

perpendicular or oblique collagen arrangement related to the DCIS ducts’ boundary (r=0.5, p<0.0001, 

Spearman’s correlation). However, the degree of collagen dispersion showed a negative linear correlation 

with both collagen solidity (r=-0.3, p<0.0001, Spearman’s correlation) and directionality (r=-0.3, 

p<0.0001, Spearman’s correlation).  

The proportion of cases with a high collagen prognostic index score (poor prognostic group) was higher in 

DCIS co-existing with invasive breast cancer than pure DCIS (38% and 24% respectively; χ2=36.5, 
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p<0.0001) (Table1). Similar results were observed when the score was analysed using a numerical scale 

(p<0.0001) (Supplementary Table 3). Comparable results were observed for all index parameters whereby 

DCIS co-existing with invasive carcinoma showed a higher extent of perpendicular collagen fibres in relation 

to DCIS boundaries and with collagen fibres more often arranged in parallel (lower dispersion) than pure 

DCIS either in categorical groups or using the numerical scores (Supplementary Tables 4 and 5). The 

proportion of DCIS-coexisting with invasive breast cancer showed denser collagen fibres was slightly higher 

than pure DCIS (58% Vs. 50%) which was not statistically significant (p=0.364). Figure 3 illustrates the 

distribution of collagen prognostic index parameters within pure DCIS and DCIS-invasive breast cancer 

cohorts.    

 

Significance of collagen prognostic index expression in pure DCIS 

Poor collagen prognostic index was associated with other clinicopathological determinants of poor prognosis 

in DCIS (Table1) including higher nuclear grade (p<0.0001), presence of comedo type necrosis (p<0.0001), 

hormonal receptor negativity (p=0.032, p=0.029 for ER and PR, respectively) and HER2 positivity 

(p=0.003). Luminal A DCIS (ER+ and/or PR+, HER2- with <14% proliferation index) had lower collagen 

prognostic index scores where 67% of cases belonged to good prognostic group (p=0.037). Moreover, poor 

collagen prognostic index was associated with other microenvironmental and stromal factors associated with 

poor DCIS prognosis such as dense tumor infiltrating lymphocytes (7) (p=0.016), high levels of prolyl-4-

hydroxlases alpha subunit 2 expression (p<0.0001) which is a collagen remodelling protein which was 

previously reported to be associated with poor outcome in DCIS (10). We validated our results by analyzing 

the numeric collagen prognostic index scores and found comparable results (Supplementary Table 3). 

Furthermore, collagen directionality, dispersion and solidity scores were analysed individually with other 

clinicopathological parameters and the results are summarized in Supplementary Table 4 (for categorical 

groups) and Supplementary Table 5 (for continuous scores).  
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Outcome analysis  

High collagen prognostic index was associated with shorter DCIS local recurrence free interval either for all 

recurrences (DCIS or invasive breast cancer) (HR=2.0; 95%CI=1.3-3.1; p=0.002) and for invasive 

recurrences alone (HR=3.1; 95%CI=1.6-5.5; p=0.0003) (Figure 4). When analysis was confined to patients 

treated with breast conserving surgery, similar results were obtained where poor collagen prognostic index 

was associated with worse outcome for all recurrences (HR=2.1; 95%CI=1.4-3.1; p=0.001) and for invasive 

recurrences (HR=3.0; 95%CI=1.6-5.4; p=0.0003) (Figure 4). Collagen prognostic index was associated 

with poor outcome regardless of the DCIS nuclear grade, whereby poor collagen prognostic index was 

associated with shorter local recurrence free interval either for all recurrences or invasive recurrences only 

(Figure 5) for both high grade DCIS and non-high grade DCIS (low and intermediate DCIS were combined 

together due to the small number of events in the former group). Moreover, evaluation of the interaction 

between collagen prognostic index and radiotherapy (collagen prognostic index*radiotherapy) using a Cox 

regression model showed that higher collagen prognostic index was significantly associated with shorter 

local recurrence free interval even with radiotherapy (HR=1.8, 95%CI=1.3-2.3, p=0.0001). Analysis of the 

individual index parameters (collagen directionality, dispersion and solidity), showed significant associations 

with disease recurrence (Supplementary Figure 2).  Forest plots for univariate analysis of other 

clinicopathological parameters and collagen prognostic index groups and their association with DCIS 

recurrence are shown in Supplementary Figure 3.     

