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Abstract

Purpose of Review Anxiety- and trauma-related disorders are prevalent and debilitating mental illnesses associated with a
significant socioeconomic burden. Current treatment approaches often have inadequate therapeutic responses, leading to symp-
tom relapse. Here we review recent preclinical and clinical findings on the potential of cannabinoids as novel therapeutics for
regulating fear and anxiety.

Recent Findings Evidence from preclinical studies has shown that the non-psychotropic phytocannabinoid cannabidiol and the
endocannabinoid anandamide have acute anxiolytic effects and also regulate learned fear by dampening its expression, enhancing
its extinction and disrupting its reconsolidation. The findings from the relevant clinical literature are still very preliminary but are
nonetheless encouraging.

Summary Based on this preclinical evidence, larger-scale placebo-controlled clinical studies are warranted to investigate the
effects of cannabidiol in particular as an adjunct to psychological therapy or medication to determine its potential utility for
treating anxiety-related disorders in the future.
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Introduction

Anxiety- and trauma-related disorders are the most common
psychiatric diseases and are associated with inadequate treat-
ment options and thus high social and economic costs.
Psychological treatments are often limited or temporary in
their effectiveness, while medications can lack efficacy or
have unwanted side effects in a considerable number of pa-
tients. Psychological therapies can also be combined with
medications to enhance treatment synergistically, but some
medications can interfere with these therapies. Better options
are therefore urgently needed for treating these disorders [1].

With the decriminalization of cannabis, availability of
cannabis-derived chemicals (i.e. cannabinoids), and anecdotal
evidence for the anxiolytic potential of cannabinoids all be-
coming ever more widespread, it is important to take stock of
the empirical evidence to determine if cannabinoids can live
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up to their hype as an option for treating anxiety-related dis-
orders in the future. In this narrative review, we begin by
describing these disorders and the current therapeutic ap-
proaches used in their treatment. We then review the preclin-
ical and clinical studies that have investigated cannabinoid
regulation of fear and anxiety. We conclude by outlining fu-
ture directions for driving forward this promising avenue of
research.

Anxiety- and Trauma-Related Disorders
and Their Treatment: Current Therapeutic
Approaches

Anxiety and fear are emotional responses that occur in antic-
ipation of potential threat or when facing imminent danger,
respectively. These responses are adaptive when they occur
appropriately in response to relevant aversive stimuli, but they
become maladaptive when expressed inappropriately under
benign conditions and can lead to the development of
anxiety- and trauma-related disorders [2]. The anxiety disor-
ders include generalized anxiety, panic, social anxiety, pho-
bias and separation anxiety, with post-traumatic stress-disor-
der (PTSD) and obsessive-compulsive disorder being related
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to but now classed separately from anxiety disorders.
Collectively, these anxiety-related disorders are the most prev-
alent psychiatric diseases and are therefore a significant socio-
economic burden, given their high costs to the health care
system and their association with long-term disability, lost
work productivity and disrupted social relationships [3].
These disorders are associated with perturbed cognition and
emotional regulation. For example, they share common psy-
chological (e.g. excessive fear, apprehension, disturbed con-
centration and sleep) and somatic (e.g. tachycardia, heart pal-
pitations, sweating) symptoms, with arousal and avoidance
behaviour thought to predict long-term disability [4e, 5].
Symptom overlap among the different anxiety-related disor-
ders and with other psychiatric diseases is a diagnostic chal-
lenge, while self-medication with alcohol and/or other drugs
can progress to substance abuse and lead to significant co-
morbidity between these diseases [4¢, 6].

Anxiety-related disorders are treated using psychological
therapies or/and medications. The various psychological ap-
proaches include cognitive behavioural therapy, exposure ther-
apy, cognitive processing therapy and eye desensitization
reprocessing, with the aim of reducing avoidance behaviour
and distress [4+, 7]. Selective serotonin reuptake inhibitors
(SSRIs) are typically the first choice of medication, but other
types of anti-depressants can be used if the response to SSRI
treatment is inadequate; selective noradrenaline reuptake inhib-
itors (SNRIs) are favoured over tricyclics and monoamine ox-
idase inhibitors due to their more favourable safety and tolera-
bility profile. Other drug therapies include anti-seizure medica-
tions, serotoninl A (5-HT1A) receptor agonists (e.g.
buspirone), short-term benzodiazepine treatment for acute anx-
iety and beta-blockers for reducing somatic symptoms [8, 9].

