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1  |  ALLELOPATHY: AN ENDURING RIDDLE

1.1  |  Allelopathy and common limitations to its 
examination

Allelopathy is defined at its broadest as interference between organ-
isms facilitated by secondary metabolites (Mallik & Inderjit, 2002). 

This usually describes plant– plant interactions, as its original descrip-
tion by Molisch (1937) suggests: ‘The influence of one plant on an-
other’. Given the prevalence and detriment of weeds (Oerke, 2005), 
and the burgeoning development of populations with resistance to 
multiple synthetic herbicides (Powles & Yu, 2010), allelopathy may 
be a valuable alternative to traditional chemical control (Macias 
et al., 2007), in various forms of delivery, including the deployment of 
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Abstract
Allelopathy, that is, plant– plant inhibition via the release of secondary metabolites 
into the environment, has potential for the management of weeds by circumventing 
herbicide resistance. However, mechanisms underpinning allelopathy are notoriously 
difficult to elucidate, hindering real- world application either in the form of commercial 
bioherbicides or allelopathic crops. Such limited application is exemplified by evidence 
of limited knowledge of the potential benefits of allelopathy among end users. Here, 
we examine potential applications of this phenomenon, paying attention to novel ap-
proaches and influential factors requiring greater consideration, with the intention 
of improving the reputation and uptake of allelopathy. Avenues to facilitate more ef-
fective allelochemical discovery are also considered, with a view to stimulating the 
identification of new compounds and allelopathic species. Synthesis and Applications: 
We conclude that tackling increasing weed pressure on agricultural productivity 
would benefit from greater integration of the phenomenon of allelopathy, which in 
turn would be greatly served by a multi- disciplinary and exhaustive approach, not just 
through more effective isolation of the interactions involved, but also through greater 
consideration of factors which may influence them in the field, facilitating optimiza-
tion of their benefits for weed management.

K E Y W O R D S
agriculture, allelochemical, allelopathy, bioherbicide, mode of action, plant defense, weed 
management

T A X O N O M Y  C L A S S I F I C A T I O N
Agroecology, Applied ecology, Chemical ecology, Evolutionary ecology, Soil ecology

http://www.ecolevol.org
mailto:
https://orcid.org/0000-0003-4757-4813
https://orcid.org/0000-0002-9204-8030
http://creativecommons.org/licenses/by/4.0/
mailto:darwin.hickman@slu.se
http://crossmark.crossref.org/dialog/?doi=10.1002%2Fece3.10018&domain=pdf&date_stamp=2023-04-21


2 of 12  |     HICKMAN et al.

allelopathic crops, intercrops, cover crops, mulches, or bioherbicides 
derived from plant material (Scavo & Mauromicale, 2021) (Figure 1). 
Despite its extensive history, however, allelopathy remains underu-
tilized for weed management (Willis, 1985, 2007); underpinning this 
poor adoption is enduring doubt over the consistency and applica-
bility of allelopathy, based on the inherent difficulty of proving the 
interaction, and prevailing limitations in experimental practices.

Many allelopathy studies have prioritized approaches which do 
not adequately consider natural processes or concentrations of pu-
tative allelochemicals, such as the extraction of compounds from 
ground plant tissue, or the identification of phytotoxic doses with-
out consideration of their likelihood in nature (Duke, 2015; Inderjit 
& Dakshini, 1995; Romeo, 2000). A recent review has furthermore 
identified that in- field application of allelopathy for agricultural ben-
efit is commonly undermined by inadequate effort in distinguishing 
this phenomenon from resource competition in field studies, given 
the substantial complexity of the system and the similar symptoms 
that these two interactions produce (Mahé et al., 2022).

