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Extended signal-correction observer and
application to aircraft navigation

Xinhua Wang, Weicheng Wang

Abstract—An extended signal-correction observer (ES-
CO) is presented for signals correction and estimation,
which not only can reject the large measurement error, but
also the system uncertainty can be estimated, in spite of the
existence of intense stochastic non-Gaussian noise. Multi-
input describing function method is proposed to analyze
the ESCO robustness in frequency domain. The ESCOs are
developed for position/velocity and attitude angle/angular
rate integrations, respectively, and they are applied to an
aircraft navigation: Based on the ESCO, the position, atti-
tude angle and the uncertainties in the flight dynamics are
estimated. Experiments demonstrate the effectiveness of
the proposed method.

Index Terms—Extended signal-correction observer (ES-
CO), large measurement error, aircraft.

I. INTRODUCTION

USUALLY controlling an aircraft needs the information
of the position and attitude. Moreover, many aircrafts

are underactuated dynamic systems with highly uncertain
behaviors: unmodelled dynamics, parametric uncertainties and
aerodynamic disturbance are inevitable. These uncertainties
render great challenges in flight control.

Global positioning system (GPS) can provide the recogni-
tion of position and velocity [1,2]. The positioning accuracy
by GPS is several meters even more than 10m, and it is easily
contaminated by the circumstances [2]. There are usually two
methods of velocity measurement using GPS: 1) Position
difference; 2) Doppler shift measurement [3]. The former
approach is simplest, but it has a meter per second level of ac-
curacy due to the dependence on position accuracy. In contrast,
Doppler shift measurement enables velocity accuracy of a few
centimeters per second, even the accuracy approaching 5mm/s
is possible [4]. Hence, measuring Doppler shift is a preferred
way of velocity measurement. Alternatively, the velocity of
device can be estimated by the optical flow sensors (OFS) [5].
Nevertheless, they are sensible to lighting changes. The state
observers [6] are popular to estimate velocity from position.
However, the above observers are only fit for the systems with
relatively accurate position measurements.
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Inertial navigation system (INS) can provide position and
velocity information, but it suffers from signal drifts over time.
Even with the accurate velocity, the drift in position still exist
by integration over long time period. Some observer-based
INS methods were used [7,8,9]. In [8], a dynamic observer
was designed to estimate position, by which the position is
required to be in a small bounded range, and it is not fit for
large-range navigation. Also, inertial measurement unit (IMU)
can provide the attitude information. To calculate the attitude
angles of device, the angular rates from the gyroscopes in
IMU are onefold integrated, however, the drifts are inevitable.
Alternatively, the large-error bounded pitch and roll angles can
be determined by the outputs of the accelerometer in IMU,
and the large-error bounded yaw angle can be calculated by
the outputs of the magnetometer in IMU [10].

Disturbances and uncertainties always exist in aircraft sys-
tems. The extended state observers have provided a pow-
erful tool to estimate system disturbances and uncertainties
[11,12,13]. However, these observers need the relatively accu-
rate position measurements as the observer inputs.

The signals integration (for example, position/acceleration,
position/velocity, or attitude angle/angular rate) based on
Kalman filter (KF) or Extended Kalman filter (EKF) can
restrict the defects of individual systems [14,15,16], and it can
improve the accuracy of system outputs. However, for KF or
EKF, noise is assumed to be zero-mean Gaussian distributed,
and the process noise covariance is uncorrelated to the estimate
error. As stochastic non-Gaussian noise exists in signal, the
inaccurate noise information may lead to position and attitude
drifts. Furthermore, these methods cannot deal with the effect
of system uncertainties.

In this paper, injecting the merits of the robustness of finite-
time-stable systems [17,18] and high-gain technique [19], an
ESCO is presented to reject the large sensor errors in posi-
tion/attitude, and synchronously to estimate the uncertainty in
spite of the existence of stochastic non-Gaussian noise. The
multi-input describing function method is proposed to analyze
the ESCO robustness in frequency domain. As an application,
the ESCO is applied to an experiment on aircraft navigation.
In recently years, many researchers investigate the research of
aircraft navigation and control [20,21]. Traditionally, aircraft
navigation is based on KF [22], and noise is assumed to be be
zero-mean Gaussian distributed. In this paper, the following
scenario of aircraft navigation is considered: large sensor er-
rors and uncertainties exist in position and attitude; stochastic
non-Gaussian noise exists in the velocity and angular rate; the
ESCOs are adopted to estimate the position, attitude angle
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and system uncertainties. The performance of the ESCO is
compared with the EKF. Finally, a control law based on the
ESCOs is designed to stabilize the flight.