While psychological and pharmacological therapies are ef-
fective [7, 8], both treatment approaches have their draw-
backs. The effects of certain psychological treatments (e.g.
exposure therapy) can be short-lived, limited outside of the
therapeutic context and hindered by drugs of abuse and even
certain anxiolytics, all of which can result in symptom relapse
after treatment [1]. Medications can lack or have incomplete
therapeutic effects, which often take weeks to commence in
the case of first-line SSRI or SNRI treatment. Moreover, these
treatments can also cause adverse effects (e.g. anxiogenesis,
insomnia, agitation, headache, appetite and gastrointestinal
disturbances, sexual dysfunction) prior to the onset of or along
with their therapeutic effects. Benzodiazepines can cause un-
wanted central nervous system depressant effects, tolerance
and withdrawal with abrupt discontinuation and have abuse
liability. This has limited their recent use to managing acute
anxiety in the short-term until the onset of therapeutic effects
with first-line SSRI/SNRI treatment [9]. Benzodiazepines
may also enhance the risk of developing PTSD and co-
morbid substance abuse disorders, worsen PTSD symptoms
and reduce the efficacy of psychological therapies for PTSD
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treatment [10]. Taken together, these issues highlight the lim-
itations of psychological therapies and medications currently
used for treating anxiety-related disorders.

Cannabinoids: a Brief Overview

Cannabis sativa is one of the oldest plants known for its rec-
reational and purported medicinal properties. It consists of more
than 400 chemicals known collectively as phytocannabinoids,
over 100 of which are pharmacologically active. The psycho-
active delta-9-tetrahydrocannabinol (THC) and the non-
psychoactive cannabidiol (CBD) are the most abundant
phytocannabinoids and are present in different ratios depending
on the plant strain. Other phytocannabinoids that have been less
well studied to date include tetrahydrocannabivarin,
cannabigerol, cannabichromene and cannabicyclol. The isola-
tion of phytocannabinoids led to the identification of the bio-
logical targets by which they exert their effects, including the
cannabinoid type 1 (CB1) and type 2 (CB2) receptors. The
discovery of endogenous ligands for these receptors, lipid mes-
sengers known as endocannabinoids, followed, and the best
studied of these to date have been anandamide and 2-
arachidonoylglycerol (2-AG) [11¢].

Cannabinoids have attracted considerable interest as candi-
date therapeutics for a range of neurological and psychiatric
disorders due to the ubiquitous nature of endocannabinoid sig-
nalling and CBI1 receptor expression throughout the brain [12,
13]. CB1 (and CB2) receptors and the other molecular media-
tors underlying endocannabinoid signalling are expressed in
brain areas important for cognition, emotional regulation, de-
fensive behaviours and their accompanying physiological re-
sponses (e.g. prefrontal cortex, hippocampus, amygdala, bed
nucleus of stria terminalis, striatum, hypothalamus,
periaqueductal grey, midbrain serotonergic and adrenergic nu-
clei), while both phytocannabinoids and endocannabinoids al-
so act at various non-cannabinoid targets expressed in these
areas (see below). Thus, cannabinoids are well placed to mod-
ulate the aberrant neural circuit dynamics that have been impli-
cated in anxiety-related disorders [2, 11e, 14].