Such adherence to flawed or oversimplified approaches in 
the face of the complicated challenge that weeds pose has pro-
liferated the reputation of allelopathy as a neck riddle, that is, a 
phenomenon near impossible to prove, but which is logically im-
possible not to exist (Harper, 1975; Williamson, 1990). Even the 
pioneering work of Muller (1966) followed frustrated reports of 
difficulty in elucidating allelopathic interference in desert shrubs; 
they had previously concluded that even in the relative simplic-
ity of a desert environment, ecological interactions were too 
complex for allelopathy to be successfully untangled at the time 
(Muller, 1953). This complexity is further exemplified by the de-
bate stimulated by Muller's reports of allelopathy (Muller, 1966), 
with Bartholomew (1970) arguing that the observed patterns were 
attributable to animal consumption. Enduring debate over specific 
instances of allelopathic potential indicates that such complexity 
cannot	be	comprehensively	unpicked	70 years	 later.	Such	factors,	
and the range of inhibitory potential that they confer in the field, 
must therefore be better understood.

Given the complexity of these interactions, then, it is confound-
ing to the understanding of allelopathy that there rarely exists 
a single study covering in vitro bioassay of crude root exudates, 
chemical analyses of their composition, the maintenance of effects 
in biologically active media, and larger- scale field trials (Inderjit & 
Nilsen, 2003). This can be partially attributed to a lack of interdisci-
plinary science (such work covers synthetic and analytical chemistry, 
plant physiology, soil science, agroecology and agronomy at least, 
and preferably also genetics, as we will discuss). The exhaustive, 
multi- disciplinary work to develop weed- suppressive rice cultivars 
is a striking example (Olofsdotter, 2001). Romeo (2000) suggested 
that the lack of such multi- disciplinary studies is also a symptom of 
the modern need for frequent publication in science, noting that 
early works from times when publication pressure was less severe 
combined these approaches more effectively (e.g., Muller, 1966).

1.2  |  Enduring doubts lead to limited 
application or adoption

There is an urgent need for novel and effective approaches for allel-
opathy to reach application, as its enduring reputation as an almost 
unknowable quantity has translated to skepticism in end users. The 
result is a lack of commercialization, adoption, or even knowledge 
of potential allelopathic benefits in agriculture (Trezzi et al., 2016).

The potential for allelochemicals to contribute to the develop-
ment of naturally derived herbicides is greatly undervalued. As of 
2016, only one commercial bioherbicide was produced from plant 
extracts (Cordeau et al., 2016), and few others show potential for 
commercialization (Dayan et al., 2012). Moreover, while allelopathic 
potential has been identified in many crop species (Worthington 
& Reberg- Horton, 2013), breeding for this trait, or even weed 
suppression more broadly, remains highly atypical. Progress has 
been most notable in rice, for which constituent allelochemicals 
and genes involved in their biosynthesis have been identified, 
and, as a result, particularly allelopathic and weed- suppressive 

F I G U R E  1 A	summary	diagram	of	potential	applications	for	allelopathy	in	agricultural	weed	management.
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commercial cultivars have been developed (Belz, 2007; Kong 
et al., 2011; Olofsdotter, 2001; Serra Serra et al., 2021; Worthington 
& Reberg- Horton, 2013).

Even if such allelopathic crops are developed or identified, 
there is evidence that their potential benefits are not widely 
known among farmers. Sorghum, through its allelochemical me-
tabolite sorgoleone, represents one of the best understood ex-
amples of an allelopathic crop species (Czarnota et al., 2001; 
Dayan et al., 2010;	 Głąb	 et	 al.,	2017; Weston et al., 2013). The 
allelopathic potential of sorghum may be particularly beneficial 
given its predominant cultivation in low- input smallholder sys-
tems where both conventional herbicides and labor are not freely 
available, and therefore options for weed management are lim-
ited (e.g., Rodenburg & Johnson, 2009). Additionally, the arid and 
semi- arid (and therefore stressful) conditions where sorghum is 
commonly grown may stimulate allelopathic responses, given their 
established correlation with abiotic stress (e.g., Tang et al., 1994). 
Despite this, knowledge of sorghum allelopathy among end users 
in these systems is limited, with only 29% of farmers in Zimbabwe 
aware that the species had potential to inhibit weeds in this way 
(Tibugari et al., 2020). More broadly, only around 10% of rice farm-
ers interviewed in Côte D'Ivoire knew of any potentially beneficial 
weed- suppressive plant species (Yao et al., 2019). Knowledge of 
allelopathy is required for its application to reach a meaningful 
scale, so these reports emphasize the disconnect between scien-
tific advancements and end- user understanding.

