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Abstract

We generalize the optimal investment model of an ambiguity averse investor with trans-

action costs. Along the lines of Maenhout (2004), we first show that ambiguity (or model

uncertainty) leads to an increase in effective risk aversion by ambiguity aversion even with

transaction costs. We compute the utility cost associated with suboptimal investment de-

cisions, which is the so-called ambiguity premium. We then find that ignoring ambiguity

aversion with and without transaction costs generates large ambiguity premia when ambigu-
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aversion. This would, thus, still support the importance of ambiguity aversion channel for

portfolio choice, even concerning the friction markets.
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I. Introduction

Since the seminal references of Merton (1969, 1971), there has been a very active line of re-

search focusing on optimal consumption and portfolio choice by relaxing Merton’s restrictive

assumptions such as independent and identical distributed of returns, the absence of uncer-

tainty about returns, frictionless markets, and the absence of labor income etc. Our work sits

squarely within the bulk of this research particularly by considering ambiguity (or model un-

certainty) in accordance with Maenhout (2004) proposing homothetic robustness with wealth

independence, and concerning the friction markets with transaction costs (Constantinides

(1986); Liu and Loewenstein (2002)).

Maenhout (2004) claims “Robustness amounts therefore to an increase in effective risk

aversion, at least within the confines of the environment studied here.” This is precisely the

direction we take on the paper. In the simplest possible setup in every other dimension, we

isolate and very closely investigate the new issues introduced by ambiguity aversion on portfo-

lio choice especially with transaction costs. In the standard Merton (1969, 1971) framework,

we generalize the optimal investment model of an ambiguity averse investor with transaction

costs. That is, this paper demonstrates the joint presence of ambiguity aversion (Maenhout,

2004) and transaction costs (Liu and Loewenstein, 2002).

Along the lines of Maenhout (2004), we first show that ambiguity leads to an increase in

effective risk aversion by ambiguity aversion even with transaction costs. In order to address

the importance of ambiguity aversion for portfolio choice in the friction markets, we compute

the utility cost (measured in certainty equivalent wealth units) associated with suboptimal

investment decisions, which is the so-called ambiguity premium. More specifically, we com-

pute the utility loss incurred by investors who ignore ambiguity aversion with and without

transaction costs. Overall, ignoring ambiguity aversion with and without transaction costs

generates large ambiguity premia when ambiguity aversion is moderate. The premia are quite

substantial, generating as high as 6% of wealth for moderate ambiguity aversion. Further,

the cost of ignoring ambiguity aversion becomes larger with higher ambiguity aversion. The

premia with transaction costs can be higher than 12% of wealth for high ambiguity aversion.

This would, thus, still support the importance of ambiguity aversion for portfolio choice, even
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concerning the friction markets.

II. The Basic Model

There are two assets in the market: a risk-free bond and a risky stock. The bond has a

return r > 0 and the stock price St follows a geometric Brownian motion with its expected

return µ > r and the volatility σ > 0. Trading stocks entails transaction costs of which the

ask price is SAt = (1 + α)St, and the bid price is SBt = (1− β)St, where α ≥ 0 and 0 ≤ β < 1

denote proportional transaction costs. We denote by Bt a standard one-dimensional Brownian

motion under a well-defined probability measure. Let xt and yt be the dollar amounts invested

in the bond and the stock, respectively, and their dynamics are governed by

dxt = rxtdt− (1 + α)dLt + (1− β)dUt,

dyt = µytdt+ σytdBt + dLt − dUt,
(1)

where Lt and Ut are the cumulative purchases and sales of the stock.

Under the currently available reference (or benchmark) probability measure, an investor

is concerned about any uncertainty (or misspecification) about stock returns, giving rise to

a so-called ambiguity (or model uncertainty). Addressing her model concerns, alternatively

perturbed probability measures can be considered based on expected worst-case scenarios,

thus helping her to make a robust investment decision. Along the lines of Maenhout (2004),

the ambiguity averse investor decides to perturb expected stock returns by σ2ytht so that

µ is perturbed to µ + σ2ytht, where ht 6= 0 represents her belief on true stock returns. By

Girsanov Theorem, the perturbed probability measures are generated by

dBh
t ≡ dBt − σythtdt,

as a result, the investment dynamics in (1) are rewritten as

dxt = rxtdt− (1 + α)dLt + (1− β)dUt,

dyt = (µ+ σ2ytht)ytdt+ σytdB
h
t + dLt − dUt,

(2)
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where expected stock return µ under the reference probability measure is now changed to

µ+ σ2ytht under the perturbed probability measure.