Multivariate survival analysis including the conventional determinants of DCIS risk showed that age at 

diagnosis, nuclear grade, DCIS size, margin status and comedo type necrosis are independent prognostic 

factors for DCIS recurrence. However, when collagen prognostic index was incorporated in the model it was 

the only independent poor prognostic factor for DCIS recurrence in patients treated with breast conserving 

surgery regardless of other known determinants of high-risk DCIS either for all recurrences (HR=2.3, 95% 

CI=1.3-4.2; p=0.005) or invasive recurrences only (HR=3.4, 95% CI=1.5-7.6; p=0.003) (Table 2). 
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DISCUSSION  

Precise assessment of DCIS risk is still challenging despite advances in high throughput molecular 

techniques. None of the currently available clinicopathological based nomograms and indices (25-28) or 

molecular signatures such as Oncotype DX DCIS (29) provide a reliable and clinically valid tool to predict 

DCIS risk of progression and/or recurrence to improve personalised management. The biological and clinical 

heterogeneity of DCIS coupled with underestimation of the important role of the tumor microenvironment 

in disease behavior are potential reasons for this lack of accuracy. Cancer is not exclusively a disease of 

malignant cells, but also involves crosstalk between tumor, stromal cells and other components of the 

surrounding microenvironment. Thus, studying the role of DCIS microenvironment and its interaction with 

the tumor cells could resolve the DCIS management dilemma and provide an adequate and reliable risk 

stratification model (1, 5, 30-32). 

Extracellular matrix and its main constituent, collagen, plays a key role in normal mammary gland 

development (33). Interestingly, increased breast tissue density, caused mainly by increased collagen 

deposition, is a strong risk factors for breast cancer development with high breast density carrying a two- 

to six-fold increase in breast cancer risk compared to women with normal breast density which is almost as 

high a risk factor as BRCA1 and BRCA2 mutations (4, 34). It is reported that DCIS arises more commonly 

in dense regions of the breast (4, 35). While was thought that collagen provided a natural physiological 

barrier against tumor invasion, recent studies have provided concrete evidence on the key role of that 

collagen dynamic changes (collagen deposition, degradation, re-organization and remodelling) in 

carcinogenesis, tumor maintenance and progression through its role in cellular adhesion, proliferation, 

migration, invasion and angiogenesis (36). A recent genetic study showed that extracellular matrix re-

organization and response to cellular stress are key factors in breast cancer progression (37). Several 

studies on invasive breast cancer and other types of cancer using second harmonic generation microscopy 

or multiphoton laser scanning showed that organization of collagen around malignant tissues provides a 

tumor associated collagen signature that is associated with tumors behavior and patients’ outcome (2, 4, 

13). Given that, the role of collagen remodeling in DCIS behavior is relatively understudied, we evaluated 

the collagen fibre organization surrounding DCIS and its prognostic significance. We have used a novel 
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imaging method, to the best of our knowledge, to assess collagen characteristics in a large cohort of DCIS 

and have developed a collagen prognostic index to predict the risk of DCIS recurrence and progression.   

In this study, we examined the density and arrangement of collagen relative to each other and the boundary 

of DCIS. Interestingly, higher collagen prognostic index was associated with features of high-risk DCIS 

including higher nuclear grade, comedo type necrosis, hormonal receptor negativity and HER2 positivity, 

supporting its role in DCIS progression. Additionally, our data showed that collagen prognostic index was 

higher in DCIS co-existing with invasive breast cancer than pure DCIS. Taken together, collagen re-

organization is a potential factor for high risk DCIS. The poor prognostic value of collagen rearrangement 

was shown with a shorter local recurrence free interval in patients with higher levels of collagen prognostic 

index independently from other clinicopathological factors. These findings were consistent for all recurrent 

events, either DCIS or invasive breast cancer or when the analysis was confined to invasive recurrences 

only, which provides more evidence that collagen rearrangement and deposition could play a key role in 

DCIS progression to invasive disease. collagen prognostic index could predict the risk of recurrence in non-

high grade DCIS, which is a group at risk of under-treatment due to the lack of accurate predictors of 

recurrence in this group, although genetic studies showed that the DCIS are the precursors of low grade 

invasive breast cancer. Hence, collagen prognostic index could drive the management decision is these 

patients. The poor prognostic group of non-high grade DCIS had a 22% risk of invasive recurrence within 

10 years, compared to zero invasive recurrences in the good prognostic group.   

  

Although the effect of radiotherapy  in reduction of DCIS recurrence is undeniable (38-41), there is still a 

considerable percentage of patients treated with breast conserving surgery and followed by adjuvant 

radiotherapy  that develop disease recurrence. There is no data available for DCIS patients at higher 

susceptibility for poor response to radiotherapy. Our findings showed that DCIS with a high collagen 

prognostic index is associated with poor outcome even when radiotherapy was offered. This index could 

provide a signature for radiotherapy resistance in DCIS. It is reported that dense stroma is associated with 
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poor response to radiotherapy  in cancer treatment (42) which might provide a similar explanation in DCIS. 

These findings need mechanistic studies for validation.    

Although the mechanisms that lead to collagen changes and how these changes affect tumor behavior are 

not fully understood, several explanations are available. Tumor cells could secret factors that realign a 

random collagen matrix into a radially arranged collagen to facilitate local invasion (13). The role of hypoxia 

and collagen remodeling proteins such as prolyl-4-hydroxlases alpha subunit 2 and lysyl oxidase are obvious 

in developing collagen signatures as shown from previous studies and our findings in the current study (10, 

43). As a reciprocal effect, collagen density can affect tumor growth even in tumor harboring scanty stroma. 