The widespread uptake of allelopathy- inspired weed manage-
ment solutions will only be achieved through reliable approaches to 
prove and improve their utility, demonstrating their potential effi-
cacy for agricultural weed management. As such, the goal of this 
paper is to work towards this vision by examining the potential ave-
nues of application for allelopathy (Figure 1), and some approaches 
within them which we consider to be emergent, novel, or underuti-
lized, and may therefore have the potential to ease the journey from 
the scientist's laboratory to the farmer's field.

2  |  APPLYING ALLELOPATHY: 
IMPLEMENTATION IN WEED MANAGEMENT

2.1  |  Asking the right questions: the importance of 
framework and assay design in allelopathy studies

It is logical that effective application of allelopathic material for 
weed management is predicated on comprehensive elucidation of 
its effects. As such, studies of allelopathy would benefit from the 
adoption of an adequate framework from the outset, which seeks 
to understand the dynamics of allelopathy in each individual case 
for meaningful application. In perhaps the most comprehensive 
and specific of these, Willis (1985) offered six points to be satisfied 
(Figure 2).

Given these questions and the complexities involved in an-
swering them, such frameworks are rarely diligently satisfied, as 

Willis (1985) had noted when suggesting theirs. This, crucially, is in 
spite of extensive technological advancements and strides forward 
in understanding of plant– plant interactions. Thus, while we have 
novel and increasingly sophisticated tools available to examine alle-
lopathy, they still need to be used to answer the right questions for 
effective application.

A key aspect of satisfying these frameworks is, of course, the 
use of the correct assays to elucidate the tenets specified in them. A 
wide array of systems have been developed and deployed for such 
purposes, and have been reviewed elsewhere for their strengths and 
drawbacks (Duke, 2015; Wu et al., 2001), while a number of other 
works have spotlighted important methodological considerations 
(e.g., Haugland & Brandsaeter, 1996; Inderjit & Nilsen, 2003). We 
emphasize that the effective combination of assay methods in both 
abstract and semi- natural conditions, focused on different aspects 
of a suitable framework, is essential for comprehensive understand-
ing of allelopathic phenomena for application. Particularly important 
is the inclusion of soil as a growth medium in this testing, given the 
frequent incident of rapid microbial degradation or sorption of puta-
tive allelochemicals negating their effectiveness in these conditions 
(e.g., Kaur et al., 2009).

2.2  |  The challenge of allelochemical discovery: 
what, and how, can we learn from nature?

The identification of allelochemicals with phytotoxicity to herbicide- 
resistant populations may provide a shortcut in novel herbicidal 
development. The traditional approach of herbicide discovery in-
volves ideation and modeling based on known effective molecules 
(Peters & Strek, 2018). A comparable, but more ecologically minded 
approach has recently been advocated in examining the phytotoxic 
potential of anti- malarial compounds. This involved the identifica-
tion of desirable compounds according to the effects of specific 
functional groups, which were then assessed against Arabidopsis 
seedlings to prove their efficacy, resulting in the successful iden-
tification of some candidates for herbicide development (Corral 
et al., 2017; Sukhoverkov et al., 2021). More generally, the great 
potential of a modeling approach to identify novel compounds with 
herbicidal	properties	is	well	recognized	(Oršolić	et	al.,	2021; Sparks 
et al., 2017).

It is, however, important to remember the desired end- goal; a 
major advantage of naturally derived compounds compared to en-
tirely synthetic alternatives is their perceived environmental safety 
(Duke et al., 2010). For this reason, modification of a compound 
found in nature to improve its applicability for weed management 
carries the risk of producing a less environmentally benign synthetic 
analog. Still, modeling to identify more effective compounds related 
to allelochemicals could streamline and assist the development of 
effective plant- derived bioherbicides, and improve their chances of 
commercialization and application.