Phytocannabinoid Regulation of Fear
and Anxiety: the Case for Cannabidiol

Although recreational cannabis use is rife worldwide, it can be
associated with anxiety symptoms acutely [15]. In terms of the
mechanism underlying this effect of cannabis, studies in
healthy volunteers dating back several decades showed that
THC and CBD have opposing effects on anxiety. THC is
anxiogenic, but this effect is diminished when it is co-
administered with CBD [16]. In contrast, CBD given alone
has anxiolytic properties, particularly under circumstances or
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in response to stimuli which normally provoke anxiety. Both
the anxiogenic and psychotropic effects of THC would appear
to preclude its use for treating anxiety-related disorders, at
least when administered on its own. However, the reported
anxiolysis caused by CBD gave rise to a number of preclinical
studies that investigated its effects in different rodent models
of innate fear and anxiety-like behaviour (e.g. elevated plus
maze, open field, light-dark test, predator exposure). The find-
ings of these studies broadly confirmed the anxiolytic poten-
tial of CBD when given systemically or infused locally into
various brain areas governing fear and anxiety [14].
Neuroimaging studies have shown that the anxiety-reducing
effects of CBD are accompanied by altered blood flow to
some of the homologous areas in humans [17-19]. CBD is
devoid of abuse potential given its lack of rewarding effects
[20-22]. It also has a favourable safety profile and was recent-
ly approved for the treatment of rare childhood seizure disor-
ders [23, 24]. This makes CBD an attractive candidate thera-
peutic for treating anxiety-related disorders.

Studies using preclinical models of relevance to anxiety-
related disorders characterized by abnormally strong and per-
sistent fear memory (i.e. phobias, PTSD) have shown that
CBD also regulates learned fear and its inhibition in different
ways. During fear conditioning, a cue or context is paired with
a noxious stimulus, resulting in the consolidation of an asso-
ciative fear memory. Later cue presentation or context re-
exposure alone initially results in conditioned fear responding
and can also destabilize the memory trace, requiring its
reconsolidation to maintain or update the fear memory.
Repeatedly presenting the cue or prolonged context re-
exposure also reduces fear responding through an inhibitory
learning process known as extinction, which competes with
the original memory to suppress fear responding and also
forms the theoretical basis of exposure therapy. Reducing con-
ditioned fear responding, disrupting reconsolidation and en-
hancing extinction are all potential strategies for acute or last-
ing symptom reduction in phobias and PTSD [1, 25].

Acute systemic CBD treatment or infusion of CBD into
discrete areas of the fear circuit before or after conditioning
reduces fear memory encoding [26-29], although the clinical
relevance of interfering with the formation of fear memory is
somewhat limited. CBD also reduces learned fear expression
acutely when given systemically [30-33] or centrally into
some [31, 34-36], but not all [31, 37], areas of the fear circuit.
Reconsolidation is disrupted by CBD treatment after memory
retrieval [38—40], while extinction is potentiated by CBD giv-
en systemically or centrally [33, 41-43], although these op-
posing effects of CBD both lead to reduced learned fear.

Given the wealth of preclinical evidence for the anxiolytic
potential of CBD, it is perhaps not surprising that case reports
and small-scale studies examining its effects in a range of
anxiety-related disorders have recently emerged. Overall, their
findings have indicated that CBD treatment provides symptom

relief'in these disorders [44—48]. However, it should be stressed
that large-scale placebo-controlled studies are needed to con-
firm these preliminary, albeit encouraging, results.

A number of pharmacological mechanisms underpin the
potential therapeutic effects of CBD generally [49], but its
regulation of anxiety-like behaviour and learned fear process-
ing involves 5-HT1A receptors, transient receptor potential
vanilloid 1 (TRPV1) channels and endocannabinoid signal-
ling. The acute effects of CBD given systemically on anxiety
and learned fear expression have been shown to be dose-de-
pendent, such that low and intermediate, but not high, doses
are effective. These effects of low and intermediate doses of
CBD are blocked by 5-HT1A receptor antagonists given sys-
temically or locally into various relevant brain areas, whereas
blocking TRPV1 receptors centrally allows for high doses of
CBD to be effective. These results indicate that the anxiolytic
effects of lower doses of CBD involve 5-HT1A receptor acti-
vation, whereas higher doses of CBD might not affect anxiety
by also activating TRPV1 channels [14, 50].