Cells cultured within low-density matrices form well-differentiated acini structures, while colonies that 

formed within high-density matrices are larger, more proliferative and less organized structures indicating 

that increasing collagen matrix density can directly promote epithelial cell proliferation (4).  

Stiffer extracellular matrix due to increased collagen deposition results in high local mechanical loads and 

higher resistance to cellular contractility (4). Such changes in the physical microenvironment lead to loss of 

cellular adhesion, increase tumor cells proliferation and promotes a transformed phenotype.  These findings 

are supported from our results where higher collagen solidity and lower collagen dispersion were associated 

with a higher proliferation index. Moreover, stromal fibroblasts can regulate epithelial cells in part through 

secretion of specific soluble growth factors and chemokines such as tumor growth factor β that has been 

associated with reactive stroma and fibrosis, while studies indicate that the epidermal growth 

factors/receptors (i.e.HER2) are important not only in the normal mammary gland but also during 

tumorigenesis and metastasis (44, 45). These findings are supported from our results where higher collagen 

prognostic index was associated with HER2 overexpression and higher proliferation index.  

Mechanical forces can induce epithelial mesenchymal transition leading to tumor invasion (2). With the 

tumor mass increasing, stress on extracellular matrix increases correspondingly until reaching a critical 

point, the biomechanical trigger, which can be sensed by mechanical receptors in both tumor and stromal 

cells. In turn these cells exert cytoskeletal-dependent traction forces on the extracellular matrix (13, 46, 

47). Eventually, tumor and stromal cells deform as consequences of the altered tissue tension (48, 49), the 



 

 

 

14 

 

expanding tumor mass (50), matrix stiffening (51), and increased interstitial pressure due to a leaky 

vasculature and poor lymphatic drainage, initiating epithelial mesenchymal transition (52). These deformed 

cells acquire a more spindle-like fibroblastic morphology, lower adhesive properties, enhanced motility and 

invasive behavior. Studies showed that local invasion in stroma rich areas is due an intrinsic property of 

tumor cells arising in a collagen-dense stroma rather than being a simple reflection of increased local 

collagen that facilitates invasion. Tumor cells isolated from collagen-dense tissues were in fact innately more 

migratory, indicating that the ease of invasiveness facilitated by certain collagen structures is likely not the 

sole cause for increased metastasis but that the tumor cells themselves are more invasive (4). Moreover, 

aligned collagen provides an adhesive scaffold that support tumor cells in their invasion and migratory 

process (6, 11-13, 16).  Mechanical forces also activate sites on collagen to recruit monocytes leading to a 

cascade of innate immuno-inflammatory reactions (2). Our results showed that dense collagen is associated 

with denser tumor infiltrating lymphocytes than lesions with scanty and randomly distributed stromal 

collagen. The underlying biology warrants an investigation, given our previous report that dense tumor 

infiltrating lymphocytes have poor prognostic significance in DCIS, a reverse phenomenon to that in invasive 

disease for which the underlying mechanisms are unclear (7).   

 

This study has been carried out on tissue microarray without including full face sections, which might 

underestimate the role of DCIS heterogeneity. However, all cases in our cohort were histologically reviewed 

before tissue microarray construction and multiple cores were used for cases with heterogeneous grade or 

morphological patterns. Also, our cohort did not include patients treated with endocrine therapy 

 

In conclusion, collagen prognostic index could provide a signature for prediction of DCIS recurrence risk. 

Collagen deposition and re-organization around DCIS plays a role in tumor progression and recurrence. 

Collagen features are stable and robust, persisting even when tissues have not been properly fixed, and 

these features are maintained under various tissue-processing approaches. Thus, picrosirius staining of 

collagen and subsequent image analysis to assess collagen prognostic index could readily be used in clinical 
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practice and could drive DCIS management decisions. Additional functional studies to delineate the 

mechanistic role of collagen re-organization in DCIS behavior are warranted.  
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Figures legends: 

 

 

Figure 1: Diagram shows the different parameters assessed to evaluate the collagen characteristics 

surrounding DCIS. Green squares refer to the fields of interest for analysis (400x400 µm surrounding the 

DCIS boundary and note that all squares are aligned touching and parallel to imaginary tangential line to 

the duct boundary. A) Perpendicularly arranged collagen fibres relative to duct boundary, B) Parallel 

arranged fibres towards the duct boundary, C) Collagen fibres arranged parallel to each other (lower 

dispersion) while D) randomly arranged fibres (higher dispersion). E) Dense collagen fibres and F) scanty 

collagen fibres. During the analysis the 3 parameters were assessed per each field of interest (square) and 

the final average value was used in the analysis.  