The existence of bioactive herbicidal compounds also coheres 
with the theory of multi- kingdom potential in plant allelochemicals, 
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the extent to which will only be determined by further investiga-
tion (Hickman et al., 2021). This theory is further supported by the 
common identification of traditional medicinal plant species with 
allelopathic potential, such as olive (Olea europaea), squill (Drimia 
maritima), rue (Ruta graveolens), lavender (Lavandula angustifolia) 
(Aliotta et al., 2008), sage (Salvia officinalis) (Bouajaj et al., 2013), and 
various mint species (Mentha spp., Nepeta cataria and Agastache ru-
gosa) (Sarheed et al., 2020). Specific allelochemical compounds are 
also linked with traditional medicines, for example artemisinin (or 
‘Qinghaosu’) from sweet wormwood (Artemisia annua) (Knudsmark 
Jessing et al., 2014), a traditional treatment for fever in China 
(Klayman, 1985). This trend has been explored more widely (Islam, 
Yeasmin, et al., 2018), in broad screens of a large range of species, fol-
lowed by recommendations of suitable candidates for further work 
(Fujii et al., 2003; Islam, Hasan, et al., 2018; Sothearith et al., 2021; 
Suwitchayanon et al., 2017), while other medicinal species have 
been explored in more detail (Islam & Kato- Noguchi, 2013). In spite 
of this work, medicinal plants remain far from commercialization for 
allelopathic benefit.

Many of the medicinal plants examined for allelopathic poten-
tial are of tropical origin (e.g., Sothearith et al., 2021; Suwitchayanon 
et al., 2017). Ooka and Owens (2018) hypothesized that tropical 
conditions may be particularly conducive to the evolution of allelo-
pathic potential given otherwise favorable growing conditions and 
great plant diversity. Thus, exotic plants wherein ‘novel weapons’ 
to widespread temperate agricultural weeds are more likely to exist 
may have greater potential for discovery of metabolites with allelo-
pathic properties (Callaway & Ridenour, 2004; Zhang et al., 2021). 
Searching tropical regions for novel allelopathic plant species would 
constitute a form of bioprospecting, the search for novel compounds 
in biodiverse ecosystems, typically for pharmaceutical applications 
(Mateo et al., 2001). Bioprospecting for agrochemical compounds, 
although not specifically bioherbicides, has also been advocated 

(Strobel & Daisy, 2003), and Souza et al. (2008) exemplified this ap-
proach in their examination of tropical species from Brazil for con-
trol of agricultural pests. Therefore, by extension, plant ecology may 
provide clues to the identification of new allelopathic plant species, 
and novel allelochemicals.

2.3  |  Allelopathy- inspired bioherbicides and 
modes of action

One major benefit conferred by novel allelochemicals on the route 
to commercialization is the potential for new, or multiple modes of 
action to be discovered. Such findings would have potential value in 
circumventing herbicide resistance, given that this is often conferred 
by target- site adaptations (Gressel, 2020; Hachisu, 2021). The dis-
covery of novel herbicide modes of action has been slow since the 
1980s, due to widespread reliance on the broad- spectrum herbicide 
glyphosate (Dayan, 2019; Duke, 2012; Duke & Dayan, 2022; Peters 
& Strek, 2018), for which resistance is now prevalent (Heap, 2023; 
Heap & Duke, 2018). Only one herbicide containing a novel mode of 
action has been commercialized since this time, the dihydroorotate 
dehydrogenase inhibitor Tetflupyrolimet (Dayan et al., 2019). Other 
novel modes of action have been retrospectively identified in old 
actives (e.g., Cinmethylin and Aclonifen) (Campe et al., 2018; Kahlau 
et al., 2020), while other recently discovered molecules exhibit novel 
modes of action which may benefit herbicide development in the 
future (Shino et al., 2018). Even if an effective and persistent weed 
inhibitor is identified, however, there remains much outstanding 
work, examining factors like nontarget toxicity, efficacy toward a 
wide range of agricultural weeds, and the most effective means of 
delivery, prior to commercialization.