In contrast to the acute anxiolytic effects of CBD, its en-
hancement of extinction and disruption of fear memory consol-
idation and reconsolidation involve cannabinoid receptors.
CBD-induced disruption of consolidation is blocked by CB1
and CB2 receptor antagonists infused centrally [28]. Disruption
of reconsolidation by CBD is also blocked by systemic or cen-
tral CB1 receptor antagonist treatment [38, 51]. Extinction en-
hancement by CBD is blocked by central CB1 receptor antag-
onism [41, 42]. These results indicate that CBD regulation of
learned fear processing is mediated at least in part by cannabi-
noid receptor activation. However, CBD shows little affinity for
CBI or CB2 receptors [52]. This suggests that its cannabinoid
receptor-dependent effects on extinction and fear memory con-
solidation and reconsolidation occur indirectly by modulating
endocannabinoid signalling, which we summarize below.

Endocannabinoid Signalling: a Target
for Regulating Fear and Anxiety

As alluded to above, endocannabinoid signalling involves
endocannabinoid activation of cannabinoid receptors and other
non-cannabinoid targets. 2-AG and anandamide are the best
characterized endocannabinoids, and they have differing affin-
ities for these targets. 2-AG acts as a full agonist at CB1 and
CB2 receptors, while anandamide has lower affinity for canna-
binoid receptors but acts as a full agonist at TRPV1 receptors
[11¢]. Endocannabinoid signalling differs from that of classical
neurotransmitters in that they are synthesized on demand in
post-synaptic neurons in response to neuronal activation and
act on their targets located presynaptically or in the post-
synaptic neuron itself to mediate retrograde or non-retrograde
signalling, respectively. During retrograde signalling,
endocannabinoids act on presynaptic CB1 receptors to suppress
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neurotransmitter release from excitatory (i.e. glutamatergic) or
inhibitory (i.e. GABAergic) neurons. This retrograde signalling
is involved in different forms of short-term (i.e. depolarization-
induced suppression of excitation or inhibition) and long-term
(i.e. homosynaptic glutamatergic or heterosynaptic GABAergic
long-term depression) synaptic plasticity. During non-
retrograde signalling, endocannabinoids act on post-synaptic
cannabinoid receptors or TRPV1 channels. This non-
retrograde signalling regulates self-inhibition via a CB1 and
CB2 receptor-dependent reduction in excitability and also syn-
aptic plasticity through a TRPV1-mediated form of long-term
depression [53]. Endocannabinoid signalling is tightly regulat-
ed by transporters that remove endocannabinoids from the syn-
apse and degradative enzymes that metabolize them.
Monoacylglycerol lipase (MAGL) is found presynaptically
and is the main enzyme responsible for metabolizing 2-AG,
whereas fatty acid amide hydrolase (FAAH) is located post-
synaptically and is the main enzyme that mediates anandamide
degradation [54]. Other pathways are also involved in metabo-
lizing endocannabinoids, with cyclooxygenase-2 (COX-2) deg-
radation of anandamide and 2-AG [55, 56] recently implicated
in regulating fear and anxiety (see below).

Endocannabinoid signalling is thus ideally positioned to
modulate neuronal activity and synaptic plasticity in the fear
and anxiety circuitry. Moreover, various gene variants associ-
ated with endocannabinoid transmission (e.g. FAAH, CBI
receptor) have been linked to anxiety-related disorders
[57-60, 61, 62]. PTSD has also been associated with de-
creased 2-AG levels in the circulation, while anandamide
levels were related to certain PTSD symptoms [63, 64].
However, other evidence has shown increased
endocannabinoid levels in PTSD [65]. Nevertheless, pharma-
cological manipulation of endocannabinoid signalling at the
level of cannabinoid receptors, transporters and degradative
enzymes is a potential strategy for regulating fear and anxiety.

In terms of the cannabinoid receptor-dependent effects of
CBD on learned fear regulation described above, CBD in-
creases anandamide levels by inhibiting its transporter-
mediated reuptake and degradation by FAAH [66]. CBD also
binds to the fatty acid binding proteins that transport ananda-
mide intracellularly to FAAH for its degradation, which may
play a role in the inhibition of anandamide metabolism by
CBD. There is also evidence that CBD reduces MAGL-
mediated degradation of 2-AG [67, 68]. However, whether
these putative mechanisms are involved in CBD regulation
of learned fear processing remains to be confirmed.