II. PROBLEM DESCRIPTION

The goal of the ESCO design is to reject the large measure-
ment error, and to estimate the system uncertainty.

A. Case of position/velocity integration
GPS provides the large-error position and accurate velocity

of device by Doppler shift measurement. Also, the uncertain-
ties and disturbances exist in position dynamics.

Question 1: How to estimate the accurate position and
the system uncertainties in spite of the large-error position
measurement and stochastic non-Gaussian noise?

B. Case of attitude angle/angular rate integration
The gyroscopes in IMU provide the direct measurement

of accurate angular rate. The large-error bounded pitch, roll
and yaw angles can be determined by the outputs of the
accelerometer and magnetometer in IMU, respectively.

Question 2: How to estimate the accurate attitude angles
and the attitude uncertainties in spite of the large-error attitude
angle measurements and stochastic non-Gaussian noise?

C. Configuration of ESCO
The following underactuated system has a minimum number

of states and inputs, but it retains the features that must be
considered for many systems:

ẋ1 = x2

ẋ2 = h(t) + σ(t)

yo1 = x1 + d1(t)

yo2 = x2 + d2(t) (1)

where, x1 and x2 are the states; yo1 = x1 + d1(t) and yo2 =
x2+d2(t) are the measurement outputs; d1(t) is the unknown
large sensor error, and supt∈[0,∞) |d1(t)| ≤ L1 < ∞; d2(t)
is the relatively small sensor error, supt∈[0,∞) |d2(t)| ≤ L2 <
∞, and L2 ≪ L1; h(t) ∈ R is the known function, and it
includes the controller and the other known terms; σ(t) ∈ R
is the system uncertainty, and supt∈[0,∞) |σ(t)| ≤ L3 <∞.

1) Extended system of (1)
Assumption 1: Suppose the frequency of uncertainty σ(t) in

system (1) is far smaller than the system sampling frequency,
and its varying

σ̇(t) = cσ(t) (2)

is bounded, i.e., cσ(t) is unknown and bounded, and
supt∈[0,∞) |cσ(t)| ≤ La < ∞. In fact, the uncertainties
in almost all engineering applications are satisfied with this
assumption, for instance, crosswind dynamics.

In system (1), uncertainty σ(t) is defined as a new state,
i.e., x3 = σ(t). Thus, ẋ3 = σ̇(t) = cσ(t) holds. Then, system
(1) can be augmented equivalently into

ẋ1 = x2

ẋ2 = x3 + h(t)

ẋ3 = cσ(t)

yo1 = x1 + d1(t)

yo2 = x2 + d2(t) (3)

2) ESCO configuration
The configuration of an ESCO for system (3) can be

constructed by

˙̂x1 = x̂2
˙̂x2 = x̂3 + h(t)
˙̂x3 = f(x̂1 − yo1, x̂2 − yo2, x̂3) (4)

with the conclusions:

x̂1 → x1(t), x̂2 → x2(t), x̂3 → x3 (5)

In the ESCO configuration (4), the input signals include
the measurements yo1 and yo2. The states x̂1, x̂2 and x̂3
estimate the real signals x1, x2 and uncertainty x3 (i.e.,
σ(t)), respectively. Importantly, the large sensor error d1(t)
in measurement yo1 will be rejected sufficiently, and the drift
will be avoided even the non-Gaussian noise exists.

III. DESIGN OF ESCO

Considering the large sensor error and stochastic non-
Gaussian noise, an ESCO is designed to to reject the mea-
surement error and to estimate the system uncertainty, and
one theorem is presented as follows.