Even when all of these issues are resolved, it is possible that 
synthesis of these compounds on sufficiently large scale for field 

F I G U R E  2 Willis'	six	points	for	proving	plant–	plant	allelopathic	interactions.
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application is prohibitively, or at least antagonistically, expensive 
(Roberts et al., 2022), owing to their structural complexity and often 
a lack of preceding work undertaken to optimize their production. 
Such high production costs of bioherbicides can be an even greater 
issue if new, cheap, effective ‘traditional’ herbicides are released 
into the same market; bioherbicidal formulations of the fungus 
Colletotrichum gloeosporioides f.sp. malvae for control of Malva pusilla 
were effectively forced out of commercialization in this way in the 
1990s (Cordeau et al., 2016). Therefore, while recent progress is en-
couraging, it is unlikely to be sufficient to outpace the development 
of herbicide resistance without a change in perspective (Gaines 
et al., 2021).

It should also be considered that individual modes of action do 
not exist in a vacuum; identified putative allelochemicals should 
be examined for interactions (antagonism or synergism) with each 
other, given potential consequences for application. There is prece-
dent for allelochemicals to synergize and enhance inhibitory effects 
(e.g., Einhellig & Rasmussen, 1978). Recent work has moreover iden-
tified compounds with indirect benefit for weed control, inhibiting 
the detoxification enzymes of plant species with metabolic (non-
target) herbicide resistance, thereby essentially rendering the plant 
herbicide- susceptible (Schwarz et al., 2021). It is therefore logical 
that plants have evolved to synthesize co- occurring compounds 
which synergize to more effectively suppress competing species, 
but this has not been widely explored at present.

2.4  |  Allelopathic crops and the potential for 
benefits from understanding of genetics

The deployment of allelopathic crops may be a feasible applica-
tion of the phenomenon for the management of herbicide- resistant 
weeds. This is the case even in the absence of detailed mechanistic 
understanding, as much as it is desired for the understanding of allel-
opathic effects and the optimization of their application; the promi-
nence of mechanistic aspects in the frameworks suggested earlier in 
this piece exemplify their importance. Such application would bene-
fit from contributions to the emergent understanding of plant– plant 
communication and recognition (discussed later in this piece), as well 
as greater understanding of potential nontarget effects of putative 
allelochemicals (Fritz & Braun, 2006). Such understanding would el-
evate allelopathic plants from blunt objects for weed control into 
intelligent tools to fit into an integrated weed management program.

A major detrimental factor in the development of allelopathic 
cash crops (e.g., Table 1) is the demand of yield. Agriculture has long 
prioritized breeding for yield improvement over other traits, so any 
form of weed suppression should consider net effect on produc-
tivity, given that reduced yield in a weed- free environment can be 
compensated by the yield benefit provided by effective weed sup-
pression (Worthington & Reberg- Horton, 2013). This is exemplified 
by the breeding of allelopathic rice cultivars by Kong et al. (2011). 
While this work proves that a high- yielding, weed- suppressive crop 
variety can be achieved, much effort is required to characterize the 
trade- offs related to yield and plant defense.

A sophisticated, yet largely underappreciated approach in de-
veloping allelopathic crops for weed management is through appli-
cation of genetic engineering techniques to better understand and 
deploy them (Aci et al., 2022). In sorghum, recent effort has been 
made to identify genetic regions involved in sorgoleone biosynthesis 
(Shehzad & Okuno, 2020), paving the way for future efforts to up-
regulate these genes for greater allelopathic effect. There is, inter-
estingly,	evidence	that	cytochrome	P-	450	monooxygenases	(which	
have a range of functions in stress responses) play a role in sorgole-
one synthesis (Pan et al., 2018), as well as the biosynthesis of other 
allelochemicals in other plant species (Serra Serra et al., 2021), indi-
cating some consistency between species in their genetic tools for 
allelochemical synthesis.