The ambiguity averse investor’s investment problem is then to maximize her terminal

wealth as usual, but suspecting her reference model to be misspecified with some penalty

terms which are to be minimized. That is, the following max-min optimization problem is

given

V (x, y, t) ≡ max
(L,U)

min
h

Eht

[∫ T

t

σ2y2sh
2
s

2Ψ(x, y, s)
ds+

(
xT + (1− β)yT

)1−γ
1− γ

]
, (3)

where Eht [·] is the expectation taken at time t under the perturbed probability measures

generated by the investor’s belief ht, T > 0 is the investor’s terminal time, and Ψ(x, y, t) >

0 denotes the investor’s ambiguity aversion which measures the strength of the preference

for robustness, which is state dependent, i.e., it varies with bond investment x and stock

investment y at time t.

Following Shreve and Soner (1994) and Dai and Yi (2009), we have the following Hamilton-

Jacobi-Bellman (HJB) equation for the ambiguity averse investor’s investment problem with

transaction costs:
min

{
maxh

{
− Vt −DV − σ2y2hVy −

σ2y2h2

2Ψ(x, y, t)

}
,−(1− β)Vx + Vy, (1 + α)Vx − Vy

}
= 0,

V (x, y, T ) =

(
x+ (1− β)y

)1−γ
1− γ

,

(4)

where

DV (x, y, t) = rxVx + µyVy +
1

2
σ2y2Vyy,

Vt =
∂V

∂t
, Vx =

∂V

∂x
, Vy =

∂V

∂y
, and Vyy =

∂2V

∂y2
.

The first order condition with respect to the investor’s belief h in HJB equation (4) shows

that

σ2y2Vy +
1

Ψ
σ2y2h = 0,

or equivalently,

h = −ΨVy.
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If the investor completely trusts the validity of the model (Ψ = 0), then h = 0, thus requiring

no perturbations any more in equation (2). As long as the investor desires robustness (Ψ > 0),

the perturbations turn out to decrease expected stock return by σ2yh when Vy > 0 which

naturally follows from that marginal utility increases at a decreasing rate due to the investor’s

risk aversion. Hence, the ambiguity averse investor is somewhat pessimistic or conservative

when making an investment decision.

III. Solution

We now solve the HJB equation (4) for the ambiguity averse investor’s investment prob-

lem with transaction costs (3). Following Maenhout (2004), we decide to use homothetic

robustness removing wealth effects and allowing for analytical tractability. Specifically, we

alter the investor’s state-dependent ambiguity aversion Ψ(x, y, t) by replacing it with constant

θ divided by (1− γ)V (x, y, t):

Ψ(x, y, t) =
θ

(1− γ)V (x, y, t)
, (5)

where θ > 0 represents the investor’s constant ambiguity aversion instead of her state-

dependent ambiguity aversion.

Theorem III.1. As far as Maenhout’s homothetic robustness is concerned as in (5), ambigu-

ity (or model uncertainty) leads to an increase in effective risk aversion by ambiguity aversion

even with transaction costs, i.e.,

γ (without ambiguity avaersion)→ γ + θ (with ambiguity aversion),

where γ + θ is the increased effective risk aversion by ambiguity aversion θ.

Proof. See Online Appendix. Q.E.D.

Theorem III.1 demonstrates that ambiguity (or model uncertainty) leads to an increase

in effective risk aversion by ambiguity aversion even with transaction costs.
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The ambiguity averse investor’s investment problem with transaction costs is solved by

characterizing three regions: the sell region (SR), the buy region (BR), and the no-transaction

region (NT). The following theorem characterizes the optimal sell and buy boundaries with

time-varying functions zs(t) and zb(t), respectively.

Theorem III.2. There are two monotonically increasing functions zs(t) : [0, T ) → (β −

1,+∞) and zb(t) : [0, T )→ (β − 1,+∞) such that

zs(t) < zb(t) for all t ∈ [0, T )

and

SR = {(z, t) : z ≤ zs(t), t ∈ [0, T )},

BR = {(z, t) : z ≥ zb(t), t ∈ [0, T )},

NT = {(z, t) : zs(t) < z(t) < zb(t), t ∈ [0, T )}.

Further,

zs(t) ≤ zs(T−) = (1− β)zθM , zb(t) ≥ (1 + α)zθM , for all t ∈ [0, T ), (6)

where zθM represents the ambiguity-adjusted Merton line and it is given by

zθM = −µ− r − σ
2(γ + θ)

µ− r
. (7)

Finally, there exists a constant tb = T − 1

µ− r
ln
(1 + α

1− β

)
such that

zb(t) = +∞, if and only if t ∈ [tb, T ).

Proof. See Online Appendix. Q.E.D.