A. ESCO design

Theorem 1: Considering the underactuated system (1) (or
(3)), for observer

˙̂x1 = x̂2
˙̂x2 = x̂3 + h (t)

ε4 ˙̂x3 = −k1 |ε(x̂1 − yo1)|α1 sign (x̂1 − yo1)

−k2 |x̂2 − yo2|α2 sign (x̂2 − yo2)

−k3
∣∣ε3x̂3∣∣α3 sign (x̂3) (6)

where, ε ∈ (0, 1) is the small parameter;

k1 > 0, k3 > 0, k2 > ε2α2k1/k3 (7)

and α1, α2, α3 satisfy

α3 ∈ (0, 1), α2 =
α3

2− α3
, α1 =

α3

3− 2α3
(8)

1) if the sensor errors exist in the measurement signals yo1
and yo2, i.e.,yo1 = x1 + d1(t) and yo2 = x2 + d2(t), where
x1 and x2 are the states in system (3), d1(t) and d2(t)
are the measurement errors, supt∈[0,∞) |d1(t)| ≤ L1 < ∞,
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supt∈[0,∞) |d2(t)| ≤ L2 < ∞, and L2 ≪ L1, then there exist
γ > 4

α1
and Γ > 0, such that, for t ≥ εΓ (Ξ(ε)e (0)),

x̂i − xi = O (δγdi) , i = 1, 2, 3 (9)

where, O (δγdi) means that the error between x̂i and xi is of
order O (δγdi) [19]; δdi ∈ (0, 1), i = 1, 2, 3; γ = (1−β)/β, β ∈
(0, α1/(α1+4)); Ξ(ε) = diag{ε, ε2, ε3}, and ei = x̂i−xi (t),
i = 1, 2, 3; e = [ e1 e2 e3 ]T .

2) Furthermore, if sensor error in signal yo2 is small enough
and can be ignored, i.e., yo2 = x2, then, even large sensor error
exists in signal yo1, for t ≥ εΓ (Ξ(ε)e (0)),

x̂i − xi = O
(
εα1γ−i

)
, i = 1, 2, 3 (10)

where, O
(
εα1γ−i

)
means that the error between x̂i and xi is

of order O
(
εα1γ−i

)
[19]. The proof of Theorem 1 is presented

in Appendix.

B. Robustness analysis in frequency domain
In practice, high-frequency noises exist in measurement

signals yo1 and yo2. For the ESCO, a multi-input describ-
ing function method is proposed to analyze the nonlinear
behaviors of the ESCO. The order of nonlinear system is not
restricted by this method. The basic idea of describing function
method is to replace the actual output of nonlinear elements
under the sinusoidal input signal by using the fundamental
component in the output signal. Even though it is only an
approximation method, the desirable properties it inherits from
the frequency response method, and the shortage of other
systematic tools for nonlinear system analysis, make it an
indispensable tool. Through this method, we can find that
the ESCO leads to perform accurate estimation and strong
rejection of high-frequency noise.

For system (3), let ξ1 = x1, ξ2 = x2, ξ3 = x3 + h(t) and
ḣ(t) = η(t), then ẋ3+ ḣ(t) = cσ(t)+ η(t). Therefore, system
(3) can be rewritten as

ξ̇1 = ξ2; ξ̇2 = ξ3; ξ̇3 = cσ(t) + η(t) (11)

Then, for system (11), the ESCO (6) becomes

˙̂x1 = x̂2; ˙̂x2 = x̂3;

ε4 ˙̂x3 = −k1 |ε(x̂1 − yo1)|α1 sign (x̂1 − yo1)

−k2 |x̂2 − yo2|α2 sign (x̂2 − yo2)

−k3
∣∣ε33x̂3∣∣α3 sign (x̂3) (12)

where, x̂1, x̂2 and x̂3 estimate ξ1, ξ2 and ξ3, respectively.
The frequency characteristic of ESCO (12) is analysed as

follows.
In ESCO (12), for the nonlinear function |∗|αi sign (∗), by

selecting the input signal as ∗ = A sin(ωt), its describing
function can be given by:

Ni(A)

=
2

Aπ

∫ π

0

|A sin(ωτ)|αi sign(A sin(ωτ)) sin(ωτ)dωτ

=
Ω(αi)

A1−αi
(13)

where Ω(αi) = 2
π

∫ π
0
|sin(ωτ)|αi+1

dωτ . Therefore, the ap-
proximation of ESCO (12) through the describing function
method is

˙̂x1 = x̂2; ˙̂x2 = x̂3;

ε4 ˙̂x3 = −k1
Ω(α1)

A1−α1
ε(x̂1 − yo1)

−k2
Ω(α2)

A1−α2
(x̂2 − yo2)− k3

Ω(α3)

A1−α3
ε3x̂3 (14)

Because yo1 is the integral of yo2, equivalently, yo2 can be
taken as the unique input signal. The Laplace transformations
of (14) is written as

sX̂1(s) = X̂2(s); sX̂2(s) = X̂3(s);

ε4sX̂3(s) = −k1
Ω(α1)

A1−α1
ε(X̂1(s)−

1

s
Yo2(s))

−k2
Ω(α2)

A1−α2
(X̂2(s)− Yo2(s))

−k3
Ω(α3)

A1−α3
ε33X̂(s) (15)

where X̂i(s) and Yo2(s) denote the Laplace transformations
of xi and yo2, respectively, and s is the Laplace operator.