A related option is to alter the genes coding for biosynthesis 
of the identified allelochemical, for instance through knock- down 
(Yoshida et al., 2017), theoretically facilitating comparison with 
a wild type for allelopathic effects. Again, these genes could also 
be upregulated for greater synthesis or exudation of potent al-
lelochemicals. Promising advances in gene editing technology sug-
gest potential in modifying wheat gene expression to alter desirable 
traits (Zhang et al., 2016), for example in the editing of an asparag-
ine synthetase gene to produce wheat with reduced content of free 
asparagine (Raffan et al., 2021). Similar methods could edit specific 
genes involved in benzoxazinoid allelochemical biosynthesis in cere-
als (Frey et al., 1997; Makowska et al., 2015; von Rad et al., 2002), 
allowing the examination or upregulation of specific compounds in 
the pathway.

Genetic modification for study of allelopathy could be hindered 
by the possible effects of gene modification on plant growth (and 
therefore ability to compete for resources). Züst et al. (2011) re-
ported that the removal of allelochemical synthesis genes confirmed 
the fitness cost of defense metabolite synthesis, as the knockout of 

Crop species Major allelochemicals Summary references

Rice Momilactones A and B Serra Serra et al. (2021)

Sorghum Sorgoleone Głąb	et	al.	(2017), Weston 
et al. (2013)

Wheat, Rye, Maize Benzoxazinoids (DIMBOA, DIBOA) Wouters et al. (2016)

Brassicas Glucosinolates (isothiocyanates) Rehman et al. (2018)

Barley Hordenine, Gramine Jabran (2017)

TA B L E  1 Common	crop	species	where	
allelochemicals and their effects have 
been substantiated and reviewed.
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glucosinolate biosynthesis genes in Arabidopsis thaliana stimulated 
early growth in mutants compared to the more defensively capable 
wild- type Arabidopsis plants examined. Nonetheless, with under-
standing of such effects, the editing of allelochemical synthesis genes 
may be a useful tool for the examination of the effects of allelopathy.

2.5  |  Cover cropping and intercropping: allelopathy 
as a benefit

Allelopathic species could alternatively be applied as cover or inter-
crops for weed suppression, in rotation or sown with a less weed- 
suppressive cash crop (Jabran et al., 2015). Cereals such as rye have 
been advocated in this manner, given their well- substantiated allelo-
pathic potential (Masiunas et al., 1995; Rice et al., 2012), while bras-
sicaceous species, exuding glucosinolate allelochemicals (Al- Khatib 
et al., 1997; Haramoto & Gallandt, 2004; Rehman et al., 2018), and a 
number of legumes (Adler & Chase, 2007; White et al., 1989), have 
also been suggested to be allelopathic. Importantly, however, leg-
umes also exemplify a potential complication in applying such mate-
rial in weed management, given that these plants also fix nitrogen. 
This is obviously an additional benefit for the crop in the system, but 
it should be noted that some weed species may respond positively 
to this resource input (Jäck et al., 2021), nullifying their inhibition by 
allelochemicals (or, for that matter, resource competition). For this 
reason, it is essential to understand the system that these applica-
tions will enter into, given the consequences that this may have for 
the outcome.

Common in these effective allelopathic cropping schemes is 
the use of decomposing plant tissues after growth (e.g., Al- Khatib 
et al., 1997; White et al., 1989). Previous works have specifically 
noted the allelopathic potential of wheat straw (Al Hamdi et al., 2001; 
Steinsiek et al., 1982), and rye mulch (Tabaglio et al., 2008) on weeds. 
Given that benzoxazinoid content within plant tissues is likely to 
be greater than levels in root exudate (Escobar & Niemeyer, 1993; 
Hussain et al., 2022; Stochmal et al., 2006), the application of cereal 
debris would increase allelochemical concentration and also delay 
its release as tissues decompose, potentially delaying degradation of 
these short- lived compounds (e.g., Macías et al., 2004).