 

Figure 2: Example of collagen fibre arrangement in 2 DCIS cases. A and B represent a case surrounded by 

dense collagen with lower dispersion (parallelly arranged collagen fibres all over the duct perimetry) and 

different directionalities, where collagen fibres delineated in (B) with black square show parallel arrangement 

relative to duct boundary (The tangential line), the fibres in the green square show more perpendicular 

arrangement relative to the tangential line touching the duct boundary. C and D represent DCIS surrounded 

by scanty randomly distributed collagen fibres with varied directionality relative to tangential line to the duct 

boundary. (A and C are DCIS sections stained with picrosirius red, while B and D are the images generated from ImageJ software). 

 

Figure 3: Violin plots comparing the distribution of collagen prognostic index parameters between pure 

DCIS and DCIS co-existing with invasive carcinoma (mixed DCIS). Obviously, DCIS mixed showed higher 

angle of directionality and lower dispersion degree than pure DCIS. No statistically significant difference 

between collagen density between pure and mixed DCIS. Central line in the boxplot represents the median 

while the error bars represent the standard deviation.  

 

Figure 4: Kaplan Meier curves show that the poor collagen prognostic index group is associated with shorter 

ipsilateral local recurrence free interval for all recurrences (A) and invasive recurrences (B) in the whole 

series as well as in the breast conserving surgery treated group (C; for all recurrences and D; for invasive 

recurrences).  

 

 

Figure 5: Kaplan Meier curves show that poor collagen prognostic index group is associated with shorter 

ipsilateral local recurrence free interval for all recurrences (A) and invasive recurrences (B) in non-high 
grade DCIS as well as in high grade DCIS (C; for all recurrences and D; for invasive recurrences). 
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Table 1: Correlation between collagen prognostic index and clinicopathological parameters in the pure 

DCIS cohort 

Clinicopathological 
Parameters 

Collagen prognostic index groups χ2 
(p-value) 

Good (n=96) Moderate (n=128) Poor (n=100) 

Age (years) 

   ≤50  
   >50  

 

26 (27) 
70 (73) 

 

52 (23) 
176 (77) 

 

30 (30) 
70 (70) 

 

2.1 
(0.356) 

Presentation  

   Screening 

   Symptomatic 

 

45 (47) 

51 (53) 

 

115 (50) 

113 (50) 

 

60 (60) 

40 (40) 

 

3.7 

(0.150) 

DCIS Size (mm) 

   ≤20  

   >20 

 

45 (47) 

51 (53) 

 

90 (40) 

137 (60) 

 

45 (45) 

55 (55) 

 

1.7 

(0.414) 

Nuclear Grade 

   Low 

   Moderate 
   High 

 

39 (41) 

35 (37) 
22 (22) 

 

7 (3) 

64 (28) 
157 (69) 

 

0 (0) 

9 (9) 
91 (91) 

 

155.6 

(<0.0001) 

Comedo necrosis  

   Yes 

   No 

 

41 (43) 

55 (57) 

 

168 (74) 

60 (26) 

 

83 (83) 

17 (17) 

 

42.4 

(<0.0001) 

Estrogen receptor status   

   Negative 
   Positive 

 

15 (17) 
73 (83) 

 

59 (28) 
154 (72) 

 

32 (34) 
62 (66) 

 

6.8 
(0.032) 

Progesterone receptor 

   Negative 

   Positive 

 

28 (32) 

61 (69) 

 

99 (46) 

115 (54) 

 

47 (49) 

49 (51) 

 

7.1 

(0.029) 

HER2 status  

   Negative 
   Positive 

 

79 (86) 
13 (14) 

 

163 (75) 
54 (25) 

 

63 (64) 
35 (36) 

 

11.8 
(0.003) 

Proliferation index (Ki-67) 

   High 

   Low 

 

13 (16) 

68 (84) 

 

49 (24) 

156 (76) 

 

29 (31) 

64 (69) 

 

5.4 

(0.066) 

Molecular classes 

   Luminal A 

   Luminal B 
   HER2 Enriched  

   Triple negative 

 

51 (67) 
11 (14) 

6 (8) 

8 (11) 

 

95 (49) 

40 (21) 
32 (17) 

25 (13) 

 

34 (40) 

20 (24) 
19 (22) 

12 (14) 

13.4 

(0.037) 

Tumor infiltrating lymphocytes   

   Dense 

   Sparse  

 

27 (39) 

43 (61) 

 

96 (50) 

96 (50) 

 

53 (62) 

33 (38) 

8.2 

(0.016) 

P4HA2 expression  

   High 

   Low 

 

28 (34) 

54 (66) 

 

127 (62) 

78 (38) 

 

52 (60) 

35 (40) 

19.2 

(<0.0001) 

HIF1α expression  

   High 

   Low 

 

11 (15) 

62 (85) 

 

45 (25) 

137 (75) 

 