From (15), the following transfer functions are determined:

X̂j(s)

Yo2 (s)
=

k2
Ω(α2)
A1−α2

sj−1 + εk1
Ω(α1)
A1−α1

sj−2

ε4s3 + ε3k3
Ω(α3)
A1−α3

s2 + k2
Ω(α2)
A1−α2

s+ εk1
Ω(α1)
A1−α1

,

j ∈ {1, 2, 3} (16)

The effects of the ESCO parameters on the robustness are
analyzed as follows.

Frequency characteristic with different ε and α3. With
different selections of α3, we get the values of Ω(α3), Ω(α2)
and Ω(α1) shown in Table I.

TABLE I
VALUES OF Ω(α3), Ω(α2) AND Ω(α1)

α3 Ω(α3) Ω(α2) Ω(α1)

0.8 1.0410 1.0712 1.0944
0.5 1.1128 1.1596 1.1852
0.3 1.1697 1.2093 1.2270

For the ESCO, the parameters are selected as follows:
k1 = 0.02, k2 = 16, k3 = 5; α3 = α = 0.8, 0.5, 0.3;
ε = 0.6, 0.4, 0.25, respectively. The Bode plots of (16)
with different selections of ε and α3 are described in Fig.1:
Figs.1(a)-(c) present the frequency characteristics of the ξ1, ξ2
and ξ3 estimations, respectively.

Comparing with ideal operators 1, 1/s and s, not only the
ESCO can obtain their estimations precisely, but also the high-
frequency noise is rejected sufficiently. Parameter ε affects
the low-pass frequency bandwidth: Decreasing ε, the low-pass
frequency bandwidth becomes larger, and the estimate speed
becomes fast; increasing ε, the low-pass frequency bandwidth
becomes smaller, and much noise will be rejected. Parameter
α3 ∈ (0, 1) affects the estimate precision: smaller α3 ∈ (0, 1)
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Fig. 1. Frequency characteristics with changes of ε and α for ESCO. (a)
ξ2 estimate. (b) ξ1 estimate. (c) ξ3 estimate.

can obtain more precise estimations; on the other hand, larger
α3 ∈ (0, 1) can reduce much noise.

Remark 1 (ESCO analysis):
1) Large sensor error rejection and uncertainty estimation:

In ESCO (6), x̂i estimates, respectively, the state xi of
system (3), i = 1, 2, 3. In the estimate error (10), due to
ε ∈ (0, 1) and α1γ − i ≫ 1, the estimate error O

(
εα1γ−i

)

is sufficiently small in spite of the large sensor error d1(t)
(where, supt∈[0,∞) |d1(t)| ≤ L1 < ∞) in the measurement
output yo1 = x1+d1(t). Therefore, the ESCO performs strong
rejection of sensor errors, and the accurate estimations are
achieved. Moreover, from the frequency-domain analysis in
Fig.1, the ESCO shows the strong rejection of high-frequency
noise.

2) No drift: From (9), in spite of the large sensor error
and non-Gaussian noise, the estimate errors are always small
enough. Therefore, even for unbounded position navigation,
no drift exists.

Remark 2 (The rules of ESCO parameters selection):
1) Stability condition: The parameters (k1, k2, k3) and

(α1, α2, α3) are satisfied with (7) and (8), respectively.
2) Sensor error rejection: When the sensor error d1(t) in

yo1 increases, i.e., L1 becomes larger, in order to reduce the
error effect k1Lα1

1 of δ0 =
∑
i=1,3

21−αikiL
αi
i + La in (35),

parameter k1 > 0 should decrease. Meanwhile, α1 ∈ (0, 1)
should decrease to make Lα1

1 smaller.
3) Filtering: If much noise exists, ε ∈ (0, 1) should increase,

or α3 ∈ (0, 1) increases, to make the low-pass frequency
bandwidth narrow (See Fig. 1).