An intriguing potential modification of these systems is to use 
crop or cultivar mixtures rather than a single uniform biotype. There 
is evidence of weed suppression being increased through mixing of 
species or cultivars (Baraibar et al., 2017; Smith et al., 2020), which 
is likely to be attributable to both resource competition and allelop-
athy, as plants are known to detect and modify their responses to 
neighbors in terms of both of these phenomena (Dudley et al., 2013; 
Yang et al., 2018). This can be highly variable even between biotypes 
of the same species. However, Xu et al. (2021) reported that rela-
tively closely related rice cultivars can be more effective in compet-
itive suppression of paddy weeds in spite of reduced allelochemical 
exudation, while another recent work appears to suggest that plants 
more functionally similar to the allelopathic species (and there-
fore potentially perceived as ‘more of a threat’ to their niche) will 

stimulate a stronger allelopathic response, at least in the case of 
wheat exuding benzoxazinoids (Hussain et al., 2022). Such findings 
indicate that the correct combination of crops or even cultivars may 
have potential to stimulate and maximize weed suppression through 
allelopathy due to these recognition interactions.

Arguably the most complete and successful application of an al-
lelopathic intercrop is the leguminous genus Desmodium (most no-
tably D. uncinatum and D. intortum), deployed in smallholder maize 
systems in Africa. Desmodium is highly suppressive to parasitic Striga 
spp. through allelopathic action (Khan et al., 2002), while also being 
repulsive to stemborer species like Chilo partellus and Busseola fusca, 
thereby bringing additional defensive benefit to the crop (Khan 
et al., 2006) as a constituent of a so- called push– pull system (Khan 
et al., 2014) (Figure 3). This technology is now reaching widespread 
application in these areas (uptake of over 200,000 farmers), albeit 
with alterations dependent on the specific requirements of the 
individual farmer (Pickett & Khan, 2016), and should therefore be 
considered an example for successful incorporation of allelopathic 
potential into cover or intercrop systems.

2.6  |  Plant stress and allelopathy: using it to 
our advantage

Given the well- established link between stress and allelopathy 
(Reigosa et al., 1999; Tang et al., 1994), the induction of mild stress 
can be an elicitor of allelochemical exudation in a manner which 
may be of net benefit for weed management. This may be especially 
valuable because such stresses have potential to simultaneously in-
crease the vulnerability of nearby target weeds to these allelochemi-
cals. Scavo et al. (2020) demonstrated that anthropogenic shading of 
cardoon (Cynara cardunculus) led to increased concentrations of phy-
totoxic sesquiterpene lactones, suggesting the potential of this ap-
proach, although, of course, it does carry the danger of unintended 
detriment to the allelopathic species if the stress is too intense.

A sophisticated alternative approach for maximizing allelochemi-
cal delivery to an intended target lies in the application of additional 
compounds with indirect effects. The exogenous application of 
stress signaling compounds like cis- jasmone and jasmonic acid has 
stimulated benzoxazinoid accumulation in wheat tissues (Moraes 
et al., 2008; Sue et al., 2021), sorgoleone accumulation in sorghum 
(Uddin et al., 2013), and comparable defensive responses in other 
crop species like rice (Bi et al., 2007), and potato (Solanum tubero-
sum) (Sobhy et al., 2017). This may present a method for augmenting 
allelopathic exudation where desired. The induction of polyploidy 
in wheat, rye, and maize with colchicine in vitro has also been cor-
related with increased benzoxazinoid exudation, given the existence 
of more genetic material conferring it (Oliveros- Bastidas et al., 2018). 
The application of this finding in- field would require extensive work 
to ensure that other developmental metrics are not detrimentally 
affected, but at the least, it vindicates the examination of inducibility 
interactions and, more broadly, approaches to stimulate allelochemi-
cal exudation for weed management.
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2.7  |  Know your enemy: understanding the target 
to optimize allelopathic inhibition

As noted in previous sections, it is fundamental to application of al-
lelopathic material for weed management to consider the intended 
target weed. Such species have too often been viewed as a homoge-
neous enemy to be overcome, rather than living, interacting, evolv-
ing species in a wider agroecological environment (Neve et al., 2009); 
the proliferation of herbicide resistance highlights the danger of this 
approach (Powles & Yu, 2010). Although outside of the scope of this 
review, it should furthermore be noted that such weeds are in some 
cases allelopathic themselves (Guo et al., 2017), which obviously has 
potential to alter such crop– weed interactions. Key to the greater 
application of allelopathy in weed management is in a more inte-
grated approach, with greater consideration of both the ‘donor’ and 
‘target’ plant species, and the dynamics within an agroecosystem 
which modulate their interactions (Cheng & Cheng, 2015).