23 (30) 

54 (70) 

 

4.7 

0.094 

Tumor Type* 
   Pure DCIS  

   DCIS associated with IBC 

 
96 (97) 

3 (3) 

 
228 (72) 

89 (28) 

 
100 (64) 

57 (36) 

 
36.5 

(<0.0001) 

*Including pure DCIS (n=424) and DCIS coexisting with IBC (n=149) 
Significant p values are in bold 
DCIS; ductal carcinoma in situ, HER2; human epidermal growth factor receptor 2, P4HA2; prolyl-4-hydroxylase alpha 
subunit 2, HIF1α; hypoxia inducible factor-1 alpha, IBC; invasive breast cancer.   
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Table 2: Multivariate survival analysis (Cox regression model) of variables predicting outcome in terms of 

ipsilateral local recurrence (either all recurrences A, or invasive recurrences B) in DCIS patients treated by 

breast conserving surgery. 

 

A) All recurrences  

Conventional clinicopathological parameters associated with high risk DCIS   

Parameters   Hazard 

ratio (HR) 
95% confidence interval (CI)   

p-value 
Lower Upper 

Patient Age 0.4 0.2 0.8 0.006 

DCIS presentation  1.5 0.9 2.4 0.111 

DCIS size 1.5 1.1 2.1 0.040 

DCIS nuclear Grade 1.9 1.3 2.7 0.001 

Comedo necrosis 0.6 0.4 0.9 0.049 

Margin status  0.8 0.7 0.9 0.004 

Collagen prognostic index and other clinicopathological parameters associated with 

high risk DCIS 

Collagen prognostic index 2.3 1.3 4.2 0.005 

Patient Age 0.5 0.2 1.1 0.072 

DCIS presentation  2.1 0.9 4.3 0.052 

DCIS size 0.9 0.5 1.6 0.760 

DCIS nuclear Grade 1.1 0.5 1.9 0.994 

Comedo necrosis 0.8 0.4 1.6 0.559 

Margin status  0.9 0.8 1.1 0.236 

             Significant p values are in bold  
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B) Invasive recurrence  

Conventional clinicopathological parameters associated with high risk DCIS   

Parameters   Hazard 

ratio (HR) 
95% confidence interval (CI)   

p-value 
Lower Upper 

Patient Age 0.5 0.2 1.3 0.156 

DCIS presentation  1.4 0.8 2.6 0.245 

DCIS size 1.8 1.1 2.4 0.013 

DCIS nuclear Grade 1.9 1.1 3.0 0.013 

Comedo necrosis 0.7 0.4 1.3 0.274 

Margin status  0.9 0.8 1.1 0.075 

Collagen prognostic index and other clinicopathological parameters associated with 

high risk DCIS 

Collagen prognostic index 3.4 1.5 7.6 0.003 

Patient Age 1.2 0.4 3.7 0.697 

DCIS presentation  3.0 1.2 7.9 0.025 

DCIS size 1.3 0.7 2.7 0.412 

DCIS nuclear Grade 0.9 0.4 2.3 0.909 

Comedo necrosis 0.9 0.4 2.1 0.786 

Margin status  0.9 0.8 1.1 0.838 

                        Significant p values are in bold  
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Figure 1 
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Figure 2 
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Figure 3 
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Figure 4 
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Figure 5 
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Supplementary Table 1: Scores of collagen directionality, dispersion, density and collagen prognostic index 

based on cut-off points generated from X-tile software  

 Collagen Directionality Collagen Dispersion Collagen Solidity 

Score 1 2 3 1 2 3 1 2 3 

Threshold <13.6o 13.6 -19.6 o >19.6 o >15.8 o 12.3-15.8 o <12.3 o <0.2 0.2-0.6 >0.6 

Collagen prognostic index (CPI) = Collagen directionality score + collagen solidity score 

+ collagen dispersion score 

 

Collagen prognostic index groups: 

- Good prognostic group: Scores 3 or 4 

- Moderate prognostic group: Scores 5, 6 or 7 

- Poor prognostic group: Scores 8 or 9 
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Supplementary Table 2: Distribution of collagen prognostic index and its parameters scores within the pure 

DCIS cohort  

 Collagen Directionality Collagen Dispersion Collagen Solidity CPI 

Mean ± SD 23.6 ± 17.2  17.8 ± 6.8 0.5 ± 0.3 6 ± 1.8 

Median 19.6 16.7 0.5 6 

Minimum  1.0 5.1 0.001 3 

Maximum 85.0 58.1 0.9 9 
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 Supplementary Table 3: Correlation between collagen prognostic index scores (continuous 

values) and different clinicopathological parameters in the pure DCIS cohort. 