IV. AIRCRAFT NAVIGATION BASED ON ESCO

A quadrotor aircraft navigation is studied. In this scenario,
the large-error measurements of position and attitude angle are
considered. The forces and torques of aircraft are described in
Fig. 2, and its parameters are given in Table II.

A. Quadrotor aircraft dynamics

Let Ξg = (Ex, Ey, Ez) and Ξb =
(
Ebx, E

b
y, E

b
z

)
denote the

inertial and fuselage frames, respectively; ψ, θ and ϕ are the
yaw, pitch and roll angles, respectively. Fi = bω2

i is the thrust
force by rotor i, and its reactive torque is Qi = kω2

i . The total

thrust by the four rotors is given by F =
4∑
i=1

Fi. The motion

equations of the aircraft in the coordinate (x, y, z) are then

mẍ = ux − kxẋ+∆x

mÿ = uy − ky ẏ +∆y

mz̈ = uz −mg − kz ż +∆z (17)
Jψψ̈ = uψ − kψψ̇ +∆ψ

Jθ θ̈ = uθ − lkθ θ̇ +∆θ

Jϕϕ̈ = uϕ − lkϕϕ̇+∆ϕ (18)

where, kx, ky , kz , kψ , kθ and kϕ are the unknown drag
coefficients; (∆x,∆y,∆z) and (∆ψ,∆θ,∆ϕ) are the un-
certainties in position and attitude dynamics, respectively;
J = diag{Jψ, Jθ, Jϕ} is the matrix of the three-axial moment
of inertias; the symbols cθ and sθ are used for cos θ and sin θ,
respectively, and
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Fig. 2. Forces and torques of quadrotor aircraft.

TABLE II
QUADROTOR AIRCRAFT PARAMETERS

Symbol Quantity Value

m mass of aircraft 2.01kg

g gravity 9.81m/s2

l distance between rotor and gravity center 0.2m

Jϕ moment of inertia about roll 1.25kg ·m2

Jθ moment of inertia about pitch 1.25kg ·m2

Jψ moment of inertia about yaw 2.5kg ·m2

b rotor force coefficient 2.923× 10−3

k Rotor torque coefficient 5× 10−4

ux = (cψsθcϕ + sψsϕ)F, uy = (sψsθcϕ − cψsϕ)F,

uz = cθcϕF, uψ =
k

b

4∑
i=1

(−1)i+1Fi,

uθ = (F3 − F1)l, uϕ = (F2 − F4)l (19)

B. Measurement outputs

GPS provides the position and velocity measurements. IMU
can give the attitude angle and angular rate, respectively. The
sensor outputs are defined as:

yo1∗ = ∗+ d1∗(t), yo2∗ = ∗̇+ d2∗(t) (20)

where, ∗ = {x, y, z, ψ, θ, ϕ}, ∗̇ = {ẋ, ẏ, ż, ψ̇, θ̇, ϕ̇}; d1∗(t) and
d2∗(t) are the sensor errors, supt∈[0,∞) |d1∗(t)| ≤ L1∗ < ∞,
supt∈[0,∞) |d2∗(t)| ≤ L2∗ <∞, and L2∗ ≪ L1∗.

The ESCOs are used to estimate (x, y, z, ψ, θ, ϕ) and the
system uncertainties from the large-error measurements.

C. Controller design

In this section, the control laws are designed to stabilize
the flight. For the reference position and attitude (xd, yd, zd)
and (ψd, θd, ϕd), the system errors of position (17) and attitude
(18) can be written, respectively, by

ëp = m−1(up + Ξp + δp) (21)

and

ëa = J−1(ua + Ξa + δa) (22)

where, e1 = x− xd, e2 = ẋ− ẋd, e3 = y − yd, e4 = ẏ − ẏd,
e5 = z − zd, e6 = ż − żd; e7 = ψ − ψd, e8 = ψ̇ − ψ̇d,
e9 = θ − θd, e10 = θ̇ − θ̇d, e11 = ϕ− ϕd, e12 = ϕ̇− ϕ̇d;

ep =

 e1
e3
e5

 , δp =
 ∆x − kxẋ

∆y − ky ẏ
∆z − kz ż

 ,
up =

 ux
uy
uz

 , Ξp=

 −mẍd
−mÿd

−mz̈d −mg

 (23)

and

ea =

 e7
e9
e11

 , Ξa =

 −Jψψ̈d
−Jθ θ̈d
−Jϕϕ̈d

 ,
ua =

 uψ
uθ
uϕ

 , δa =

 ∆ψ − kψψ̇

∆θ − lkθ θ̇

∆ϕ − lkϕϕ̇

 (24)