CBI receptor agonists can have both anxiolytic and
anxiogenic effects, depending on the dose, route of administra-
tion, differences in CB1 receptor sensitivity in different brain
areas and the aversive nature of the behavioural testing paradigm
used [69]. As is the case with CBD, anandamide has been shown
to be anxiolytic at lower doses and anxiogenic at higher doses,
with the former effect involving CB1 receptor activation and the
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latter effect involving TRPV1 channel activation [70]. This indi-
cates that maintaining the balance between CB1 receptor and
TRPV1 channel activation is crucial for regulating anxiety, given
their opposing anxiolytic and anxiogenic effects [71-73].

Elevating anandamide levels systemically or centrally via the
pharmacological inhibition of FAAH is well known to produce
anxiolysis, particularly under more aversive conditions [74]. In
contrast, the effects of inhibiting MAGL to potentiate 2-AG
levels have not been as well characterized and the results to date
have been less clear. Most studies have shown that increasing 2-
AG levels by inhibiting MAGL has anxiolytic effects but some
have shown no or even anxiogenic effects of MAGL inhibition
[74-77]. Interestingly, a recent study showed anxiolytic effects
of FAAH or MAGL inhibition but not with a dual
FAAH/MAGL inhibitor [78]. COX-2 inhibition, which is better
known for its anti-inflammatory effects by interfering with pros-
taglandin synthesis, is also associated with endocannabinoid-
dependent anxiolysis. This has been demonstrated using
substrate-selective COX-2 inhibitors that prevent the degrada-
tion of endocannabinoids without affecting prostaglandin syn-
thesis [79]. However, other evidence indicates that the anxiolyt-
ic effect of a different substrate-specific COX-2 inhibitor oc-
curred in an endocannabinoid-independent manner [80].

In terms of endocannabinoid regulation of learned fear pro-
cessing, a seminal study by Marsicano et al. (2003) provided
compelling evidence that endocannabinoid signalling via CB1
receptors is crucial for fear extinction. CB1 receptor-deficient
mice, or wild-type controls given a CB1 receptor antagonist,
showed impaired fear extinction. Endocannabinoid levels
were found to be elevated by extinction and also played a
crucial role in modulating synaptic plasticity in the fear circuit
in a CB1 receptor-dependent manner [81]. Subsequent studies
have added to these findings by showing that genetic variants
of FAAH resulting in elevated anandamide levels also en-
hance fear extinction [59, 82¢]. Moreover, pharmacological
FAAH inhibitors were found to enhance fear extinction in a
CBI1 receptor-dependent manner [41, 83—89], although the
involvement of CB2 receptors in mediating anandamide reg-
ulation of fear extinction has not been characterized. In con-
trast to FAAH, genetic or pharmacological inhibition of
MAGL impairs fear extinction [90, 91], suggesting opposing
roles for anandamide and 2-AG in modulating fear extinction.

Endocannabinoid signalling has also been implicated in the
consolidation and reconsolidation of fear memory. Inhibiting
FAAH or MAGL to elevate anandamide or 2-AG levels was
shown to enhance fear memory consolidation [92, 93], while
FAAH inhibition also modulates the consolidation of stronger
memory associated with fear generalization [28]. These ef-
fects likely involve both CB1 [86, 94-98] and CB2 [93,
99-101] receptor signalling. Fear memory reconsolidation is
also modulated by endocannabinoid signalling as FAAH inhi-
bition enhances the reconsolidation of fear memory [102].
However, the role of cannabinoid receptors in mediating this
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effect appears to be complex given that both agonists and
antagonists have been shown to impair fear memory
reconsolidation [85, 97, 102—104]. Post-retricval fear memory
destabilization, which is required to make reconsolidation of
the fear memory trace amenable to pharmacological disrup-
tion, is enhanced by CB1 receptor activation [105, 106].
However, the involvement of MAGL/2-AG and CB2 receptor
signalling in regulating the reconsolidation of fear memory
remains to be elucidated.