Theorem III.2 allows us to obtain the analytically tractable upper and lower bounds of

optimal sell and buy boundaries as in (6). The bounds depend not only on transaction costs

α, β, but more interestingly, on ambiguity-adjusted Merton line zθM given in (7). The width
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of no-transaction region (NR) is, at least, larger than or equal to

zb(t)− zs(t) ≥ (α+ β)zθM .

Since zθM increases as ambiguity aversion θ increases, more ambiguity averse investor is in-

clined to not frequently trade in the stock market.

Interestingly, the ambiguity averse investor’s decision to take leverage or deleverage actu-

ally relies on ambiguity aversion, in addition to risk aversion. Letting δθ = µ−r−σ2(γ+θ) be

the variance-adjusted risk premium with ambiguity aversion and risk aversion, the following

theorem details the leverage decisions with respect to δθ.

Theorem III.3. (1) If δθ ≤ 0, then zs(t) > 0 for all t, thus requiring no leverage.

(2) If δθ > 0, then 
zs(t) < 0 for all t,

zb(t) < 0 for t < t̂b,

zb(t) > 0 for t ≥ t̂b,

where

t̂b = T − 1

δθ
ln
(1− β

1 + α

)
,

thus requiring leverage until time t̂b and deleverage after then.

Proof. See Online Appendix. Q.E.D.

Theorem III.3 demonstrates that it may be the case where the investor with risk aversion

only finds it optimal to take leverage until time t̂b as long as the variance-adjusted risk

premium is positive. However, such a decision to take leverage represents an overly simplified

situation. It would not be optimal if the investor is concerned about her model uncertainty

very much with her high ambiguity aversion so that the variance-adjusted risk premium is

negative, thereby requiring no leverage.

One way that is useful for addressing the importance of ambiguity aversion for portfolio

choice in the friction markets is to compute the utility cost (measured in certainty equivalent
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wealth units) associated with suboptimal investment decisions, which is the so-called ambigu-

ity premium. More specifically, we compute the utility loss incurred by investors who ignore

ambiguity aversion with and without transaction costs.

Definition. The utility cost associated with suboptimal investment decisions ignoring ambi-

guity aversion with and without transaction costs is measured in certainty equivalent wealth

units as follows:

V (x−∆, y, 0; θ = 0) = V (x, y, 0; θ > 0),

where ∆ is the so-called ambiguity premium.

In the absence of transaction costs, the ambiguity premium is derived in the analytically

tractable form. While in the presence of transaction costs, it is numerically derived and

its graphical illustrations are to be shown later. For purpose of comparison between our

model and Maenhout (2004) with and without transaction costs, we normalize initial wealth

w = x + y as 1 + z by dividing the both sides by y and setting y = 1 (Davis and Norman

(1990); Jang et al. (2007)). The percentage ambiguity premium then corresponds to ∆/(1+z)

for our model.

Theorem III.4. The percentage ambiguity premium ∆/(1 + z) is given in the following

analytically tractable form:

∆

1 + z
=


1− exp

(aγ+θ − aγ
1− γ

T
)
, without transaction costs,

1− exp
( ln{(1− γ)ϕγ+θ(z)} − aγT

1− γ
− ln(1 + z)

)
, with transaction costs,

where

al = (1− γ)
(
r +

1

2l

(µ− r
σ

)2)
,

ϕ(z) is the dimension reduced version of value function V (x, y, t) and z is the bond-to-stock

ratio.

Proof. See Online Appendix. Q.E.D.

[Insert Table 1 Here]
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For our numerical analysis, we use parameter values similar to those by Maenhout (2004)

calibrating the model to match time series of two different lengths: a long annual data from

1891 to 1994 (the century-long sample) and a quarterly postwar data from 1947.2 to 1996.3

(the postwar sample). The estimated parameter values are summarized in Table 1. The

equity premium (µ − r) has been observed as 6.258% and 7.852%, the risk-free rate (r) as

1.955% and 0.7852%, the stock volatility (σ) as 18.534% and 15.218% for the century-long

sample and the postwar sample, respectively. Keeping risk aversion γ relatively low at 7 and

10, ambiguity aversion θ = 14 and θ = 237 explain the equity premium and the risk-free

rate for the century-long sample and the postwar sample, respectively. Following Jang et al.

(2007), we set default transaction cost parameter values at α = β = 1%, which is consistent

with Hasbrouck (2009) demonstrating that the Gibbs estimates of effective transaction cost

are around 1%.

[Insert Figure 1 here.]

[Insert Figure 2 here.]