1) Position dynamics controller: For position dynamics (17),
to track reference position (xd, yd, zd), the controller

up = −Ξp − δ̂p −m(kp1êp + kp2̂̇ep) (25)

can be selected to make position error (21) converge to the
origin asymptotically, i.e., ep → 0 and ėp → 0 as t → ∞,
where ê1 = x̂− xd, ê2 = ̂̇x− ẋd, ê3 = ŷ − yd, ê4 = ̂̇y − ẏd,
ê5 = ẑ− zd, ê6 = ̂̇z− żd and δ̂p are estimated by the ESCOs;
kp1, kp2 > 0, and

êp =
[
ê1 ê3 ê5

]T
, ̂̇ep = [

ê2 ê4 ê6
]T (26)

2) Attitude dynamics controller: For attitude dynamics (18),
to track reference attitude (ψd, θd, ϕd), the controller

ua = −Ξa − δ̂a − J(ka1êa + ka2̂̇ea) (27)

can be selected to make attitude error (22) converge to the
origin asymptotically, i.e., ea → 0 and ėa → 0 as t → ∞,
where, ê7 = ψ̂−ψd, ê8 =

̂̇
ψ− ψ̇d, ê9 = θ̂− θd, ê10 =

̂̇
θ− θ̇d,

ê11 = ϕ̂ − ϕd, ê12 =
̂̇
ϕ − ϕ̇d and δ̂a are estimated by the

ESCOs; ka1, ka2 > 0, and

êa =
[
ê7 ê9 ê11

]T
, ̂̇ea =

[
ê8 ê10 ê12

]T
(28)

V. EXPERIMENT ON AIRCRAFT NAVIGATION

In this section, an experiment is presented to illustrate the
proposed scheme. The platform of aircraft navigation and
control is shown in Fig. 3, and the implementation of the
navigation strategy based on the ESCO is done in the platform
setup. The control system hardware is described in Fig.4,
whose components are: Gumstix and an Arduino Mega 2560
(sampling frequency: 16MHz) are taken as the driven boards;
A XsensMTI AHRS (sampling frequency: 10 kHz) is used
to provide the angular rate, acceleration and earth’s magnetic
field; The control update time is 5ms.



IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS

 

 

 

IMU 

Processors 

DC Motors 
ESC 

Propellers 

Data wires 

Fig. 3. Platform of aircraft system.

 

Vicon 

OFS 

DC motors 

IMU 

Provide large 
error position 
signals 

Provide 
velocity signals 
 

Drive propellers 
 

Measure angular rate 
 

Gumstix  

Measure acceleration 
 

Measure 
magnetic field 
 

Provide GPS error 

Outdoor GPS 
receiver 

Arduino Mega 

Provide thrust forces 
 

Propellers 

Provide real position 
for comparison with 
ESCO 

 

Fig. 4. Control system hardware.

Real position: In order to obtain the real position for
comparison with the estimate by the ESCO, the output of
the Vicon system (i.e., indoor positioning system) with an
accuracy of sub-millimetre is taken as the real position.

Large-error position measurement: As GPS receiver cannot
receive position signal in lab, we use the output of the Vicon
contaminated by the prior GPS error signal as the large-error
position measurement (See Fig. 4). The GPS error signal was
collected through an outdoor test: the position signal of a static
GPS receiver at the origin was recorded with time. To make
the GPS error more obvious, the recorded signal magnified 4
times. Then, we got the GPS error signal.

Velocity measurement: A XZN OFS board (up to 6400 fps
update rate, 30x30 pixel resolution) is adopted to measure
the velocity instead of the GPS Doppler shift measurement.
The room light can be tuned to obtain the accurate OFS
measurement of velocity.

Reference trajectory: The reference trajectory consists of
take-off and a circle with the radius 5m, velocity 1m/s and
altitude 3m, which is shown in Fig. 5.

The ESCO provides the estimations of the position and
uncertainties, which are replaced into the controller. Con-
trollers (25) and (27) are used to drive the aircraft to track the
reference trajectory. The parameters of ESCOs: αi,3 = 0.5,
ki,1 = 0.05, ki,2 = 16, ki,3 = 3, 1/εi = 1.5, i = 1, 2, 3. The
controller gains: kp1 = 2.5, kp2 = 4, ka1 = 2.5, ka2 = 4.
The ESCO performance is studied through the behavior of
estimated position and uncertainties, and compared with the
estimate results of the EKF proposed in [16].