Clinicopathological  
Parameters 

Number of cases 
collagen prognostic index score 

Mean Rank p-value  

Age (years) 
   ≤50  
   >50  

 
108 
316 

 
216.9 
210.9 

0.657 

Presentation  
   Screening 
   Symptomatic 

 
220 
204 

 
224.0 
200.0 

0.042 

DCIS Size (mm) 
   ≤20  
   >20 

 
180 
243 

 
214.2 
210.3 

0.742 

Nuclear Grade 
   Low 
   Moderate 
   High 

 
46 
108 
270 

 
65.8 
155.3 
260.4 

<0.0001 

Comedo necrosis  
   Yes 
   No 

 
292 
132 

 
237.7 
156.9 

<0.0001 

Estrogen receptor   
   Negative 
   Positive 

 
106 
289 

 
221.2 
189.5 

0.013 

Progesterone Receptor 
   Negative 
   Positive 

 
174 
225 

 
215.7 
187.8 

0.015 

HER2 status 
   Negative 
   Positive 

 
305 
102 

 
193.9 
234.0 

0.003 

Proliferation index (Ki-67) 
   High 
   Low 

 
91 
288 

 
218.1 
18611 

0.004 

Molecular classes 
   Luminal A 
   Luminal B 
   HER2 Enriched  
   Triple negative 

 
180 
71 
57 
45 

 
160.4 
192.4 
198.6 
191.8 

0.017 

Tumour infiltrating lymphocytes    

   Dense 
   Sparse 

 

176 
172 

 

185.1 
163.7 

 
0.044 

P4HA2 expression  
   High 
   Low 

 
207 
167 

 
206.4 
164.2 

0.0001 

HIF1A expression  
   High 
   Low 

 
79 
253 

 
188.1 
159.5 

0.017 

Tumour Type* 
   Pure DCIS  
   DCIS associated with IBC 

 
424 
149 

 
262.9 
355.6 

<0.0001 

           *Including pure DCIS (n=424) and DCIS coexisting with IBC (n=149) 
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Significant p values are in bold 

DCIS; ductal carcinoma in situ, HER2; human epidermal growth factor receptor 2, P4HA2; prolyl-4-

hydroxylase alpha subunit 2, HIF1α; hypoxia inducible factor-1 alpha, IBC; invasive breast cancer.   
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 Supplementary Table 4: Correlation between collagen prognostic index parameters and different clinicopathological parameters in the pure DCIS cohort. 

 

Clinicopathological  
Parameters 

Collagen Directionality   
(n=424) χ2 

(p-value) 

Collagen Solidity    
(n=424) χ2 

(p-value) 

Collagen Dispersion   
(n=424) χ2 

(p-value) 
Score 1 Score 2 Score 3 Score 1 Score 2 Score 3 Score 1 Score 2 Score 3 

Age (years) 
   ≤50  
   >50  

 
33 (26) 
92 (74) 

 
25 (28) 
64 (72) 

 
50 (24) 

160 (76) 

 
0.6 

(0.710) 

 
25 (26) 
72 (74) 

 
43 (28) 

111 (72) 

 
40 (23) 

133 (77) 

 
0.9 

(0.608) 

 
54 (23) 

179 (77) 

 
21 (22) 
73 (78) 

 
33 (34) 
64 (66) 

 
4.9 

(0.088) 

Presentation  
   Screening 
   Symptomatic 

 
60 (48) 
65 (52) 

 
37 (42) 
52 (59) 

 
123 (59) 
87 (41) 

8.3 
(0.016) 

 
42 (43) 
55 (57) 

 
82 (53) 
72 (47) 

 
96 (56) 
77 (44) 

 
3.8 

(0.144) 

 
116 (50) 
117 (50) 

 
55 (58) 
39 (42) 

 
49 (51) 
48 (49) 

2.1 
(0.343) 

DCIS Size (mm) 
   ≤20  
   >20 

 
54 (44) 
70 (56) 

 
31 (35) 
58 (65) 

 
95 (45) 

115 (55) 

 
2.8 

(0.242) 

 
45 (46) 
52 (54) 

 
65 (43) 
88 (57) 

 
70 (41) 

103 (59) 

 
0.8 

(0.639) 

 
95 (41) 

138 (59) 

 
44 (47) 
50 (53) 

 
41 (43) 
55 (57) 

0.9 
(0.607) 

Nuclear Grade 
   Low 
   Moderate 
   High 

 
30 (24) 
36 (29) 
59 (47) 

 
15 (17) 
16 (18) 
58 (65) 

 
1 (1) 

56 (27) 
153 (72) 

54.5 
(<0.0001) 

 
46 (47) 
44 (44) 

7 (7) 

 
0 (0) 

50 (33) 
104 (67) 

 
0 (0) 

14 (8) 
159 (92) 

 
 

164.2 
(<0.0001) 

 
32 (14) 
84 (36) 

117 (50) 

 
11 (12) 
15 (16) 
68 (72) 

 
3 (3) 
9 (9) 

85 (88) 

47.3 
(<0.0001) 

Comedo necrosis  
   Yes 
   No 

 
73 (58) 
52 (42) 

