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Abstract—Self-configuration in manufacturing is a key trend
to generate adaptable production systems. Different product
requirements need different machine settings and continuous
software update. Existing approaches usually assume that man-
ufacturing resources (e.g. robotic platforms) have already a
predefined set of available capabilities or that there is a central-
ized manager able to provide configuration updates. Centralized
approaches are not always a suitable solution. Dynamic changes
in production require continuous maintainability of the central
server, constraining the shop-floor agility. New approaches should
consider emergent self-configuration i.e. carried out at run time
and decoupled from a centralized unit. In this work we present
a framework for self-configuration of robotic platforms, where
those are not explicitly preconfigured; instead, control parame-
ters are transferred wirelessly from raw material to resources
during production (once they arrive to the resource), following
an intelligent product-driven manufacturing approach. A set of
templates are proposed to generalize the sequential behaviour of
manufacturing operations. Thus, manufacturing resources can
read, use these parameters and store them for future operations.
This framework is illustrated with an assembly operation using
an educational robotic platform.

Index Terms—Self-configuration, Self-organization, Smart
manufacturing, Robotic platform, Flexible shop-floor

I. INTRODUCTION

Automation is referred as the process (i.e. manufacturing)
that occurs ”without the direct participation of a human
worker” [1]. With the advent of the fourth industrial revo-
lution, this concept has been enhanced with the emergence of
technologies such as cloud computing or collaborative robotics
with the aim of satisfying dynamic market demands and high
product customization [2], [3]. As a driver of automation,
self-organization can be defined as a mechanism that enables
a system to change its organization without explicit external
command [4]. In manufacturing this concept can be associated
to the logical and sequential organization of tasks, physical or-
ganization of modules, transportation of materials, resources or
end effectors [5], [6]. Emerging automation concepts consider
mobility not just of the raw materials, but also tools, robots

and machines [7], generating complexity in the management
of operations, transportation and configuration.

Products with different requirements need different resource
configurations. This configuration update is usually carried
out manually which is not very effective considering current
market dynamism. This has been partially solved by the
introduction of flexible manufacturing systems or Supervisory
Control and Data Acquisition (SCADA) systems. However,
those usually operate under a predefined working envelope
defined by the part family, reducing its capacity of adaptation.
Thus, the need of having the ability of robotic platforms to
self-configure considering new production specifications.

Several works have proposed self-configuration of man-
ufacturing. In [8], a framework is proposed using agent
technologies and a cloud pipeline looking for optimal con-
figuration parameters. In [9] the self-configuration of a plug
and produce system is proposed based on a service oriented
workflow manager. Other works usually focus on the process
configuration using agent technologies, ontological models
[10]–[14] or web services [15]. In [16], a function-behaviour
structure methodology is presented. It is complemented by an
ontological model to support the adaptability and configuration
of the production system.

Overall, most approaches assume that resources have al-
ready a predefined set of skills, or that there is a centralized
platform in charge of orchestrating services or of providing
new capabilities to them.

Increasing market dynamism and unforeseen events suggest
that it is not always feasible to define in advanced behaviours
that explicitly state how a manufacturing shop-floor should
react or what capabilities resources should have. For example,
during the Covid 19 pandemic and due to the shortage of
ventilators, many automakers decided to enter the business
of manufacturing critical medical equipment [17], changing
their core business goal. Continuous maintainability and high
level of dependence on the knowledge of a centralized unit
can be considered a disadvantages, in case it fails the whole



manufacturing process can be affected. Thus, the importance
of resource self-configuration decoupled from a centralized
system and that can be executed at run time (emergent) without
extra updates and just driven by the requirements of the
product (intelligent produce-driven manufacturing [18]).

We aim to close this gap by introducing a framework
capable of self-configuring robotic platforms. This proposal
starts with the assumption that a self-organizing process is
being carried out, i.e. transportation of raw material towards a
specific robotic platform. This transportation can be executed
by Automated Guided Vehicles (AGVs). This is motivated as
an answer for the self-management of highly flexible shop-
floors i.e. the matrix production, a concept developed by
KUKA where the logistics and production components are
decoupled [19]. In the matrix production, a pool of AGVs are
responsible for the handing of end effectors and raw material to
the production cells (logistics self-organization). This enables
very versatile production and the capacity to convert itself on
the fly according to new production requirements [19].

The scope of this paper is centered in the development of a
framework for self-configuration of robotic platforms under
an intelligent product-driven manufacturing context i.e. the
software integration aspects. The product has the knowledge of
what operations, parameters and configuration it needs (in the
case of the matrix production, the AGV with the product and
raw material). Also, the product can transfer these parameters
to the robotic platforms. For a simplified understanding we
will focus on assembly operations. See Fig. 1 where this idea
is showcased.

Fig. 1. Sketch of the matrix production concept. Self-configuration to support
logistical and production self-organization

The rest of this paper is structured as follows. In Section
II we describe the components of the framework, a product
process flow representation and a sequential diagram of the
self-configuration logic. Section III presents the application of
this concept in the self-configuration of an assembly operation.
Finally, Section IV describe some conclusions and future

works of the approach.