Fig. 5(a) shows the flight trajectories, including the mea-
sured, real and desired trajectories, the estimated trajectories
by the ESCO and EKF. Meanwhile, the position estimate
comparisons in the three directions are shown in Fig. 5(b):
The position measurement errors are about 20m. The estimated
errors by the ESCO are less than 0.05m, while the up-
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Fig. 5. Aircraft navigation based on ESCO. (a) Navigation trajectories.
(b) Position estimate.

boundness of the estimate errors by the EKF is at least 5m.
Thus, the large measurement errors are rejected by the ESCO,
and the effect of stochastic noises is reduced sufficiently.
Even in the long-time flight test (1000s), no drift happened.
Reversely, the larger estimate errors exist in the outputs of
the EKF comparing to the ESCO. Furthermore, it cannot deal
with the adverse effects of system uncertainties and stochastic
non-Gaussian noise.

Uncertainties estimation in simulation: Under our present
condition, we cannot obtain the real uncertainties in experi-
ment for comparison. Therefore, a simulation is presented to
verify the ESCO performance of uncertainties estimation.

Uncertain parameters in aircraft: kx = ky = kz =
0.01Ns/m, kψ = kθ = kϕ = 0.012Ns/rad. The distur-
bances are selected as ∆x = sin(0.8t), ∆y = 0.8 sin(t),
∆z = 0.6 sin(0.5t). The measurement errors are the GPS error
signals in the experiment part. Therefore, the real uncertainty
vector δp can be determined from (23). The parameters of
the ESCO and controllers are selected as the same values
in the above experiment. Fig. 6 illustrates the uncertainties
estimation, where the performance by the ESCO showed the
accurate estimations.
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Fig. 6. Uncertainties estimation.

VI. CONCLUSIONS

An ESCO has been developed to reject the large sensor
error and to estimate the system uncertainty in spite of the
existence of stochastic non-Gaussian noise. The proposed
ESCO demonstrated by an aircraft navigation experiment: it
succeeded in rejecting the large sensor errors in position,
and the system uncertainties were estimated accurately. The
merits of the presented ESCO include its rejections of large
sensor errors and stochastic non-Gaussian noise, uncertainty
estimation and no drift.

APPENDIX

Proof of Theorem 1: The system error of ESCO (6) and
system (3) can be described by:

ė1 = e2; ė2 = e3;

ε4ė3 = −k1 |ε(e1 − d1(t))|α1 sign (e1 − d1(t))

−k2 |e2 − d2(t)|α2 sign (e2 − d2(t))

−k3
∣∣ε3 (e3 + σ(t))

∣∣α3 sign (e3 + σ(t))

−ε4cσ(t) (29)

and Eq. (29) can be rewritten as

dεe1
dt/ε

= ε2e2;
dε2e2
dt/ε

= ε3e3;

dε3e3
dt/ε

= −k1 |εe1 − εd1(t)|α1 sign (e1 − d1(t))

− k2
ε2α2

∣∣ε2e2 − ε2d2(t)
∣∣α2 sign (e2 − d2(t))

−k3
∣∣ε3e3 + ε3σ(t)

∣∣α3 sign (e3 + σ(t))

−ε4cσ(t) (30)

By choosing the following coordinate transform

τ = t/ε, zi(τ) = εiei, z =
[
z1 z2 z3

]T
;

di (τ) = εidi (t) , i = 1, 2; d3 (τ) = ε3σ(t);

d4 (τ) = ε4cσ(t) (31)

we get z = Ξ(ε)e, where, Ξ(ε) = diag{ε, ε2, ε3} and e =
[ e1 e2 e3 ]T . Then, (30) becomes

dz1
dτ

= z2;
dz2
dτ

= z3;

dz

dτ
= −k1

∣∣z1 − d1(τ)
∣∣α1 sign

(
z1 − d1(τ)

)
− k2
ε2α2

∣∣z2 − d2(τ)
∣∣α2 sign

(
z2 − d2(τ)

)
−k3

∣∣z3 + d3 (τ)
∣∣α3 sign

(
z3 + d3 (τ)

)
−d4 (τ) (32)

Define

g(τ, z(τ))

= −k1
{∣∣z1 − d1(τ)