 
62 (70) 
27 (30) 

 
157 (75) 
53 (25) 

 
9.8 

(0.007) 

 
32 (33) 
65 (67) 

 
114 (74) 
40 (26) 

 
146 (84) 
27 (16) 

 
79.6 

(<0.0001) 

 
144 (62) 
89 (38) 

 
70 (75) 
24 (25) 

 
78 (80) 
19 (20) 

12.8 
(0.002) 

Estrogen receptor status   
   Negative 
   Positive 

 
27 (24) 
87 (76) 

 
30 (36) 
54 (64) 

 
49 (25) 

148 (75) 

4.3 
(0.114) 

 
8 (9) 

83 (91) 

 
48 (33) 
96 (67) 

 
50 (31) 

110 (69) 

 
19.8 

(0.0001) 

 
48 (22) 

166 (78) 

 
23 (26) 
65 (74) 

 
35 (38) 
58 (62) 

7.7 
(0.022) 

Progesterone receptor 
   Negative 
   Positive 

 
48 (41) 
68 (59) 

 
47 (56) 
37 (44) 

 
79 (40) 

120 (60) 

 
6.7 

(0.036) 

 
20 (22) 
72 (78) 

 
73 (50) 
72 (50) 

 
81 (50) 
81 (50) 

 
23.3 

(<0.0001) 

 
82 (38) 

135 (62) 

 
41 (47) 
46 (53) 

 
51 (54) 
44 (46) 

7.3 
(0.025) 

HER2 status  
   Negative 
   Positive 

 
93 (78) 
27 (22) 

 
57 (68) 
27 (32) 

 
155 (76) 
48 (24) 

2.9 
(0.237) 

 
88 (95) 

5 (5) 

 
107 (72) 
41 (28) 

 
110 (66) 
56 (34) 

26.4 
(<0.0001) 

 
175 (79) 
46 (21) 

 
67 (74) 
24 (26) 

 
63 (66) 
32 (34) 

5.9 
(0.051) 

Proliferation index (Ki-67) 
   High 
   Low 

 
23 (21) 
86 (79) 

 
19 (25) 
58 (75) 

 
49 (25) 

144 (75) 

0.7 
(0.696) 

 
11 (13) 
71 (87) 

 
35 (25) 

107 (75) 

 
45 (29) 

110 (71) 

7.2 
(0.027) 

 
37 (18) 

167 (82) 

 
23 (28) 
59 (72) 

 
31 (33) 
62 (67) 

9.1 
(0.011) 
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Molecular classes 
   Luminal A 
   Luminal B 
   HER2 Enriched  
   Triple negative 

 
58 (56) 
19 (18) 
16 (16) 
10 (10) 

 
31 (42) 
15 (20) 
18 (24) 
10 (14) 

 
91 (52) 
37 (21) 
23 (13) 
25 (14) 

7.2 
(0.303) 

 
59 (76) 
10 (13) 

2 (3) 
6 (8) 

 
61 (47) 
22 (17) 
27 (21) 
19 (15) 

 
60 (41) 
39 (26) 
28 (19) 
20 (14) 

 
32.1 

(<0.0001) 

 
108 (56) 
37 (19) 
23 (12) 
24 (13) 

 
36 (48) 
17 (23) 
13 (17) 
9 (12) 

 
36 (42) 
17 (20) 
21 (24) 
12 (14) 

8.8 
(0.185) 

Tumour infiltrating lymphocytes   
   Dense 
   Sparse  

 
49 (50) 
49 (50) 

 
41 (53) 
36 (47) 

 
86 (50) 
87 (50) 

0.3 
(0.867) 

 
28 (38) 
46 (62) 

 
64 (51) 
61 (49) 

 
84 (56) 
65 (44) 

6.8 
(0.033) 

 
85 (46) 
99 (54) 

 
39 (49) 
41 (51) 

 
52 (62) 
32 (38) 

 
5.8 

(0.054) 

P4HA2 expression  
   High 
   Low 

 
50 (46) 
59 (54) 

 
48 (58) 
34 (42) 

 
109 (60) 
74 (40) 

5.6 
(0.060) 

 
27 (32) 
58 (68) 

 
89 (63) 
53 (37) 

 
91 (62) 
56 (38) 

24.7 
(<0.0001) 

 
99 (49) 

102 (51) 

 
50 (58) 
36 (42) 

 
58 (67) 
29 (33) 

 
7.8 

(0.020) 

HIF1A expression  
   High 
   Low 

 
23 (24) 
72 (76) 

 
20 (28) 
52 (72) 

 
36 (22) 

129 (78) 

0.9 
(0.608) 

 
9 (12) 

69 (88) 

 
26 (21) 
98 (79) 

 
44 (34) 
86 (66) 

14.2 
(0.001) 

 
38 (20) 

149 (80) 

 
16 (22) 
56 (78) 