Figure 1 shows the percentage ambiguity premium with respect to changes in cash (or

bond investment). Overall, ignoring ambiguity aversion with and without transaction costs

generates large ambiguity premia when ambiguity aversion is moderate (θ = 14). The premia

are quite substantial, generating as high as 6% of wealth for moderate ambiguity aversion

(Figure 1 (a) θ = 14). It turns out that an assumption of moderate ambiguity aversion is

enough for the investor to have a dramatic change in her investment decisions with transaction

costs (Figure 2 (a) θ = 14), reflecting a significant increase in effective risk aversion as Theorem

III.1 predicts. Further, the cost of ignoring ambiguity aversion becomes larger with higher

ambiguity aversion. The premia with transaction costs can be higher than 12% of wealth for

high ambiguity aversion (Figure 1 (b) θ = 237). Even though transaction costs are known to

have a second-order effect on portfolio choice with risk aversion only (Constantinides, 1986;

Liu and Loewenstein, 2002), such substantial effects of ambiguity aversion with transaction

costs can be understood as a result of an accurate reflection of the investor’s strong pessimism

about stock returns, and thereby relatively large incurred transaction costs for reducing equity
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demand amount to a significant increase in ambiguity premium (Figure 2 (b) θ = 237). This

would, thus, still support importance of ambiguity aversion channel for portfolio choice, even

concerning the friction markets.

IV. Conclusion

In this paper, we develop a tractable workhorse investment model of an ambiguity averse

investor with transaction costs. Our analysis demonstrates that ambiguity aversion does

matter for portfolio choice, even concerning the friction markets. We show the economic

significance of correctly considering ambiguity aversion in the optimal investment with trans-

action costs. If an investor neglects ambiguity aversion in her routine investment decision with

and without transaction costs, the utility cost measured as the certainty equivalent wealth loss

can be as high as 6% of wealth for moderate ambiguity aversion and around 12% of wealth for

high ambiguity aversion. This finding indicates the economic importance of correctly taking

ambiguity aversion into account the optimal investment decision.

We hope this paper will lend itself to the future study of researchers by extending our

methods to multi-country economies and exploring both currencies and international flows,

especially based on Colacito and Croce (2013) and Colacito et al. (2018).
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Data Horizon 1891-1994 1947.2-1996.3

µ - r 6.258% 7.852%
r 1.955% 0.7852%
σ 18.534% 15.218%
γ 7 10
θ 14 237
α = β 1% 1%

Table 1: Parameters. The equity premium (µ − r), the risk-free rate (r), the stock volatility (σ)
are estimated to match time series of two different lengths: a long annual data from 1891
to 1994 (the century-long sample) and a quarterly postwar data from 1947.2 to 1996.3 (the
postwar sample). Keeping risk aversion γ relatively low at 7 and 10, ambiguity aversion
θ = 14 and θ = 237 explain the equity premium and the risk-free rate for the century-long
sample and the postwar sample, respectively. Following Jang et al. (2007), we set default
transaction cost parameter values at α = β = 1%.
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(a) θ = 14

(b) θ = 237

Figure 1: Ambiguity Premium. The ambiguity premium reported here is the percentage, i.e.,
∆/(1 + z) (Our model) and ∆/w (Maenhout, 2004), where we normalize initial wealth
w = x + y as 1 + z by dividing the both sides by y and setting y = 1 as in Davis and
Norman (1990) and Jang et al. (2007). The transaction costs are set α = β = 0.01. The
other baseline parameter values are chosen for two sample date periods in exactly the same
manner as Maenhout (2004) does: (a) a long annual sample from 1891 to 1994 and (b)
a quarterly postwar sample from 1947.2 to 1996.3. (a) µ − r = 0.06258, r = 0.01955,
σ = 0.18534, γ = 7, and θ = 14 and (b) µ − r = 0.07852, r = 0.007852, σ = 0.15218,
γ = 10, and θ = 237.
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(a) θ = 14

(b) θ = 237

Figure 2: Portfolio Share. The portfolio share plotted here is the proportion of wealth invested in
the stock market when the entire investment horizon is 10 years (T = 10). As Theorem III.2
implies, there are two functions of time corresponding to the sell region (SR) and the buy
region (BR) in our model with transaction costs. While there exists the so-called constant
Merton line without transaction costs (Maenhout, 2004). The transaction costs are set
α = β = 0.01. The other baseline parameter values are chosen for two sample date periods
in exactly the same manner as Maenhout (2004). (a) a long annual sample from 1891
to 1994 and (b) a quarterly postwar sample from 1947.2 to 1996.3. (a) µ − r = 0.06258,
r = 0.01955, σ = 0.18534, γ = 7, and θ = 14 and (b) µ − r = 0.07852, r = 0.007852,
σ = 0.15218, γ = 10, and θ = 237.
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