II. A FRAMEWORK FOR SELF-CONFIGURATION OF A
ROBOTIC PLATFORM

A. Framework components
The framework includes three main components: (1) the

logistic unit (AGV) with raw material, end effectors and
product recipe (representation of the product process flow,
discussed in detail in part B of this section), (2) Robotic
intelligent unit and (3) a robotic platform. Fig. 2 presents
an overview of the framework. Below some details of the
components of the self-configuration framework are presented:

(1)Logistics unit (AGV) with raw material, tools and recipe:
The logistics unit will take the raw material in a carrier.
The assembly operation (process flow representation) is stored
as instructions in an Internet of things (IoT) device e.g.
a Radio-frequency identification (RFID) card placed on the
carrier. It has information of tasks to be performed or already
performed in the raw material. The logistic unit can take also
necessary tooling (e.g. fixtures, grippers) with the materials,
or on separate ones.

(2)Robotic intelligent unit: It is composed of six sub-
components. They allow its integration and bidirectional com-
munication by receiving necessary parameters from the carrier
and establishing a connection with the robot controller. The
sub-components are:

• IoT device: Device that acts as a gateway. It reads
information of tasks and parameters from the carrier and
transfer them to the platform integration of the Robotic
intelligent unit.

• Basic templates for assembly operations: Composed of a
sequence of instructions of the robot i.e. tri-dimensional
movement of the end effector and gripping. These prede-
fined templates can be continuously re-used for generic
assembly operations e.g. picking and placing, screwing,
welding, etc. Different set of templates can be generated
according to the model and brand of the robotic platform.
Templates can be also created by design depending on the
process and product, increasing its scalability.

• Physical restrictions: Describe the physical restrictions
of the robotic platform e.g. maximum range of the end
effector or maximum speed of movement.

• Robotic framework: A software library that allows the
connection and communication of the platform integra-
tion with the robotic platform e.g. python script, Robotic
operating system (ROS), etc. Different robotic frame-
works can be implemented according to the model and
brand of the robotic platform.

• Data base of learnt skills: While developing the process
self-configuration, specific tasks and parameters will be
stored. Those can be reused in future applications.

• Platform integration: Integrates the acquired parameters,
templates and physical restrictions to execute required
tasks of the product.

(3)Robotic platform: Executes the assembly tasks according
to control operations provided by the Robotic intelligent unit.



Fig. 2. Framework for manufacturing self-configuration of a robotic platform

B. Process flow representation

The process flow represents a sequence of steps necessary
to carry out an assembly operation.

It contains a recipe of tasks that have to be executed in
the raw material. This knowledge modelling is not a simple
task. Inspired by the work of [20] we proposed a simplified
representation of this process considering following elements:

• Process flow: It has all required sequential information to
assembly a product. It is composed of at least one task.

• Task: This represents a fundamental assembly operation
e.g. picking and placing, screwing, welding, etc. Individ-
ual tasks consist of finer activities called process steps.

• Process step: It is ”an elementary operation of a pro-
cess flow which cannot be further decomposed into sub
steps” [20]. Process steps can therefore be wrapped as
a functional configuration of a robotic platform and can
be represented as a set of attributes. Examples of process
steps are: end effector moving, gripping, etc.

A sketch of a product process flow and its components is
presented in Fig. 3(a) , Fig. 3(b) presents the composition
of a process step as well as two examples for moving and
gripping. Fig. 3(c) presents a sequential representation of a
task as a composition of process steps i.e. picking and placing
and screwing.

C. Sequential diagram

The process flow connection and communication describe
the sequence of steps required to transfer necessary parameters
to the robotic platform. Here the main elements are described
as software blocks similar to an event driven approach. Once
a new product arrives, the parameter transference starts and

afterwards the assembly operations are executed. These inter-
actions are displayed in Fig. 4. Main steps of the sequential
diagram are summarized below:

• Requesting connection: The sequence starts when the
logistics unit with the raw material establish a connection
with the controller of the robotic platform. This digital
connection triggers a compatibility checking test to make
sure the robotic platform is able to perform the assembly
operation(s), otherwise the connection will not be estab-
lished. After a successful connection, the process flow is
extracted and immediately sent to the Robotic intelligent
unit.

• Querying and storing skills/parameters: After receiving
the process flow, if the set of tasks and attributes are new
(i.e. because of a new product/product variant), those will
be automatically stored in the Robotic intelligent unit to
be used in future operations.

• Querying templates for assembly operations: Specific
tasks and parameters (skills) will be matched according
to a set of templates available in the Robotic intelligent
unit. Those will provide the sequential configuration flow
necessary to execute the task.

• Requesting control function from robotic framework:
Templates with specific parameters will use the robotic
framework as a gateway for communication with the
robotic platform.