Conclusions

The evidence reviewed above demonstrates the potential utility
of the phytocannabinoid cannabidiol and pharmacological inhib-
itors of FAAH, to elevate levels of the endocannabinoid ananda-
mide, for the treatment of anxiety-related disorders in the future.
Such cannabinoid-related medicines could be used in various
ways to treat these disorders. Given their acute anxiolytic effects,
cannabidiol and FAAH inhibitors could be used as adjuncts to
first-line SSRI or SNRI treatment, which have a delayed thera-
peutic response. Such drugs could be an improvement over ben-
zodiazepines, which have abuse liability, a less favourable side
effect profile and can interfere with extinction, which forms the
theoretical basis for exposure therapy used in the psychological
treatment of certain anxiety-related disorders [1, 10]. In this re-
spect, cannabinoids could be combined with existing or novel
psychological therapies to facilitate extinction enhancement and/
or fear memory reconsolidation disruption, both of which may
result in a lasting reduction of fear. Cannabinoid-related medi-
cines could also be given as anxiolytics on their own but further
research is needed to determine their effects when given repeat-
edly as the few studies that have examined this issue have found
mixed results [107—110]. The potential for certain adverse effects
should also be examined more thoroughly given the reports of
cannabinoid use being linked to executive dysfunction [111,
112]. Nevertheless, based on the evidence reviewed here, further
research on cannabinoid regulation of fear and anxiety appears to
be warranted and below we suggest various lines of enquiry for
future work in this area.

The effects of these cannabinoids in other paradigms or
measures of learned fear, and its return after extinction, should
be characterized to determine if their reported anxiolytic ef-
fects are enduring and more widely applicable [28, 89, 113].
In terms of the pharmacological mechanisms underlying the
indirect cannabinoid receptor-dependent effects of CBD on
extinction and fear memory reconsolidation, further research
is needed to determine which endocannabinoid or
endocannabinoids are involved. The possibility that CB2 re-
ceptor signalling is involved in mediating the effects of CBD
and anandamide should also be examined. This is because
CB2 receptor activation might avoid the psychotropic effects
associated with activating CB1 receptors [114], which also

likely rules out the feasibility of using full CB1 receptor ago-
nists for treating anxiety-related disorders. The synaptic plas-
ticity mechanisms underlying the effects of cannabidiol and
anandamide on extinction and fear memory reconsolidation,
which might involve both cannabinoid receptor and TRPV1
signalling [115], also remain to be fully elucidated. Given the
opposing roles of cannabinoid receptor and TRPV1 activation
in regulating anxiety, novel drugs combining cannabinoid re-
ceptor agonist and TRPV1 antagonist properties may have
synergistic anxiolytic effects [116]. Cannabinoids modulate
the function of other neurotransmitters (e.g. 5-HT, noradrena-
line, GABA) that underpin the therapeutic effects of currently
available anxiolytic medications; therefore, understanding the
relevant mechanisms involved may also lead to novel insights
on the neurobiology of anxiety-related disorders [117, 118].

At the outset, we noted that the availability of
phytocannabinoids and their use for self-medication in various
anxiety-related disorders have recently become more common-
place. The anxiogenic effects linked to recreational cannabis
use [15] likely involve a relatively high THC and low CBD
content, but cannabis strains with different ratios of THC:CBD
may have a more favourable anxiolytic profile. Interestingly,
this could be investigated by systematically characterizing the
effects of Sativex, a cannabis-derived extract with a ~ 1:1 ratio
of THC and CBD that is already approved for clinical use to
treat spasticity in multiple sclerosis, on anxiety and learned fear
processing [119, 120]. “Pure” cannabidiol has also recently
been approved for clinical use as Epidiolex for treating rare
seizure disorders in children, which could facilitate its eventual
use in treating anxiety-related disorders. Cannabis contains a
plethora of other pharmacologically active phytocannabinoids
that may also regulate fear and anxiety, but their effects have yet
to be determined in relevant preclinical models.
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