∣∣α1 sign
(
z1 − d1(τ)

)
− |z1|α1 sign (z1)}

− k2
ε2α2

{∣∣z2 − d2(τ)
∣∣α2 sign

(
z2 − d2(τ)

)
− |z2|α2 sign (z2)} − d4(τ)

−k3
{∣∣z3 + d3(τ)

∣∣α3 sign
(
z3 + d3(τ)

)
− |z3|α3 sign (z3)} (33)

then, (32) can be rewritten as

dz1
dτ

= z2;
dz2
dτ

= z3;

dz3
dτ

= −
2∑
i=1

ki |zi|αi sign (zi)

− k3
ε3α3

|(z3)|α3 sign (z3) + g(τ, z(τ)) (34)

Since the contraction mapping rule |xρi − xρi | ≤
21−ρi |x− x|ρi , ρi ∈ (0, 1], we obtain

δ = sup
(τ,z)∈R4

|g(τ, z(τ))|

≤
∑
i=1,3

21−αikiL
αi
i ε

iαi + ε4La + 21−α2k2L
α2
2

≤ ερδ0 + 21−α2k2L
α2
2 (35)

where δ0 =
∑
i=1,3

21−αikiL
αi
i + La, and ρ =

mini∈{1,3} {min{4, iαi}} = α1.
From Proposition 8.1 in [17], Theorem 5.2 in [18] and

(35), for (32), there exist the bounded constants µ > 0 and
Γ (z (0)) > 0, such that, for τ ≥ Γ (z (0)),

∥z (τ)∥ ≤ µδγ ≤ µ(εα1δ0 + 21−α2k2L
α2
2 )γ (36)

Therefore, from (31), we get

∥ εe1 ε2e2 ε3e3 ∥ ≤ µ
(
εα1δ0 + 21−α2k2L

α2
2

)γ
(37)

for t ≥ εΓ (Ξ(ε)e (0)). Thus, the following relation holds:
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ei = O (δγdi) , i = 1, 2, 3,∀t ∈ [εΓ (Ξ(ε)e (0)) ,∞) (38)

where, δdi = εα1− i
γ +

21−α2k2L
α2
2

δ0
ε−

i
γ , i = 1, 2, 3. If ε ∈

(0, 1) and L2 <
(

1−εα1

21−α2k2
δ0

) 1
α2 , then

0 < εα1 +
21−α2

δ0
k2L

α2
2 < 1 (39)

Furthermore, from Theorems 4.3 and 5.2 in [18], γ is arbi-
trarily large. Hence, the requirement that γ lies on

γ > max

{
4 log ε

log(εα1 + 21−α2

δ0
k2L

α2
2 )

, 1

}
(40)

is not restrictive. Therefore, we obtain

γ log(εα1 +
21−α2

δ0
k2L

α2
2 ) < 4 log ε (41)

i.e.,

εα1 +
21−α2

δ0
k2L

α2
2 < ε

4
γ (42)

From (40), γ > 4 holds. Therefore, from ε ∈ (0, 1), we can
get ε

4
γ < ε

i
γ , i = 1, 2, 3. Then

δdi = εα1− i
γ +

21−α2

δ0
k2L

α2
2 ε−

i
γ < 1 (43)

where i = 1, 2, 3. The choice of γ leads to γ > 4 in (38), and
it implies that, for δdi ∈ (0, 1), the estimate error in (38) is of
higher order than the perturbation. Consequently, the ESCO
leads to perform rejection of persistent disturbances.

Furthermore, if sensor error is ignored in signal yo2, i.e,
yo2 = x2 or L2 = 0, then (38) can be written as

ei = O
(
εα1γ−i

)
, i = 1, 2, 3,∀t ∈ [εΓ (Ξ(ε)e (0)) ,∞) (44)

From Theorems 4.3 and 5.2 in [18], γ can be chosen to be
arbitrarily large, and

γ > max

{
4

α1
, 1

}
=

4

α1
(45)

is not restrictive. Accordingly, we can get α1γ − i > 1 for
i = 1, 2, 3. It implies that, for ε ∈ (0, 1), the estimate error in
(44) is of higher order than the perturbation.

For ε ∈ (0, 1), according to the Routh-Hurwitz Stability
Criterion, s3+k3s2+ k2

ε2α2
s+k1 is Hurwitz if k1 > 0, k3 > 0,

k2 > ε2α2k1/k3. This concludes the proof. �
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