• Executing operation: After matching parameters and tem-
plates with the robotic framework, those will be executed
in the robotic platform.

• Updating product status and closing connection: When
all tasks that the robotic platform is able to do are
executed, the status of the product will be updated (in



Fig. 3. Representation of: (a) product process flow, (b) process step, and (c) tasks

terms of completed tasks). After that the connection will
be closed.

III. USE CASE: SELF-CONFIGURATION OF AN ASSEMBLY
OPERATION

The use case implemented in this work includes the software
development for the self-configuration of a specific robotic
platform. To illustrate this concept, a simple product was
chosen. i.e. a hinge. Hinges are used to join two parts
together while creating a revolut joint between them. Four
main components compose this example: pin, inferior leaf
(part C), superior leaf (part B), and a screw (part A). Objective
of this assembly operation is to pick and place the inferior leaf,
the superior leaf and the screw on the pin. After the screw is
placed, a screwing operations is carried out. See Fig. 5 for a
3D representation of the parts and assembly operation.

A. Software implementation

The software implementation consisted in the development
and integration of four python scripts and a JSON file, the last
represents the assembly process flow. JSON was chosen for
simplicity in the data manipulation. Other formats to consider
that may facilitate the interoperability and standardization of
the process flow are: AutomationML (AML) or Business to
Manufacturing Mark up Language (B2MML). The Robotic
platform used in this work is the the FANUC Educational cell
(R-30iB Mate Plus Controller).

In this example we assume that the recipe has been already
extracted by the IoT device (Fig. 2) and therefore it is already
available in the Robotic intelligent unit. Software scripts
implemented in python are:

• Tasks, process steps and parameters extraction: It is used
to extract key parameters from the recipe (JSON file)

• Assembly templates: Set of functions that represent the
pre-built sequence of steps.

• FANUC robotic framework: Script that allows the con-
nection and communication with the robotic framework.
In this example the fanucpy: Python package for FANUC
industrial robots was used [21], [22]. This driver has been
tested in KAREL and FANUC teach pendant languages.
By establishing a connection with the server of the robot
controller, control and monitoring variables can be easily
accessed. It has already predefined functions that facilitate
the moving, opening and closing of the gripper of the
robotic platform (FANUC educational cell).

• Platform integration: Script that integrates the assembly
parameters, templates and communication framework to
execute the movement of the robot.

B. Results and Discussion

Two recipes (JSON files) were implemented to test the
scripts developed. One of them describing the assembly pro-
cess of the hinge and the other one its disassembly. The last
one can be very practical in terms of re-usability and recycling
of products (they have the knowledge of how to dissemble
themselves).

Fig. 7a shows a hinge assembly process and Fig. 7b shows
its disassembly after the parameters self-configuration using
the FANUC educational cell.

Compared to other research works where there is a prede-
fined set of skills or capabilities (usually manually predefined),
or a centralized server that orchestrates different parameters,
in this concept the self-configuration occurs in run-time. This
can drastically reduce configuration effort and time when new
products are launched. As far as the manufacturing resource
has physical capabilities to perform an operation and the set



Fig. 4. Sequential diagram proposed for the self-configuration framework

Fig. 5. Sequential steps for the assembly of a hinge

of templates available, the production possibilities (in terms
of product variability) can be drastically enhanced.

IV. CONCLUSIONS AND FUTURE WORKS

Current paper presents a framework for manufacturing self-
configuration to support the self-organization of manufacturing
systems (specially intra logistics self-organization).

Fig. 6. Software implementation of the self-configuration framework

Main idea behind this approach is that manufacturing re-
sources (i.e. robotic platforms), do not need to be programmed
in advance to perform a specific task. They just need generic
templates of assembly operations.

While the assembly process is carried out, new parameters
are transferred to the robotic platform. Therefore, there is no
need of digital connection to a centralized server or need of
having an operator continuously re-configuring the parameters



Fig. 7. Implementation of the self-configuration framework using the FANUC
educational cell in the (a) assembly and (b) disassembly of a hinge

when new products or product variants are launched.
There is a continuous self-configuration, and robotic plat-

forms can permanently learn and store new tasks.
The main contributions of this work are: the development of

the framework and its logical sequential representation, mod-
elling of the process flow, concepts of templates for assembly
operations, integration and development of the software as
python scripts, and a show case using a robotic platform for
assembly and disassembly of a hinge.

Future works will consider additional development of the
framework i.e. rules that describe physical restrictions of
the robot (range of parameters that the resource accepts
e.g. velocity, acceleration, maximum gripper opening), testing
and comparison with other robotic frameworks e.g. ROS,
the integration with other complementary technologies e.g.
vision systems, and the test with other robotic platforms.
A knowledge model will be constructed that enabled the
intelligent selection of resources. Also, a more comprehensive
case study showing also reconfiguration aspects of AGVs will
be included as this work focuses more on software integration
aspects. Finally, mechanisms to encrypt sensitive assembly
instructions should be investigated as a way to protect trade
secrets when manufacturing new products.
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