As such, allelochemical sensitivity in target species is highly vari-
able, and dependent on specific factors. For example, it is commonly 
observed that plant roots are more sensitive to allelochemicals than 
plant aboveground tissues (Haugland & Brandsaeter, 1996), and 
that older plants in general display reduced allelochemical sensi-
tivity (Zhang et al., 2021). Taken in isolation, it could be construed 
that allelopathy therefore is of little consequence for in- field appli-
cation, where crop– weed competition is greatest between plants 
at later developmental stages, and strongly influenced by relative 
aboveground biomass. Nevertheless, this simplistic interpretation 
overlooks the fact that inhibition of weed development at an early 
developmental stage has the potential to profoundly alter later 
crop– weed competitive dynamics (Storkey et al., 2021). It is there-
fore important that indirect effects at later developmental stages 
are not overlooked when evaluating the efficacy of allelopathic ap-
plications. It is unreasonable to assume that any control measure 
could be a “silver bullet” against an herbicide- resistant weed in the 
manner expected of an effective synthetic herbicide. Rather, the use 
of allelopathy can contribute another of the “many little hammers” 

required for such a program in place of conventional chemical con-
trol (Liebman & Gallandt, 1997).

3  |  CONCLUSION: INTEGR ATIVE 
THINKING A S THE KE Y TO ALLELOPATHY 
RE ACHING APPLIC ATION

While plant- derived allelochemicals should never be considered as 
silver bullets for weed management, either as a component of weed 
suppression from a potent cash crop, cover crop, or intercrop species, 
or as directly applied phytotoxins examined for inhibitory potential 
and mode of action, there is much unrealized potential in allelopathy 
and the compounds which induce it. It is apparent, however, through 
review of current understanding of this phenomenon as it pertains 
to application for weed management, that there is no universally 
effective means for deploying allelopathy. Rather, its optimal use is 
dictated by individual scenarios based on preceding knowledge, ag-
ricultural management options, the compounds and crops involved, 
the target weed itself, and other factors relating to the environment. 
The effort required to effectively develop and apply allelopathy as 
part of a weed management strategy is substantial, which speaks to 
the continued reliance of agriculture on easier, but less sustainable 
short- term fixes (MacLaren et al., 2020).

While there is knowledge of a large number of allelopathic crops, 
it is likely that an even larger number of allelopathic plant species 
exist which are not currently considered economically valuable, but 
which could provide currently untapped benefits for the agricultural 
system. This is perhaps a telling indictment on the current status 
of allelopathy as a viable weed management option, given that al-
lelopathic potential may be agriculturally beneficial in itself, in the 
same manner as highly competitive cover crops. For this reason, a 
more holistic and integrative approach is required to elevate alle-
lopathy to widespread application, applying a detailed framework 
to track the phenomenon in vitro, in the glasshouse, and in the field, 
and disproving alternative explanations for the inhibitory patterns 

F I G U R E  3 A	summary	of	the	push–	
pull system in maize, with the allelopathic 
element labeled in bold. Adapted from 
Khan et al. (2014).

Cenchrus purpureus 
emits volatile attractants 
to trap stemborers

Desmodium emits 
volatiles to repel 

stemborers

Desmodium exudes 
allelopathic root 

exudates to inhibit 
Striga parasitism

Maize crop is vulnerable 
to attack by stemborers 

and parasitic weeds 
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observed, before tailoring its application to the specific scenario to 
maximize its effectiveness for weed management.
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