 
25 (34) 
48 (66) 

 
5.7 

(0.057) 

Tumour Type* 
   Pure DCIS  
   DCIS associated with IBC 

 
125 (98) 

2 (2) 

 
89 (95) 

5 (5) 

 
210 (60) 
142 (40) 

 
97.8 

(<0.0001) 

 
97 (91) 

9 (9) 

 
154 (65) 
82 (35) 

 
173 (75) 
58 (25) 

 
26.4 

(<0.0001) 

 
233 (78) 
65 (22) 

 
94 (67) 
47 (33) 

 
97 (72) 
37 (27) 

 
6.8 

(0.033) 

*Including pure DCIS (n=424) and DCIS coexisting with IBC (n=149) 

Significant p values are in bold 

DCIS; ductal carcinoma in situ, HER2; human epidermal growth factor receptor 2, P4HA2; prolyl-4-hydroxylase alpha subunit 2, HIF1α; hypoxia inducible factor-1 alpha, 

IBC; invasive breast cancer.  
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Supplementary Table 5: Correlation between different collagen prognostic index parameters and 

clinicopathological parameters in the pure DCIS cohort using continuous data.  

Clinicopathological  
Parameters 

Number of 
cases 

Collagen Directionality   Collagen Solidity    Collagen Dispersion     

Mean Rank p-value Mean Rank p-value Mean Rank p-value 

Age (years) 
   ≤50  
   >50  

 
108 
316 

 
210.2 
213.3 

0.822 
 

201.7 
216.2 

0.286 
 

198.3 
217.4 

0.162 

Presentation  
   Screening 
   Symptomatic 

 
220 
204 

 
225.0 
199.0 

0.029 
 

225.2 
198.8 

 
0.027 

 
211.4 
213.8 

 
0.840 

DCIS Size (mm) 
   ≤20  
   >20 

 
180 
243 

 
216.9 
208.4 

0.482 
 

207.2 
215.5 

0.489 
 

213.7 
210.7 

0.801 

Nuclear Grade 
   Low 
   Moderate 
   High 

 
46 

108 
270 

 
83.0 

192.2 
242.7 

<0.0001 

 
31.4 

134.2 
274.7 

<0.0001 

 
249.1 
264.2 
185.6 

<0.0001 

Comedo necrosis  
   Yes 
   No 

 
292 
132 

 
227.0 
180.4 

0.0002 
 

244.8 
140.9 

<0.0001 
 

202.7 
234.2 

0.014 

Estrogen receptor   
   Negative 
   Positive 

 
106 
289 

 
200.7 
197.0 

0.776 
 

230.4 
186.1 

0.001 
 

175.7 
206.2 

0.019 

Progesterone Receptor 
   Negative 
   Positive 

 
174 
225 

 
197.7 
201.8 

0.722 
 

226.3 
179.6 

<0.0001 
 

185.7 
211.1 

0.029 

HER2 status 
   Negative 
   Positive 

 
305 
102 

 
199.5 
217.4 

0.183 
 

189.2 
248.3 

<0.0001 
 

210.5 
184.6 

0.055 

Proliferation index (Ki-67) 
   High 
   Low 

 
91 

288 

 
200.6 
186.7 

0.290 
 

211.8 
183.1 

0.029 
 

161.7 
198.9 

0.005 

Molecular classes 
   Luminal A 
   Luminal B 
   HER2 Enriched  
   Triple negative 

 
180 
71 
57 
45 

 
171.5 
186.4 
175.8 
185.6 

0.694 

 
153.9 
198.8 
208.2 
195.5 

0.0001 

 
186.6 
176.8 
148.6 
174.7 

0.109 

Tumour infiltrating lymphocytes    
   Dense 
   Sparse 

 
176 
172 

 
175.2 
173.7 

 
0.892 

 
187.3 
163.3 

 
0.016 

 
165.1 
184.2 

 
0.075 

P4HA2 expression  
   High 
   Low 

 
207 
167 

 
197.4 
175.2 

0.048 
 

205.6 
165.1 

<0.0001 
 

175.3 
202.7 

0.015 

HIF1A expression  
   High 
   Low 

 
79 

253 

 
168.1 
166.0 

0.865 
 

198.9 
156.4 

0.001 
 

146.9 
172.6 

0.038 
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Tumour Type* 
   Pure DCIS  
   DCIS associated with IBC 

 
424 
149 

 
225.8 
461.3 

<0.0001 
 

283.3 
297.6 

0.364 
 

298.6 
254.0 

0.005 

*Including pure DCIS (n=424) and DCIS coexisting with IBC (n=149) 

Significant p values are in bold 

DCIS; ductal carcinoma in situ, HER2; human epidermal growth factor receptor 2, P4HA2; prolyl-

4-hydroxylase alpha subunit 2, HIF1α; hypoxia inducible factor-1 alpha, IBC; invasive breast 

cancer.   

 


